变量之间的关系最新典型习题
北师大版数学七年级下册:第三章 变量之间的关系 同步练习

第三章变量之间的关系1 用表格表示的变量间关系1.李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是(C)A.金额B.数量C.单价D.金额和数量2.在利用太阳能热水器来加热水的过程中,热水器里的水温会随着太阳照射时间的长短而变化,这个问题中,因变量是(A)A.水的温度B.太阳光强弱C.太阳照射时间D.热水器的容积3.当前,雾霾严重,治理雾霾的方法之一是将已产生的PM2.5吸纳降解,研究表明:雾霾程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是(D)A.雾霾程度B.PM2.5C.雾霾D.城市中心区立体绿化面积4.某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下:定价(元) 100 110 120 130 140 150销量(个) 80 100 110 100 80 60在这个问题中,下列说法正确的是(C)A.定价是常量,销量是变量B.定价是变量,销量是常量C.定价与销量都是变量,定价是自变量,销量是因变量D.定价与销量都是变量,销量是自变量,定价是因变量5.某数学兴趣小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表),下列说法错误的是(C)温度/℃-20 -10 0 10 20 30声速/(m/s) 318 324 330 336 342 348A.在这个变化中自变量是温度,因变量是声速B.当温度每升高10 ℃,声速增加6 m/sC.当空气温度为20 ℃,5 s的时间声音可以传播1 740 mD.温度越高声速越快6.(教材P63随堂练习T2变式)已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与用铝量有如下关系:底面半径x(cm) 1.6 2.0 2.4 2.8 3.2 3.6 4.0用铝量y(cm3) 6.9 6.0 5.6 5.5 5.7 6.0 6.5(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4 cm时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较合适?说说你的理由.解:(1)反映了易拉罐的底面半径和用铝量的关系,其中,易拉罐的底面半径为自变量,用铝量为因变量.(2)当底面半径为2.4 cm时,易拉罐需要的用铝量为5.6 cm3.(3)易拉罐的底面半径为2.8 cm时比较合适,因为此时用铝量较少,成本低.7.在圆周长的计算公式C=2πr中,变量有(B)A.C,πB.C,rC.C,π,rD.C,2π,r8.如图是用火柴棒拼成的图案,需用火柴棒的根数m随着拼成的正方形的个数n的变化而变化,在这一变化过程中,下列说法中错误的是(C)A.m,n都是变量B.n是自变量,m是因变量C.m是自变量,n是因变量D.m随着n的变化而变化9.“早穿皮袄午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是时间,因变量是温度.10.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧长度y与所挂物体的重量x 的几组对应值.所挂物体重量x/kg 0 1 2 3 4 5弹簧长度y/cm 18 20 22 24 26 28(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体重量为3 kg时,弹簧的长度为多长?不挂物体呢?(3)若所挂物体重量为6 kg时(在弹簧的允许范围内),你能说出此时弹簧的长度吗?解:(1)上表反映了弹簧长度与所挂物体重量之间的关系,其中所挂物体重量是自变量,弹簧长度是因变量.(2)所挂物体重量为3 kg时,弹簧长24 cm.不挂物体时,弹簧长18 cm.(3)根据上表可知所挂物体重量为6 kg(在弹簧的允许范围内)时的弹簧长度为18+2×6=30(cm).11.(教材P64习题T5变式)某公交车每月的支出费用为4 000元,每月的乘车人数x(人)与每月利润(利润=收入费用-支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):(1)在这个变化过程中,每月的乘车人数x是自变量;每月的利润y是因变量;(2)观察表中数据可知,每月乘客量达到2_000人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3 500人时,每月利润为多少元?解:由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1 000元,当每月乘车人数为2 000人时,每月利润为0元,则当每月乘车人数为3 500人时,每月利润为3 000元.12.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中2≤x≤20):(注:接受能力值越大,说明学生的接受能力越强)(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(4)从表格中可知,当提出概念所用时间x在什么范围内时,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内时,学生的接受能力逐步降低?解:(1)反映了提出概念所用时间x和对概念的接受能力y两个变量之间的关系,其中x是自变量,y是因变量.(2)由表格可知,当提出概念所用时间是10分钟时,学生的接受能力是59.(3)由表格可知,当提出概念所用时间为13分钟时,学生的接受能力最强.(4)当x在2分钟至13分钟的范围内时,学生的接受能力逐步增强;当x在13分钟至20分钟的范围内时,学生的接受能力逐步降低.2 用关系式表示的变量间关系1.若一辆汽车以50 km/h的速度匀速行驶,行驶的路程为s(km),行驶的时间为t(h),则用t表示s的关系式为(B)A.s=50+50tB.s=50tC.s=50-50tD.以上都不对2.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y 与x的关系式为(A)A.y=10x+30B.y=40xC.y=10+30xD.y=20x3.一个正方形的边长为3 cm,它的各边边长减少x cm后,得到的新正方形的周长为y cm,y与x之间的关系式是(A)A.y=12-4xB.y=4x-12C.y=12-xD.以上都不对4.从A地向B地打长途电话,按时收费,3分钟内收费2.4元,以后每超过1分钟加收1元.若通话t分钟(t≥3),则需付电话费y(元)与t(分钟)之间的关系式是(B)A.y=t-0.5B.y=t-0.6C.y=3.4t-7.8D.y=3.4t-85.