一次函数的图像和性质测习题

合集下载

中考数学专题复习之一次函数的图像及性质测试卷

中考数学专题复习之一次函数的图像及性质测试卷

中考数学专题复习之一次函数的图像及性质测试卷一.选择题1.若y =x +2﹣3b 是正比例函数,则b 的值是( )A .0B .﹣C .D .﹣2.函数y =(k ﹣1)x ,y 随x 增大而减小,则k 的范围是( )A .k <0B .k >1C .k ≤1D .k <13.已知点M (﹣2,m )和点N (3,n )是直线y =2x +1上的两个点,那么有( )A .m =nB .m >nC .m <nD .不能确定mn 的大小关系4.一次函数y =8x 的图象经过的象限是( )A .一、三B .二、四C .一、三、四D .二、三、四5.若点(1,2)M 关于y 轴的对称点在正比例函数(32)y k x =+的图象上,则k 的值为( )A .13B .13-C .43-D .06. 1(A x ,1)y 和2(B x ,2)y 是一次函数2(1)2y k x =++图象上的两点,且12x x <,则1y 与2y 的大小关系是( )A .12y y =B .12y y <C .12y y >D .不确定7.下列图形中,表示一次函数y =mx +n 与正比例函数y =﹣mnx (m ,n 为常数,且mn ≠0)的图象不正确的是( )A .B .C .D .8.下列关于一次函数y =﹣2x +2的图象的说法中,错误的是( )A.函数图象经过第一、二、四象限B.函数图象与x轴的交点坐标为(2,0)C.当x>0时,y<2D.y的值随着x值的增大而减小9.如图,一次函数y=k1x+b1的图象l1与一次函数y=k2x+b2的图象l2相交于点P,则不等式组的解集为()A.x>﹣2B.﹣2<x<1.5C.x>﹣1D.x>210.如图,直线y=﹣x+5交坐标轴于点A、B,与坐标原点构成的△AOB向x轴正方向平移4个单位长度得△A′O′B′,边O′B′与直线AB交于点E,则图中阴影部分面积为()A.B.15C.10D.14二.填空题11.在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1>x2,则y1y2(填“>”或“<”).12.当m=时,函数y=(2m﹣1)x2m﹣2是正比例函数.13.一次函数y=mx+|m﹣1|的图象经过(0,3),且y随x增大而减小,则m=.14.定义:点P与图形W上各点连接的所有线段中,若线段P A最短,则线段P A的长度称为点P到图形W的距离,记为d(P,图形W).例如,在图1中,原点O(0,0)与直线l:x=3的各点连接的所有线段中,线段OA最短,长度为3,则d(O,直线x=3)=3.特别地,点P在图形W上,则点P到图形的距离为0,即d(P,图形W)=0.①在平面直角坐标系中,原点O(0,0)与直线l:y=x的距离d(O,y=x)=;②如图2,点P的坐标为(0,m)且d(p,y=2x﹣2)=,则m=.15.如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…直线l n⊥x轴于点(n,0).函数y=x的图象与直线l1,l2,l3,……l n分别交于点A1,A2,A3,……A n;函数y=3x的图象与直线l1,l2,l3,……l n分别交于点B1,B2,B3,……B n,如果△OA1B1的面积记的作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3,…四边形A n﹣1A n B n B n﹣1的面积记作S n,那么S2020=.16.如图,在平面直角坐标系中,点C的坐标是(0,4),作点C关于直线AB:y=x+1的对称点D,则点D的坐标是.三.解答题17.已知函数y=(m+2)x|m|﹣1+n+4.(1)当m,n为何值时,此函数是正比例函数?(2)当m,n为何值时,此函数是一次函数?18.如图,已知直线y=x+5与x轴交于点A,直线y=kx+b与x轴交于点B(1,0),且与直线y=x+5交于第二象限点C(m,n).(1)若△ABC的面积为12,求点C的坐标及关于x的不等式的x+5>kx+b解集;(2)求k的取值范围.19.如图,一次函数y=﹣x+5的图象l1分别与x轴,y轴交于A、B两点,正比例函数的图象l2与l1交于点C(m,).(1)求m的值及l2的解析式;(2)求得S△AOC﹣S△BOC的值为;(3)一次函数y=kx+1的图象为l3且l1,l2,l3可以围成三角形,直接写出k的取值范围.20.如图,在平面直角坐标系中,直线y=2x+3与y轴交于点A,直线y=kx﹣1与y轴交于点B,与直线y=2x+3交于点C(﹣1,n).(1)求n、k的值;(2)求△ABC的面积.21.如图,已知一次函数y=﹣x+6的图象与x轴、y轴分别交于点A和点B,与直线y =x相交于点C.过点B作x轴的平行线l,点P是直线l上的一个动点.①点C坐标是;②若点E是直线y=x上的一个动点,且处于直线AB下方,当△APE是以∠EAP为直角的等腰直角三角形时,点E的坐标是.22.如图,正比例函数y=x与一次函数y=ax+7的图象相交于点P(4,n),过点A(t,0)作x轴的垂线l,且0<t<4,交一次函数的图象于点B,交正比例函数的图象于点C,连接OB.(1)求a值;(2)设△OBP的面积为s,求s与t之间的函数关系式;(3)当t=2时,在正比例函数y=x与一次函数y=ax+7的图象上分别有一动点M、N,是否存在点M、N,使△CMN是等腰直角三角形,且∠CNM=90°,若存在,请直接写出点M、N的坐标;若不存在,请说明理由.23.如图1,在平面直角坐标系中,直线y=﹣x+2与坐标轴交于A,B两点,以AB为斜边在第一象限内作等腰直角三角形ABC.点C为直角顶点,连接OC.(1)A点坐标为,B点坐标为.(2)请你过点C作CE⊥y轴于E点,试探究并证明OB+OA与CE的数量关系.(3)如图2,将线段AB绕点B沿顺时针方向旋转至BD,且OD⊥AD,延长DO交直线y=x+5于点P,求点P的坐标.。