(2019·上海)在登山过程中,海拔每升高1千米,气温下降6 ℃,已知某登山大本营所在的位置的气温是2 ℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y ℃,那么y关于x的关系式是y=2-6x.6.如图所示,在三角形ABC中,已知BC=16,高AD=10,动点Q由点C沿CB向点B移动(不与点B重合).设CQ的长为x,三角形ACQ的面积为S,则S与x之间的关系式为S=5x.7.在关系式y=2x+5中,当自变量x=6时,因变量y的值为(C)A.7B.14C.17D.218.根据图中的程序,当输入x=3时,输出的结果y=2.9.有一棵树苗,刚栽下去时树高为2.1米,以后每年长0.3米.(1)写出树高y(米)与年数x(年)之间的关系式:y=0.3x+2.1;(2)3年后的树高为3米;(3)10年后树苗的高度将达到5.1米.10.圆柱的底面半径为10,当圆柱的高变化时圆柱的体积也随之变化. (1)在这个变化过程中,自变量是什么?因变量是什么?(2)设圆柱的体积为V ,圆柱的高为h ,则V 与h 的关系式是什么? (3)当h 每增加2,V 如何变化?解:(1)由于圆柱的高变化时圆柱的体积也随之变化,所以自变量是圆柱的高,因变量是圆柱的体积. (2)圆柱的体积V 与圆柱的高h 的关系式:V =100πh. (3)因为V =100π(h +2)=100πh +200π, 所以当h 每增加2时,V 增加200π.11.有一种粗细均匀的电线,为了确定其长度,从一捆中剪下1 m ,称得它的质量是0.06 kg. (1)写出这种电线的长度l(m)与质量m(kg)之间的关系式;(2)如果一捆电线剪下1 m 后的质量为b kg ,请写出这捆电线的总长度. 解:(1)由题知,l =m0.06.(2)设这捆电线的总长度为L m ,则L =b +0.060.06,所以这捆电线的总长度为(50b3+1)m.12.目前,全球水资源日益减少,提倡全社会节约用水.据测试:拧不紧水龙头每分钟滴出100滴水,每滴水约0.05毫升.小欢同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小欢离开x 分钟后,水龙头滴出y 毫升的水,请写出y 与x 之间的关系式是(A)A.y =5xB.y =0.05xC.y =100xD.y =0.05x +10013.(2020·烟台改编)按如图所示的程序,若输入的x 值为-3,则输出y 的结果为-3.14.有的温度计有华氏、摄氏两种温标,华氏F()、摄氏C (℃)温标的转换公式是F =1.8C +32,请填写下表:华氏() 摄氏(℃) 温度描述 212 100 水沸腾的温度 98.6 37 人体温度 68 20 舒适室温 32水结冰的温度15.“十一”期间,小明和父母一起开车到距家200 km 的景点旅游,出发前,汽车油箱内储油45 L ,当行驶150 km时,发现油箱余油量为30 L(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每千米的耗油量,并写出行驶路程x(km)与剩余油量Q(L)的关系式;(2)当x=280时,求剩余油量Q.解:(1)该车平均每千米的耗油量为(45-30)÷150=0.1(L/km),行驶路程x(km)与剩余油量Q(L)的关系式为Q=45-0.1x.(2)当x=280时,Q=45-0.1×280=17.故当x=280时,剩余油量Q为17 L.16.多边形的内角和随着边数的变化而变化.设多边形的边数为n,内角和为N°,则变量N与n之间的关系可以表示为N=(n-2)·180.(1)在这个关系式中,自变量、因变量各是什么?(2)在这个关系式中,n能取什么样的值?(3)利用这个关系式计算六边形的内角和;(4)当边数每增加1时,多边形的内角和如何变化?解:(1)n是自变量,N是因变量.(2)n取大于2的整数.(3)当n=6时,N=(6-2)×180=720,故六边形的内角和为720°.(4)当边数每增加1时,多边形的内角和增加180°.17.将长为40 cm、宽为15 cm的长方形白纸,按如图所示的方法黏合起来,黏合部分宽为5 cm.…(1)根据上图,将表格补充完整:白纸张数 1 2 3 4 5 …纸条长度/cm 40 75 110 145 180 …(2)设x张白纸黏合后的总长度为y cm,则y与x之间的关系式是什么?(3)你认为白纸黏合起来总长度可能为2 020 cm吗?为什么?解:(2)y=40x-5(x-1)=35x+5.(3)不可能.理由:令2 020=35x+5,解得x≈57.6.因为x为整数,所以总长度不可能为2 020 cm.3用图象表示的变量间关系第1课时曲线型图象1.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关,当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长.根据下图,在下列选项中指出白昼时长低于11小时的节气(D)A.惊蛰B.小满C.立秋D.大寒2.某市春天经常刮风,给人们的出行带来很多不便,小明观测了4月6日连续12个小时风力变化的情况,并画出了风力随时间变化的图象如图所示,则下列说法正确的是(D)A.在8时至14时,风力不断增大B.在8时至12时,风力最大为7级C.8时风力最小D.20时风力最小3.光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并释放出氧气的过程.如图是夏季的白天7时~18时的一般的绿色植物的光合作用强度与时间之间的关系的曲线,分析图象回答问题:(1)大约几时的光合作用最强?大约几时的光合作用最弱?(2)说一说绿色植物光合作用的强度从7时到18时是怎样变化的.解:(1)大约10时的光合作用最强,大约7时和18时的光合作用最弱.(2)绿色植物的光合作用从7时至10时逐渐增强,从10时至12时逐渐减弱,从12时至14时30分左右逐渐增强,从14时30分至18时逐渐减弱.4.在池塘里藻类的数量与温度有关,如图所示是藻类数量与水温的关系图.(1)藻类在什么温度下数量最多?(2)藻类在什么温度下基本不能生存?(3)在什么情况下藻类数量上升?在什么情况下藻类数量下降?(4)根据如图所示,请说一说藻类的数量是怎样随温度变化的?解:(1)藻类在30 ℃温度下数量最多.(2)藻类在0 ℃及以下或60 ℃及以上的温度下基本不能生存.(3)0 ℃~30 ℃时,藻类数量上升,30 ℃~60 ℃时,藻类数量下降.(4)0 ℃~30 ℃时,藻类数量随温度的上升而增加,30 ℃~60 ℃时,藻类数量随温度的上升而减少,0 ℃及以下或60 ℃及以上基本不能生存.5.从某容器口以均匀的速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为(C)A BC D第2课时折线型图象1.下列各情境分别可以用哪幅图来近似刻画?(1)凉水逐渐加热转化为水蒸气跑掉(水温与时间的关系);(2)匀速行驶的火车(速度与时间的关系);(3)运动员推出去的铅球(高度与时间的关系);(4)小明匀速从A地走到B地后逗留一段时间,然后按原速返回(小明距A地的距离与时间的关系).A B C DA是(3)的图象,B是(4)的图象,C是(2)的图象,D是(1)的图象.