一次函数的图象和性质专题练习题

一次函数的图象和性质专题练习题

专题19.2.2一次函数的图象和性质一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.在函数3y x =-的图象上的点是()A .(1,-3)B .(0,3)C .(-3,0)D .(1,-2)【答案】D【解析】A.1-3=-2≠-3,故本选项不在3y x =-的图象上,B.0-3=-3≠3,故本选项不在3y x =-的图象上,C.-3-3=-6≠0,故本选项不在3y x =-的图象上,D.1-3=-2,故本选项在3y x =-的图象上.故选:D .2.函数2y kx =-的图象经过点(3,1)p -,则k 的值为()A .3B .3-C .13D .13-【答案】C【解析】∵函数2y kx =-的图象经过点(3,1)p -,∴3k −2=-1,解得k =13.故选:C .3.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是一次函数y =﹣x ﹣1图象上的点,并且y 1<y 2<y 3,则下列各式中正确的是()A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 3<x 2<x 1【答案】D【解析】解:∵一次函数y=﹣x ﹣1中k=﹣1<0,∴y 随x 的增大而减小,又∵y 1<y 2<y 3,∴x 1>x 2>x 3.故选:D .4.在平面直角坐标系中,将直线1:41l y x =--平移后,得到直线2:47l y x =-+,则下列平移作法正确的是()A .将1l 向右平移8个单位B .将1l 向右平移2个单位C .将1l 向左平移2个单位D .将1l 向下平移8个单位【答案】B【解析】A :将直线1:41l y x =--向右平移8个单位得到直线()481y x =---,即直线431y x =-+.B :将直线1:41l y x =--向右平移2个单位得到直线()421y x =---,即直线2:47l y x =-+.C :将直线1:41l y x =--向左平移2个单位得到直线()421y x =-+-,即直线49y x =--.D :将直线1:41l y x =--向下平移8个单位得到直线418y x =---,即直线49y x =--.故选B .5.一次函数35y x =-+的图象经过()A .第一、三、四象限B .第二、三、四象限C .第一、二、三象限D .第一、二、四象限【答案】D【解析】解: 一次函数35y x =-+中,30k =-<,50b =>,∴此一次函数的图象经过一、二、象限.故选:D6.下图为正比例函数()0y kx k =≠的图像,则一次函数y x k =+的大致图像是()A .B .C .D .【答案】B 【解析】解:∵正比例函数y=kx(k≠0)的图象经过二、四象限,∴k<0,∴一次函数y=x+k 的图象与y 轴交于负半轴且经过一、三象限.故选B.7.若一次函数y =(k -3)x -k 的图象经过第二、三、四象限,则k 的取值范围是()A .k <3B .k <0C .k >3D .0<k <3【答案】D【解析】∵一次函数y=(k-3)x-k 的图象经过第二、三、四象限,∴ ॰䃰< ॰,解得:0<k <3,故选:D .8.如图,已知一次函数y kx b =+,y 随着x 的增大而增大,且0kb <,则在直角坐标系中它的图象大致是()A .B .C .D .【答案】A【解析】∵y 随x 的增大而增大,∴0k >.又∵0kb <,∴0b <,∴一次函数过第一、三、四象限,故选A .9.对于次函数21y x =-,下列结论错误的是()A .图象过点()0,1-B .图象与x 轴的交点坐标为1(,0)2C .图象沿y 轴向上平移1个单位长度,得到直线2y x=D .图象经过第一、二、三象限【答案】D【解析】A 、图象过点()0,1-,不符合题意;B 、函数的图象与x 轴的交点坐标是1(,0)2,不符合题意;C 、图象沿y 轴向上平移1个单位长度,得到直线2y x =,不符合题意;D 、图象经过第一、三、四象限,符合题意;故选:D .10.直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是()A .B .C .D .【答案】C【解析】解:根据一次函数的系数与图象的关系依次分析选项可得:A 、由图可得,y 1=kx+b 中,k <0,b <0,y 2=bx+k 中,b >0,k <0,b 、k 的取值矛盾,故本选项错误;B 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b >0,k >0,b 的取值相矛盾,故本选项错误;C 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b <0,k >0,k 的取值相一致,故本选项正确;D 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b <0,k <0,k 的取值相矛盾,故本选项错误;故选:C .11.一次函数23y x =-的图像在y 轴的截距是()A .2B .-2C .3D .-3【答案】D【解析】∵23y x =-,即b=-3,∴图像与y 轴的截距为-3,故选:D.12.如果直线y=2x+m 与两坐标轴围成的三角形的面积是4,那么m 的值是()A .4-B .2C .2±D .4±【答案】D【解析】∵当x=0时,y=m ,当y=0时,x=2m -,∴直线y=2x+m 与x 轴和y 轴的交点坐标分别为(2m -,0)、(0,m ),∵直线y=2x+m 与两坐标轴围成的三角形的面积是4,∴12|2m -||m|=4,解得:m=±4,故选:D .13.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为()A .35y x =B .910y x =C .34y x =D .y x=【答案】B【解析】解:设直线l 和八个正方形的最上面交点为A ,过A 作AB ⊥y 轴于B ,作AC ⊥x 轴于C ,∵正方形的边长为1,∴OB =3,∵经过原点的一条直线l 将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO 面积是5,∴12OB•AB =5,∴AB =103,∴OC =103,由此可知直线l 经过(103,3),设直线l 解析式为y =kx ,则3=103k ,解得:k =910,∴直线l 解析式为y =910x ,故选:B .14.在平面直角坐标系中,点()11,1A -在直线y x b =+上,过点1A 作11A B x ⊥轴于点1B ,作等腰直角三角形112A B B (2B 与原点O 重合),再以12A B 为腰作等腰直角三角形212A A B ;以22A B 为腰作等腰直角三角形223A B B …;按照这样的规律进行下去,那么2019A 的坐标为()A .()2018201821,2-B .()2018201822,2-C .()2019201921,2-D .()2019201922,2-【答案】B【解析】解:如上图,∵点B 1、B 2、B 3、…、B n 在x 轴上,且A 1B 1=B 1B 2,A 2B 2=B 2B 3,A 3B 3=B 3B 4,∵A 1(−1,1),∴A 2(0,2),A 3(2,4),A 4(6,8),…,∴A n (2n−1−2,2n−1).∴A 2019的坐标为(22018−2,22018).故选:B .二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.一次函数36y x =-+的图象与y 轴的交点坐标是________.【答案】(0,6)【解析】解:根据题意,令0x =,解得6y =,所以一次函数36y x =-+的图象与y 轴的交点坐标是(0,6).故答案为:(0,6).16.一次函数(3)2=-+y k x ,若y 随x 的增大而增大,则k 的取值范围是_________.【答案】3k >【解析】∵一次函数(3)2=-+y k x ,y 随x 的增大而增大,30k ∴->,3k ∴>.k .故答案为:317.已知A(2,1),B(2,4).(1)若直线l:y=x+b与AB有一个交点.则b的取值范围为_______________;(2)若直线l:y=kx与AB有一个交点.则k的取值范围为_______________.【答案】-1≤b≤2;0.5≤k≤2.【解析】解:(1)把A(2,1),代入直线l:y=x+b,得2+b=1,解得b=-1;把B(2,4)代入直线l:y=x+b,的2+b=4,解得b=2;所以:b的取值范围是:-1≤b≤2;(2)把A(2,1),代入直线l:y=kx,得2k=1,解得k=0.5;把B(2,4)代入直线l:y=kx,的2k=4,解得k=2;∴k的取值范围为:0.5≤k≤2.故答案为:-1≤b≤2;0.5≤k≤2.18.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.