(填序号)2.均匀的向一个容器内注水,在注满水的过程中,水面的高度h与时间t的关系如图所示,则该容器是下列四个中的(D)A BC D3.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是(C)A.体育场离林茂家2.5 kmB.体育场离文具店1 kmC.林茂从体育场出发到文具店的平均速度是50 m/minD.林茂从文具店回家的平均速度是60 m/min4.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用s1,s2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是(C)5.一个有进水管和出水管的容器,从某时刻开始4 min 内只进水不出水,在随后的8 min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为(B)A.5 LB.3.75 LC.2.5 LD.1.25 L6.如图分别表示甲步行与乙骑自行车(在同一路上)行走的路程s 甲,s 乙与时间t 的关系,观察图象并回答下列问题: (1)乙出发时,乙与甲相距10千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为1小时; (3)乙从出发起,经过3小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?解:乙骑自行车出故障前的速度与修车后的速度不一样. 乙骑自行车出故障前的速度为7.50.5=15(千米/时),修车后的速度为22.5-7.53-1.5=10(千米/时),因为15>10,所以乙骑自行车出故障前的速度与修车后的速度不一样.回顾与思考(三) 变量之间的关系1.在三角形ABC 中,它的底边是a ,底边上的高是h ,则三角形面积S =12ah ,当a 为定长时,在此式子中(A)A.S ,h 是变量,12,a 是常量B.S ,h ,a 是变量,12是常量C.a ,h 是变量,12,S 是常量D.S 是变量,12,a ,h 是常量2.小亮帮母亲预算家庭4月份电费开支情况,下表是小亮家4月初连续8天每天早上电表显示的读数:日期/日 1 2 3 4 5 6 7 8 电表读数/度2124283339424649表格中反映的变量是日期和电表读数,自变量是日期,因变量是电表读数. 3.日常生活中,我们经常要烧开水,下表是对烧水的时间与水的温度的记录:时间(分) 12 3 4 5 6 7 8 9 10 11 12 13温度(℃)2529 32 43 52 61 72 81 90 98 100 100 100(1)上表反映了哪些变量之间的关系?(2)根据表格的数据判断:在第15分钟时,水的温度为多少? (3)随着加热时间的增加,水的温度是否会一直上升? 解:(1)烧水的时间与水的温度. (2)100 ℃.(3)随着加热时间的增加,在1到11分钟时,水的温度一直上升,在11分钟后温度保持不变,都为100 ℃. 4.如图,一轮船从离A 港10千米的P 地出发向B 港匀速行驶,30分钟后离A 港26千米(未到达B 港).设x 小时后,轮船离A 港y 千米(未到达B 港),则y 与x 之间的关系式为y =10+32x.5.球的体积V 与半径R 之间的关系式是V =43πR 3.(1)在这个式子中,常量、变量分别是什么?(2)利用这个式子分别求出当球的半径为2 cm ,3 cm ,4 cm 时球的体积; (3)若R >1,当球的半径增大时,球的体积如何变化?解:(1)在这个式子中,常量是43π,变量是球的体积V 和半径R.(2)当球的半径为2 cm 时,球的体积是4 3π×23=323π(cm3);当球的半径为3 cm时,球的体积是43π×33=36π(cm3);当球的半径为4 cm时,球的体积是4 3π×43=2563π(cm3).(3)若R>1,当球的半径增大时,球的体积也增大.6.“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用x表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是(A)A BC D7.如图所示是某港口某天从8 h到20 h的水深情况,根据图象回答下列问题:(1)在8 h到20 h这段时间内,大约什么时间港口的水位最深,深度是多少米?(2)大约什么时候港口的水位最浅,是多少?(3)在这段时间里,水深是如何变化的?解:(1)13 h,7.5 m.(2)8 h,2 m.(3)8 h~13 h,水位不断上升;13 h~15 h,水位不断下降;15 h~20 h,水位又开始上升.8.小颖画了一个边长为5 cm的正方形,如果将正方形的边长增加x(cm),那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为y=x2+10x.9.(2020·青海)将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的图象大致为图中的(B)10.小明从家出发步行至学校,停留一段时间后乘车返回,则下列图象最能体现他离家的距离(s)与出发时间(t)之间的对应关系的是(B)11.一空水池现需注满水,水池深4.9 m,现以不变的流量注水,数据如下表.其中不变的量是流量,可以推断注满水池所需的时间是3.5_h.水的深度h/m 0.7 1.4 2.1 2.8注水时间t/h 0.5 1 1.5 212.如图反映了某出租公司乘车费用y(元)与路程x(千米)之间的关系,请你根据图中信息回答下列问题:(1)公司规定的起步价是10元;(2)该公司规定除起步价外,超过5千米的每增加1千米多收1.7元;(3)若你是一名乘客,共付了44元钱,则你的行程是25千米.13.如图1,在直角梯形ABCD中,动点P从点B出发,沿B→C→D→A匀速运动,设点P运动的路程为x,三角形ABP 的面积为y,图象如图2所示.(1)在这个变化中,自变量、因变量分别是x、y;(2)当点P运动的路程x=4时,三角形ABP的面积y=16;(3)求AB的长和梯形ABCD的面积.解:根据图象,得BC =4,三角形ABC 的面积为16, 所以12AB·BC=16,即12×AB×4=16,解得AB =8. 由图象,得DC =9-4=5,则S 梯形ABCD =12BC·(DC+AB)=12×4×(5+8)=26.14.一游泳池长90 m ,甲、乙两人分别从两对边同时向所对的另一边游去,到达对边后,再返回,这样往复数次.图中的实线和虚线分别表示甲、乙与游泳池固定一边的距离随游泳时间变化的情况,根据图形回答: (1)甲、乙两人分别游了几个来回? (2)甲游了多长时间?游泳的速度是多少? (3)在整个游泳过程中,甲、乙两人相遇了几次?解:(1)甲游了三个来回,乙游了两个来回. (2)甲游了180 s ,速度为3 m/s.(3)在整个游泳过程中,甲、乙两人相遇了5次.15.2020年初以来,红星消毒液公司生产的消毒液在库存量为m 吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间关系的大致图象是(D)。