【答案】一【解析】首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内,∴点M(k﹣1,k+1)位于第三象限,∴k﹣1<0且k+1<0,解得:k<﹣1,∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.先完成下列填空,再在同一直角坐标系中画出以下函数的图象(不必再列表)(1)正比例函数2y x =过(0,)和(1,);(2)一次函数3y x =-+(0,)(,0).【答案】(1)0,2;(2)3,3,作图见解析【解析】解:(1)当x=0时,y=2x=0,∴正比例函数y=2x 过(0,0);当x=1时,y=2x=1,∴正比例函数y=2x 过(1,2).故答案为:0;2.(2)当x=0时,y=-x+3=3,∴一次函数y=-x+3过(0,3);当y=0时,有-x+3=0,解得:x=3,∴一次函数y=-x+3过(3,0).故答案为:3;3.20.已知一次函数()226y k x k =--+.(1)k 满足何条件时,y 随x 的增大而减小;(2)k 满足何条件时,图像经过第一、二、四象限;(3)k 满足何条件时,它的图像与y 轴的交点在x 轴的上方.【答案】(1)k>2;(2)2<k<3;(3)k<3且k≠2.【解析】(1)∵一次函数y=(2−k)x−2k+6的图象y 随x 的增大而减小,∴2−k<0,解得k>2;(2)∵该函数的图象经过第一、二、四象限,∴2−k<0,且−2k+6>0,解得2<k<3;(3)∵y=(2−k)x −2k+6,∴当x=0时,y=−2k+6,由题意,得−2k+6>0且2−k≠0,∴k<3且k≠2.21.如图,已知正比例函数y kx =(0)k ≠经过点(2,4)P .(1)求这个正比例函数的解析式;(2)该直线向上平移4个单位,求平移后所得直线的解析式.【答案】(1)2y x =;(2)24y x =+【解析】解:(1)把(2,4)P 代入y kx =,得42k =,∴2k =,∴这个正比例函数的解析式是2y x =.(2)设平移后所得直线的解析式是y =2x +b ,把(0,4)代入得:4=b ,∴y =2x +4.答:平移后所得直线的解析式是y =2x +4.22.已知一次函数的图象与正比例函数23y x =-的图象平行,且经过点()04,.(1)求一次函数的解析式;(2)若点()8M m -,和()5N n ,在一次函数的图象上,求m ,n 的值.【答案】(1)243y x =-+;(2)283m =;32n =-.【解析】设一次函数的解析式为y=kx+b ,∵一次函数的图象与正比例函数23y x =-的图象平行,∴k=23-,∵一次函数图象经过点(0,4),∴b=4,∴一次函数的解析式为y=23-x+4.(2)∵点()8M m -,和()5N n ,在一次函数的图象上,∴m=23-×(-8)+4=283,5=23-n+4,解得:m=283,n=32-.23.已知一次函数y =-x +3与x 轴,y 轴分别交于A ,B 两点.(1)求A ,B 两点的坐标.(2)在坐标系中画出一次函数y =-x +3的图象,并结合图象直接写出y <0时x 的取值范围.【答案】(1)()3,0A ,()0,3B (2)作图见解析,3x >【解析】(1)令0x =,则3y =,故()0,3B 令0y =,则03x =-+,故()3,0A .(2)如图所示,即为所求,根据图象可得y <0时,3x >.24.如图,直线AB 与x 轴相交于点(3,0)A ,与y 轴相交于点(0,4)B ,点C 是直线AB 上的一个动点.(1)求直线AB 的函数解析式;(2)若AOC ∆的面积是3,求点C 的坐标.【答案】(1)443y x =-+;(2)点C 的坐标为3,22⎛⎫ ⎪⎝⎭或9,22⎛⎫- ⎪⎝⎭.【解析】解:(1)设直线AB 的解析式为y kx b =+.∵直线过点(3,0)A 和点(0,4)B ,∴30,4.k b b +=⎧⎨=⎩解得4,34.k b ⎧=-⎪⎨⎪=⎩∴直线AB 的解析式为443y x =-+.(2)∵(3,0)A ,∴3AO =,∵AOC ∆的面积是3,∴AOC ∆边OA 上的高为2,∴点C 的纵坐标为2或-2,∵点C 为直线AB 上的点,当4423x -+=时,解得32x =;当4423x -+=-时,解得92x =.∴当AOC ∆的面积是3时,点C 的坐标为3,22⎛⎫ ⎪⎝⎭或9,22⎛⎫- ⎪⎝⎭.25.在平面直角坐标系中,一次函数122y x =-+的图象交x 轴、y 轴分别于A B 、两点,交直线y kx =于P 。

(完整版)一次函数的图像和性质练习题(可编辑修改word版)

(完整版)一次函数的图像和性质练习题(可编辑修改word版)

一次函数的图像和性质练习题一、填空题1.正比例函数y=kx(k≠0)一定经过点,经过(1,),一次函数y=kx+b(k≠0)经过(0,)点,( ,0) 点.2.直线y =-2x + 6 与x 轴的交点坐标是,与 y 轴的交点坐标是。

与坐标轴围成的三角形的面积是。

3.若一次函数y =mx - (4m - 4) 的图象过原点,则m 的值为.4.如果函数y=x-b的图象经过点P(0,1),则它经过x轴上的点的坐标为.5.一次函数y =-x + 3 的图象经过点(,5)和(2,)6.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2)y 随x 的增大而减小.请你写出一个满足上述条件的函数7.在同一坐标系内函数y=2x 与y=2x+6 的图象的位置关系是.8.若直线y=2x+6 与直线y=mx+5 平行,则m= .9.在同一坐标系内函数y=a x+b与y=3x+2平行,则a,b的取值范围是.10.将直线 y= -2x 向上平移 3 个单位得到的直线解析式是,将直线 y= -2x 向下移 3 个单得到的直线解析式是.将直线 y= -2x+3 向下移 2 个单得到的直线解析式是.11.直线y =kx +b 经过一、二、三象限,则k 0,b 0,经过二、三、四象限,则有k 0,b 0,经过一、二、四象限,则有k 0,b 0.12.一次函数y = (k - 2)x + 4 -k 的图象经过一、三、四象限,则k 的取值范围是.13.如果直线y = 3x +b 与y 轴交点的纵坐标为-2 ,那么这条直线一定不经过第象限.14.已知点A(-4,a),B(-2,b)都在一次函数y=1 x+k(k为常数)的图像上,则a与b的大小关2系是a b(填”<””=”或”>”)15.一次函数 y=kx+b 的图象如图所示,看图填空:(1)当x=0时,y=;当x=时,y=0.(2)k= ,b= .(3)当x=5 时,y= ;当y=30 时,x= .二、选择题1.已知函数y = (m + 3)x - 2 ,要使函数值y 随自变量x 的增大而减小,则m 的取值范围是()A.m ≥-3 B.m >-3 C.m ≤-3 D.m <-322. 已知直线 y = kx + b ,经过点 A (x 1,y 1 ) 和点 B (x 2,y 2 ) ,若k < 0 ,且 x 1 < x 2 ,则 y 1 与 y 2 的大小关系是()A. y 1 > y 2B. y 1 < y 2 C. y 1 = y 2D.不能确定3. 若直线 y = mx - 2m - 3 经过第二、三、四象限,则m 的取值范围是()A. m < 32B. - 3< m < 02 C. m > 32 D. m > 04. 一次函数 y = 3x -1 的图象不经过()A.第一象限B.第二象限 C.第三象限 D.第四象限5.如果点 P (a ,b )关于 x 轴的对称点 p ,在第三象限,那么直线 y =a x +b 的图像不经过 ( ) A.第一象限B.第二象限C.第三象限D.第四象限6.若一次函数 y =k x +b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 ( )A.第一象限B.第二象限C.第三象限D.第四象限7. 下列图象中不可能是一次函数 y = mx - (m - 3) 的图象的是()A.B .C.D.8. 两个一次函数 y 1 =ax + b 与 y 2 = bx + a ,它们在同一直角坐标系中的图象可能是()1xA.B .三、解答题1x2C.D.1.已知一次函数 y =(3-k )x -2k +18,(1) k 为何值时,它的图像经过原点; (2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与 y 轴的交点在 x 轴的上方; (4) k 为何值时,它的图像平行于直线 y =-x ; (5) k 为何值时,y 随 x 的增大而减小.2. 设一次函数 y = kx + b (k ≠ 0) ,当 x = 2 时, y = -3 ,当 x = -1 时, y = 4 。