变量之间的关系(含答案)-

暑假专题——变量之间的关系教学目标:使学生能够从表格、关系式、图象中尽可能多地获取信息,解决一些实际问题,从而培养分析问题和解决问题的能力。
二. 重点、难点从表格、关系式、图象中获取信息,解决一些实际问题是本节的重点与难点。
知识点归纳总结:1. 因变量随自变量的变化而变化;2. =平均速度总路程总时间.【典型例题】例1. 小明同学骑自行车去郊外春游,下图表示他离家的距离y (千米)与所用的时间x (小时)之间关系的函数图像。
(1)根据图像回答:小明到达离家最远的地方需几小时?此时离家多远? (2)求小明出发两个半小时离家多远? (3)求小明出发多长时间距家12千米?解:(1)小明到达离家最远的地方需3小时,此时离家30千米 ()在小时他的平均速度为千米时22330153215 ~/--=∴=+⨯=S 151512225.千米 ()在小时他的平均速度为=千米时30115115 ~/ ∴==t 1121545小时 又在小时他的平均速度为-=千米时 46306415~/ ∴=+-=+1=t 243012154815265小时∴小明出发小时或小时距家千米。
4526512例2. 某批发商欲将一批海产品由A 地运往B 地,汽车货运公司和铁路货运公司均开办海产品运输业务,已知运输路程为120千米,汽车和火车的速度分别为60千米/小时、100千米/注:“元/吨·千米”表示每吨货物每千米的运费;“元/吨·小时”表示每吨货物每小时的冷藏费。
(1)设该批发商待运的海产品有x (吨),汽车货运公司和铁路货运公司所要收取的费用分别为y 1(元)和y 2(元),试求y 1与x 的函数关系和y 2与x 的函数关系; (2)通过计算说明当待运的海产品有100吨时,选择哪种货运公司更省钱? 解:()1y x x 12120512060200=⨯+⨯+ =+250200xy x x 21812051201001600=⨯+⨯+. =+2221600x(2)把x =100分别代入y 1与y 2y 12501002002500020025200=⨯+=+=()元 y 2222100160022200160023800=⨯+=+=()元 y y 12>∴选择铁路货运公司更省钱。
变量之间的关系练习题附答案

变量之间的关系练习(1)附答案一、选择题(每题3分,共24分)1.李老师骑车外出办事,离校不久便接到学校到他返校的紧急电话,李老师急忙赶回学校.下面四个图象中,描述李老师与学校距离的图象是()2.秋天到了,葡萄熟了,一阵微风吹过,一颗葡萄从架上落下来,葡萄下落过程中速度与3.某同学从学校走回家,在路上遇到两个同学,一块儿去文化宫玩了会儿,然后回家,下列象能刻画这位同学所剩路程与时间的变化关系的是()4.某人骑车外出,所走的路程$(千米)与时间t(小时)的关系如图1所示,现有下列四种说法:①第3小时中的速度比第1小时中的速度快;②第3小时中的速度比第1小时中的速度慢;③第3小时后已停止前进;④第3小时后保持匀速前进.其中说法正确的是()A.②③B.①③C①④ D.②④5.某校办工厂今年前5个月生产某种产品总量(件)与时间(月)的关系如图2所示,则对于该厂生产这种产品的说法正确的是()A.1月至3月生产总量逐月增加,4, 5两月生产总量逐月减少B.1月至3月生产总量逐月增加,4, 5两月生产总量与3月持平C1月至3月生产总量逐月增加,4, 5两月均停止生产D.1月至3月生产总量不变,4, 5两月均停止生产6.如图3是反映两个变量关系的图,下列的四个情境比较合适该图的是()A.一杯热水放在桌子上,它的水温与时间的关系B.一辆汽车从起动到匀速行驶,速度与时间的关系C一架飞机从起飞到降落的速度与时晨的关系D.踢出的足球的速度与时间的关系7.如图4,射线/甲,/乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的关系,则图中显示的他们行进的速度关系是()A.甲比乙快B.乙比甲快 C甲、乙同速 D.不一定8. 2004年6月3日中央新闻报道.为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水%立方米,水费为y元,则%与y的关系用图象表示正确的是()二、填空题(每题3分,共24分)1.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y(元)与所存月数%之间的关系式为(不考虑利息税).2.如果一个三角形的底边固定,高发生变化时,面积也随之发生改变.现已知底边长为10,则高从3变化到10时,三角形的面积变化范围是.3.汽车开始行驶时,油箱中有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间》(小时)的关系式为,该汽车最多可行驶小时.4.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中_____ 是自变量,是因变量。
变量之间的关系,附练习题含答案

变量之间的关系学案知识梳理:1.在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量;变量分为自变量和因变量.2.表示变量之间的关系通常有三种方法,它们是列表法、图像法、表达式法.1.看图的方法:一看轴;二看点;三看线练习题1. 在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体.下面是测得的弹簧长度y 与所挂物体质量x 的一组对应值. 所挂物体质量x /kg 0 1 2 3 4 5 弹簧长度y /cm 182022242628(1)表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体质量为3 kg 时,弹簧多长?不挂重物时,弹 簧多长?(3)若所挂物体质量为7 kg (在允许范围内),你能说出此时 的弹簧长度吗?2. 如图,若输入x 的值为-5,则输出的结果是_______;若输入x 的值为5,则输出的结果是_______.3. 如图是某地一天的气温随时间变化的图象,根据图象回答:(1)在这一天中,什么时间气温最高?什么时间气温最低? 最高气温和最低气温各是多少? (2)20 h 的气温是多少? (3)什么时间气温为6 ℃? (4)哪段时间内气温保持不变?4. 一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶,过了一段时间后,汽车减速到达下一个车站,乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,下面哪一个图可以近似地刻画出汽车在这段时间内的速度变化情况?( )A .B .C .D .时间O速度时间速度O时间速度O时间速度O是 否 y =x +1输入xx 大于0吗? y =x 1输出yt /hT /°C-4-22468100242220161814121086425.某蓄水池的横断面示意图如图所示,分深水区和浅水区.如果这个注满水的蓄水池以固定的流量把水全部放出,下列图象中能大致表示水的深度和放水时间之间的关系的是()A.B.C.D.6.如图所示,向放在水槽底部的烧杯注水,注满烧杯后,继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的关系大致是图中的()A.B.C.D.7.星期天晚饭后,小红从家里出发去散步,图中反映了她散步过程中离家的距离s(米)与散步所用的时间t(分)之间的关系,依据图象,下面描述符合小红散步情景的是()A.从家里出发到了一个公共阅报栏,看了一会儿报,就回家了B.从家里出发到了一个公共阅报栏,看了一会儿报,继续向前走了一段,然后回家了C.从家里出发一直散步(没有停留),然后回家了D.从家里出发散一会儿步,就找同学去了,18分钟后才开始返回8.小李讲了一个龟兔赛跑的故事,并用图象描绘了比赛过程中路程随时间的变化情况,请先回答下列问题,再讲述这个故事.(1)兔子和乌龟是否在同一地点同时出发?(2)兔子和乌龟在比赛途中相遇过几次?(3)哪一个先到达终点?9.男、女运动员在100米跑道的两端同时起跑,往返练习跑步,测得男运动员每跑一百米用12秒,女运动员每跑一百米用15秒,图中实线和虚线分别为这两名运动员距女运动员起跑点的距离s(米)与时间t(秒)之间的关系图象,请根据图象回答问题:(1)图中实线是_____运动员跑步的图象,虚线是_____运动员跑步的图象(填“男”或“女”);(2)在百米跑道上两运动员第一次在同一端点相遇时,两人均跑了________秒,其中男运动员跑了________米,女运动htt员跑了________米;(3)两运动员从开始起跑到第一次在同一端点相遇止,共相 遇了__________次.10. 甲、乙两人在一次赛跑中,路程s (米)与时间t (秒)的关系如图所示,则下列结论错误的是( ) A .这是一次100米赛跑B .甲比乙先到达终点C .乙跑完全程需12.5秒D .甲的速度为8米/秒第10题图第11题图11. 明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s (千米)与时间t (分)之间的关系如图所示.放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,走这段路所用的时间为( ) A .12分B .13分C .14分D .15分12. 一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关闭进水管.在打开进水管到关闭进水管这段时间内,容器内的水量y (升)与时间x (分钟)之间的关系如图所示,则关闭进水管后,经过______分钟,容器中的水恰好放完.13. 如图,小明从家骑自行车去上学,当他以往常的速度骑了一段路时,忽然想起要买一本练习册,于是又折回到刚经过的一家书店,买到书后继续赶去学校,他离家的距离s (米)与时间t (分)之间的关系如图所示,根据图中提供的信息回答下列问题: (1)小明家到学校的距离是多少米?书店到学校的距离是多少米? (2)小明在书店停留了多少分钟?本次上学途中,小明一共行驶了多少米? (3)在整个上学的途中,哪个时间段小明骑车速度最快?最快速度是多少?(4)如果小明不买书,以往常的速度去学校,需要多少分钟?本次上学比往常多用多少分钟?x /分钟14.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离.......为y(km),图中的折线表示y与x之间的关系.根据图象进行以下探究:(1)甲、乙两地之间的距离为________km;(2)请解释图中点B的实际意义;(3)求慢车和快车的速度.15.如图是某空蓄水池的横断面示意图,分为深水区和浅水区.若以固定的流量往这个空蓄水池中注水,则下列图象中,能大致表示水的深度h与时间t之间的关系的是()A.B.C.D.16.小明某天上午9时骑车离家,15时回家,如图描绘了他离家的距离与时间的具体变化情况,请结合图象回答以下问题:(1)小明经过多长时间到达离家最远的地方?此时他离家多远?(2)11时到12时,他行驶了多少千米?(3)他由离家最远的地方返回的平均速度是多少?【思路分析】读图,从图象中提取信息.①看轴:明确横轴、纵轴表示的意义.横轴表示____________,纵轴表示___________________.②看点:看起点、终点、状态转折点,与实际情景对应.起点表示上午9时从家出发,终点表示15时回家,与实际情景相符.状态转折点:10时离家__________,10.5时离家___________,11时离家________,12时离家________,13时离家_________.③看线,观察线段的变化趋势.线的变化较为复杂,9时—10时,距离增加了_________,此段的速度为________;10时—10.5时,速度为________;10.5时—11时,距离未发生变化;11时—12时,距离增加了________,此段的速度为________;12时—13时,距离未发生变化;13时—15时,距离减少了________,此段的速度为________.【过程书写】解:时浅水区深水区17.在利用太阳能热水器加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器18.如图,当输入数值x为-2时,输出的结果是()A.-2B.3C.-3D.2t y t y t O yt【参考答案】1.(1)表中反应了弹簧长度与所挂物体质量之间的关系;所挂物体质量是自变量;弹簧长度是因变量(2)当所挂物体质量为3kg时,弹簧长24cm;不挂重物时,弹簧长18cm(3)32cm2.-6;63.(1)16h气温最高;4h气温最低;最高气温是10℃;最低气温是-4℃;(2)20h的气温是8℃;(3)10h和22h的气温是6℃;(4)12h到14h的气温持续不变4. B5. A6. B7. B8.(1)否;(2)两次;(3)乌龟9.(1)男;女;(2)60;500;400;(3)510. D11. C12.813.(1)1500米;900米;(2)4分钟;2700米;(3)12-14分钟小明骑车速度最快;450米/分钟;(4)如果不买书需要7.5分钟;本次比往常多用了6.5分钟14.(1)900;(2)点B的实际意义是甲、乙两车在出发4h时相遇;(3)慢车的速度是75km/h;快车的速度是150km/h15. C16.(1)3小时,30千米(2)13千米(3)15千米/小时思路分析:①时间,离家的距离②10千米,17千米,17千米,30千米,30千米③10千米,10千米/小时14千米/小时13千米,13千米/小时30千米,15千米/小时17.B18.B19.(1)时间,气温(2)16,2,10,-2(3)5(4)9和2220.B21.D22.C23.D24.(1)甲教师的平均速度是0.25千米/分钟,乙教师的平均速度是1千米/分钟(2)乙出发后追上甲所用的时间是6分钟25.(1)a=20,b=1 100,c=50(2)60分钟。
七年级数学专项习题——变量之间的关系(附参考答案)

1. 已知AB ∥CD ,现将一个含30°角的直角三角尺EFG 七年级数学专项习题——变量之间的关系(附参考答案)按如图方式放置,其中顶点F 、G 分别落在直线AB ,CD 上,GE 交AB 于点H ,若∠EHB =50°,则∠AFG 的度数为( )A .100°B .110°C .115°D .120°2. 如图,已知AB ∥DF ,DE 和AC 分别平分∠CDF 和∠BAE ,若∠DEA =46°,∠ACD =56°,则∠CDF 的度数为( )A .22°B .33°C .44°D .55°3. 如图,将长方形ABCD 沿EF 翻折,再沿ED 翻折,若∠FEA ″=105°,则∠CFE = 度.4. 已知∠1的两边分别平行于∠2的两边,若∠1=40°,则∠2的度数为 .5. 如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC= 时,AB所在直线与CD所在直线互相垂直.6. 已知:如图△ABC中,AC⊥BC,点D、E在AB边上,点F在AC边上,DG⊥BC于G,∠1=∠2.求证:EF∥CD.(请在下面空白处写出完整证明过程)∴∠AHG =∠EHB =50°,∵AB ∥CD ,∴∠EGD =∠AHG =50°,∵∠FGE =60°,∴∠FGD =∠FGE +∠EGD =60°+50°=110°,∵AB ∥CD ,∴∠AFG =∠FGD =110°1.解:∵GE 交AB 于点H 参考答案,.故选:B .2.解:过点C 作CN ∥AB ,过点E 作EM ∥AB ,∵FD ∥AB ,CN ∥AB ,EM ∥AB ,∴AB ∥CN ∥EM ∥FD∴∠BAC =∠NCA ,∠NCD =∠FDC ,∠FDE =∠DEM ,∠MEA =∠EAB . ∴∠DEA =∠FDE +∠EAB ,∠ACD =∠BAC +∠FDC .又∵DE 和AC 分别平分∠CDF 和∠BAE ,∴∠FDC =2∠FDE =2∠EDC ,∠BAE =2∠BAC =2∠EAC , ∴56°=∠BAC +2∠FDE ①,46°=∠FDE +2∠BAC ②.①+②,得3(∠BAC +∠FDE )=102°,∴∠BAC +∠FDE =34°③.①-③,得∠FDE =22°.∴∠CDF =2∠FDE =44°.故选:C .3.解:由四边形ABFE 沿EF 折叠得四边形A ′B ′FE ,∴∠A ′EF =∠AEF .∵∠A ′EF =∠A ′ED +∠DEF ,∠AEF =180°-∠DEF .∴∠A ′ED +∠DEF =180°-∠DEF .由四边形A ′B ′ME 沿AD 折叠得四边形A ″B ″ME ,∴∠A ′ED =∠A ″ED .∵∠A ″ED =∠A ″EF +∠DEF =105°+∠DEF ,∴∠A ′ED =105°+∠DEF .∴105°+∠DEF +∠DEF =180°-∠DEF .∴∠DEF =25°.∵AD ∥BC ,∴∠DEF =∠EFB =25°.∴∠CFE =180°-∠EFB =180°-25°=155°.故答案为:155.4. 解:①若∠1与∠2位置如图1所示:∵AB ∥DE ,∴∠1=∠3, 又∵DC ∥EF ,∴∠2=∠3,∴∠1=∠2,又∵∠1=40°,∴∠②若∠1与∠2位置如图2所示:∵AB∥DE,∴∠1=∠3,又∵DC∥EF,∴∠2+∠3=180°,∴∠2+∠1=180°,又∵∠1=40°,∴∠2=180°-∠1=180°-40°=140°,综合所述:∠2的度数为40°或140°,故答案为:40°或140°.5.6. 证明:,,( 已知 ),( 垂直的定义 ),( 同位角相等,两直线平行)两直线平行,内错角相等),( 已知 ),( 等量代换 )同位角相等,两直线平行)。
变量之间的关系典型练习题

变量之间的关系典型练习题之相礼和热创作题型一、用关系式暗示变量之间的关系1、某种储蓄的月利率是0.2%,存入100元本金后,则本息和y (元)与所存月数x之间的关系式为__________(不考虑利息税).2、某挪动通讯公司开设了两种通讯业务,“环球通”:运用时首先缴50元月租费,然后每通话1分钟,自付话费0.4元;“动感地带”:不缴月租费,每通话1分钟,付话费0.6元(本题的通话均指市内通话),若一个月通话x分钟,两种方式的费用分别为y元和2y元.1(1)写出y、2y与x之间的关系式;1(2)一个月内通话多少分钟,两种挪动通讯费用相反?(3)某人估计一个月内通话300分钟,应选择哪种挪动通讯合算些?题型二、用图象暗示变量之间的关系3、小明在暑期社会实距活动中,以每千克0.8元的价格从零售市场购进多少千克瓜到市场上往贩卖,在贩卖了40千克西瓜之后,余下的每千克降价0.4元,全部售完.贩卖金额与售出西瓜的千克数之间的关系如图7所示.请你根据图象提供的信息完成以下成绩:(1)求降价前贩卖金额y(元)与售出西瓜x(千克)之间的关系式;(2)小明从零售市场共购进多少千克西瓜?(3)小明这次卖瓜赚子多少钱?图74小明某天上午9时骑自行车离开家,15时回家,他有意描画了离家的距离与工夫的变更状况(如右图所示).(1)图象暗示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分分别家多远?(3)他到达离家最远的地方是什么工夫?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段工夫内苏息,并吃午餐?(6)他由离家最远的地方前往时的均匀速率是多少?5 小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的工夫与路程如图所示.假如前往时,上、下坡速率依然坚持不变,那么他从学校回到家必要的工夫是多少6、某空军加油飞机接到命令,马上给另一架正在飞行的运输飞机进行空中加油,在加油过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油油箱余油量为Q2吨,加油工夫为t分钟,Q1、Q2与t之间的函数图像如图所示,结合图像回答下列成绩:(1)加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需多少分钟?(2)运输飞机加完油后,以原速继续Q(吨)飞行,需10小时到达目的地,油料能Array否够用?阐明理由.7、某机动车辆出发前油箱中有油42升,行驶多少小时后,在途中加油站加油多少.油箱中余油量Q(升)与行驶工夫t(时)⑴机动车辆行驶了小时后加油.⑻⑵加油后油箱中的油最多可行驶小时.⑶假如加油站距目的地还有230公里,机动车每小时走40公里,油箱中的油能否使机动车到达目的地?。
变量之间的关系典型习题

变量之间的关系2知识点1 自变量与因变量的区别与联系联系:两者都是某一变化过程中的变量,两者因研究的侧重点或先后顺序不同可以互相转化,比如当路程一定时,路程随时间的变化而变化,这时速度为自变量,时间为因变量。
而当速度一定时,路程随时间的变化而变化,这时时间是自变量,路程是因变量。
区别:因变量随自变量的变化而变化。
【典型例题】(2)12时,水位是多高?(3)哪一段水位上升最快?【练习】(2) 第5排、第6排各有多少个座位?(3)第n 排有多少个 座位?请说明你的理由。
2、父亲告诉小明:“距离地面越远,温度越低”,小明并且出示了下面的表格:根据上表,父亲还给小明出了下面几个问题,你和小明一起回答:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t如何变化?(3)你知道距离地面5千米的高空温度是多少吗?(4)你能预测出距离地面6千米的高空温度是多少吗?3、某地有A,B,两种出租车,其行驶路程与费用关系如下表(1)本题中如果用x表示路程,y表示费用,哪个是自变量,哪个是因变量?x ≥5千米后,随着x的增大,y的变化趋势是什么?(2)B种出租车从3千米以后起,路程每增加1千米,费用怎么样变化?(3)预测路程为10千米时,两种车费各是多少?(4)当行驶为4千米时,你选择坐那种车?行驶路程为8千米时,你选择坐那种车?4.一个弹簧不挂物体时,长12厘米,挂上1千克物体后,弹簧总长(12+0.5)厘米,•挂上2千克物体后,弹簧总长(12+0.5×2)厘米,挂上3千克物体后,弹簧总长(12+0.5×3)厘米……(1)上述哪些量在发生变化?自变量是什么?因变量又是什么?(2)请把挂上物体后,弹簧的长度变化情况填入下表:(3)根据表格中的数据,总结弹簧的长度是怎样随物重的变化而变化的?(4)估计一下挂上10千克物体后,弹簧的长度是多少?你是如何估计的?5(变式)、在弹簧限度内,弹簧挂上物体后弹簧的长度与所挂物体的质量之间的关系如下表:⑴弹簧不挂物体时的长度是多少?⑵如果用x表示弹性限度内物体的质量,用y表示弹簧的长度,那么随着x的变化,y的变化趋势如何?写出y与x的关系式.⑶如果此时弹簧最大挂重量为25千克,你能预测当挂重为14千克时,弹簧的长度是多少?6.声音在空气中传播的速度y(米/秒)(简称音速)与气温x(℃)之间的关系如下:从表中可知音速y随温度x的升高而__________.在气温为20 ℃的一天召开运动会,某人看到发令枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发令地点__________米。
北师大版七年级下数学第三章《变量之间的关系》练习题1

《变量之间的关系》练习题一、选择题(每小题3分,共24分)1、2021年春节期间,许多在西安市的外地员工都响应政府号召留在西安过春节,滞留的小豪在西安给远在北京的妻儿打电话,电话费随着通话时间的变化而变化,在这个过程中,自变量和因变量分别是()。
A、小豪和妻儿B、小豪和电话费C、电话费和通话时间D、通话时间和电话费2、下列哪幅图可以大致刻画出苹果成熟后从树上下落过程中(落地前)的速度变化情况()。
3、汽车离开甲站10km后,以60k/h的速度匀速前进了th,则汽车离开甲站所走的路程s(km)与时间t (h)之间的关系式是()A、s=10+60tB、s=60tC、s=60t -10D、s=10-60t4、一个蓄水池有水50m3,打开放水闸门匀速放水,水池中的水量和放水时间的关系如下表,下面说法不正确的是()。
放水时间(min)1234……水池剩余水量(m3)48464442……A、放水时间是自变量,水池剩余水量是因变量B、每分钟放水2m3C、放水25min后,水池中的水全部放完D、放水10min后,水池中还有水28m35、张老师从甲镇去乙村,一开始沿公路乘车,后来沿小路步行到达乙村,下列图中,横轴表示从甲镇出发后的时间,纵轴表示张老师与甲镇的距离,则比较符合题意的图象是()。
6、如图,用每片长6cm的纸条,重叠1cm粘贴成一条纸带,纸带的长度y(cm)与纸片的张数x之间的关系式是()。
A、y=6x+1B、y=4x+1C、y=4x+2D、y=5x+17、如图(1),在长方形ABCD中,动点P从点A处出发,沿ABCD方向运动至点D处停止,设点P出发时的速度为每秒bcm,a秒后点P改变速度,以每秒1cm向点D运动,直到停止,图(2)是△APD的面积S(cm2)与时间x(s)的图象,则b的值是()。
8、一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,如图所示的折线图描述了他上班途中整个过程的情景,下列四种说法:①李师傅上班的 单位距他家2000米;②李师傅路上耗时20分钟;③自行车发生故障时离家的距离为1000米;④李师傅修车用了15分钟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变量之间的关系2知识点1 自变量与因变量的区别与联系联系:两者都是某一变化过程中的变量,两者因研究的侧重点或先后顺序不同可以互相转化,比如当路程一定时,路程随时间的变化而变化,这时速度为自变量,时间为因变量。
而当速度一定时,路程随时间的变化而变化,这时时间是自变量,路程是因变量。
区别:因变量随自变量的变化而变化。
【典型例题】(1)上表反映了哪两个变量的关系?自变量和因变量各是什么?(2)12时,水位是多高?(3)哪一段水位上升最快?【练习】(1)上述哪些量在变化?自变量和因变量分别是什么?(2)第5排、第6排各有多少个座位?(3)第n排有多少个座位?请说明你的理由。
2、父亲告诉小明:“距离地面越远,温度越低”,小明并且出示了下面的表格:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t如何变化?(3)你知道距离地面5千米的高空温度是多少吗?(4)你能预测出距离地面6千米的高空温度是多少吗?(1)本题中如果用x表示路程,y表示费用,哪个是自变量,哪个是因变量?x≥5千米后,随着x的增大,y的变化趋势是什么?(2)B种出租车从3千米以后起,路程每增加1千米,费用怎么样变化?(3)预测路程为10千米时,两种车费各是多少?(4)当行驶为4千米时,你选择坐那种车?行驶路程为8千米时,你选择坐那种车?4.一个弹簧不挂物体时,长12厘米,挂上1千克物体后,弹簧总长(12+0.5)厘米,•挂上2千克物体后,弹簧总长(12+0.5×2)厘米,挂上3千克物体后,弹簧总长(12+0.5×3)厘米……(1)上述哪些量在发生变化?自变量是什么?因变量又是什么?(2(3(4)估计一下挂上10千克物体后,弹簧的长度是多少?你是如何估计的?⑵如果用x表示弹性限度内物体的质量,用y表示弹簧的长度,那么随着x的变化,y的变化趋势如何?写出y与x的关系式.⑶如果此时弹簧最大挂重量为25千克,你能预测当挂重为14千克时,弹簧的长度是多少?从表中可知音速随温度的升高而__________.在气温为20 ℃的一天召开运动会,某人看到发令枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发令地点__________米。
7、△ABC 的底边BC =8 cm,当BC 边上的高线从小到大变化时,△ABC 的面积也随之变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)△ABC 的面积y (cm 2)与高线x (cm)的关系式是什么?(3)用表格表示当x 由5 cm 变到10 cm 时(每次增加1cm),y 的相应值.(4)当x 每增加1 cm 时,y 如何变化?知识点2:用图像表示变量之间的关系:注意:1.水平方向数轴上的点表示自变量,竖直方向数轴上的点表示因变量;2.理解图像特殊点、特殊线段的实际意义一:速度随时间的变化1、汽车速度与行驶时间之间的关系可以用图象来表示,下图中A 、B 、C 、D 四个图象,可以分别用一句话来描述:(1)在某段时间里,速度先越来越快,接着越来越慢。
( ) (2)在某段时间里,汽车速度始终保持不变。
( ) (3)在某段时间里,汽车速度越来越快。
( ) (4)在某段时间里,汽车速度越来越慢。
( )2、星期天晚饭后,小红从家里出发去散步,下图描述了她散步过程中离家的距离s (米)与散步所用的时间t (分)之间的关系,依据图象,下面描述符合小红散步情景的是( ) A.从家出发,到了一个公共阅读报栏,看了一会儿报,就回家了. B.从家出发,到了一个公共阅报栏,看了一 会儿报,继续向前走了一段后,然后回家了.时间Ao速度D速度时间C速度 时间Boo60120903021乙甲3S(km)t(h)OC.从家里出发,一直散步(没有停留),然后回家了D.从家里出发,散了一会儿步,就找同学去了, 18分钟后才开始返回.3.如图,是甲、乙两人从A 地往B 地的路程与时间的关系图(1)A 、B 两地相距 km (2)甲的平均速度为 km/h 乙的平均速度为 km/h (3)甲比乙早出发 小时(4)谁早到B 地,早到多少时间?(5)根据以上条件,请列出方程....,求出乙出发多少时间追上甲?4、如图6-11,表示一骑自行车者与一骑摩托车者沿相同路线由甲地到乙地行驶过程的图象,两地间的距离是100千米,请根据图象回答或解决下面的问题. (1)谁出发的较早?早多长时间?谁到达乙地早?早到多长时间?(2)两人在途中行驶的速度分别是多少?(3)指出在什么时间段内两车均行驶在途中;在这段时间内,①自行车行驶在摩托车前面;②自行车与摩托车相遇;③自行车行驶在摩托车后面?5.(2013•成都模拟)如图,l A ,l B 分别表示A 步行与B 骑车在同一路上行驶的路程S 与时间t 的关系.(1)B 出发时与A 相距 千米.(2)走了一段路后,自行车发生故障,进行修理,所用的时间是 小时. (3)B 出发后 小时与A 相遇.(4)若B 的自行车不发生故障,保持出发时的速度前进, 小时与A 相遇.6.(2007•绵阳)如图所示的函数图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为 千米∕小时.7、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为 y(km),图中的折线表示y 与x 之间的函数关系,根据图像进行以下探究, (1)、甲、乙两地之间的距离为 km (2)、请解释图中B 点的意义: (3)、求慢车和快车的速度, (4)、求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围; (5)、若第二列快车也冲甲地出发驶往乙地,速度与第一列快车相同,在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇,求第二列快车比第一列快车晚出发多少小时? 8.(2013•武汉模拟)如图,甲、乙两车同时从A 地出发,以各自的速度匀速向B 地行驶,甲车先到达B 地,在B 地停留1小时后,沿原路以另一个速度匀速返回,若干时间后与乙车相遇,乙车的速度为每小时60千米.如图是两车之间的距离y (千米)与乙车行驶的时间x (小时)之间函数的图象,则甲车返回的速度是每小时 千米.x/hy/kmDC BA900124O9.一辆汽车油箱内有油48升,从某地出发,每行1 km ,耗油0.6升,如果设剩油量为y (升),行驶路程为x (千米)(1)上述的哪些量发生变化?自变量是?因变量是? (2)写出y 与x 的关系式;(3)用表格表示汽车从出发地行驶10km 、20km 、30km 、40km 、50km 时的剩油量;(4)根据表格中的数据说明剩油量是怎样随着路程的改变而变化的;(5)这辆汽车行驶35km 时,剩油多少升?汽车剩油12升时, 行驶了多少千米?(6)请你估计这车辆在中途不加油的情况下最远能运行多少千米?10(变式).某机动车辆出发前油箱中有油42升,行驶若干小时后,在途中加油站加油若干.油箱中余油量Q(升)与行驶时间t(时) 之间的关系如图,请根据图像填空: ⑴机动车辆行驶了 小时后加油.⑻中途加油 升.⑵加油后油箱中的油最多可行驶 小时.⑶如果加油站距目的地还有230公里,机动车每小时走40公里,油箱中的油能否使机动车到达目的地?答: 。
二、高度(深度)与时间的变化1、如图是某蓄水池的横断面示意图,分深水区和浅水区,如果这个蓄水池以固定的流量注水,下面哪个图象能大致表示水的最大深度h 和时间t 之间的关系?( )· · · · · · ·· · · · · · · 1 2 3 5 7 6 18 24 30 12 Q/升 · · · · 36 42A B C D2、如图:向放在水槽底部的烧杯注水(流量一定)注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度与注水时间之间的关系大致是下列图象中的()第10题图中考真题1、(2013•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多2、(2013•潍坊)用固定的速度如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是()thA0thB0thC0thDA. B. C. D.3、(2013•玉林)均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的()A. B. C. D.4、(2013•黄冈)一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间(小时)之间的函数图象是()5、(2013•绍兴)如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是()A.B.C.D.6、(2013•天津)如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为()A.0 B.1 C.2 D.37、(2013•新疆)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系.8.(2013•咸宁)“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。