一次函数的图像与性质基础练习

一次函数的图像与性质基础练习

一.选择题(共10小题)1.一次函数y1=ax+b与y2=bx+a在同一直角坐标系中的图象可能式()A.B.C.D.2.如图,同一直角坐标系中,能表示一次函数y=x+kb和y=kx+b(k、b为常数,且k≠0)的图象是()A.B.C.D.3.若k>0,b>0,则函数y=kx+b的图象大致是()A.B.C.D.4.直线y1=mx+n2+1和y2=﹣mx﹣n的图象可能是()A.B.C.D.5.在同一直角坐标系中,一次函数y=kx+b与y=bx+k(b≠k)的图象可能是()A.B.C.D.6.将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系中,则下列图象中正确的是()A.B.C.D.7.在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是()A.B.C.D.8.直线l1:y=kx﹣b和l2:y=﹣2kx+b在同一直角坐标系中的图象可能是()A.B.C.D.9.若实数a、c满足a+c=0且a>c,则关于x的一次函数y=cx﹣a的图象可能是()A.B.C.D.10.若式子+(k﹣2)0有意义,则一次函数y=(k﹣2)x+2﹣k的图象可能是()A.B.C.D.二.解答题(共10小题)11.如图,已知直线y=kx+b经过点B(1,4),与x轴交于点A(5,0),与直线y=2x﹣4交于点C(3,m).(1)求直线AB的函数表达式及m的值;(2)根据函数图象,直接写出关于x的不等式组2<kx+b<4的解集:;(3)现有一点P在直线AB上,过点P作PQ∥y轴交直线y=2x﹣4于点Q,若点C到线段PQ的距离为1,求点P的坐标和点Q的坐标.12.如图,在平面直角坐标系中,一次函数y1=﹣2x+10的图象与x轴交于点A,与一次函数y2=x+2的图象交于点B.(1)求点B的坐标;(2)结合图象,当y1>y2时,请直接写出x的取值范围;(3)C为x轴上点A右侧一个动点,过点C作y轴的平行线,与一次函数y1=﹣2x+10的图象交于点D,与一次函数y2=x+2的图象交于点E.当CE=3CD时,求DE的长.13.如图,直线l1:y=2x﹣4与x轴交于点A,与y轴交于点B,直线l2与x轴交于点D,与y轴交于点C,BC=6,OD=3OC.(1)求直线CD的解析式;(2)点Q为直线AB上一动点,若有S△QCD=2S△OCD,请求出Q点坐标;(3)点M为直线AB上一动点,点N为直线x轴上一动点,是否存在以点M,N,C为顶点且以MN为直角边的三角形是等腰直角三角形,若存在,请直接写出点M的坐标,并写出其中一个点M求解过程,若不存在,请说明理由.14.如图,在平面直角坐标系中,直线l经过点A(0,2)、B(﹣3,0).(1)求直线l所对应的函数表达式.(2)若点M(3,m)在直线l上,求m的值.(3)若y=﹣x+n过点B,交y轴于点C,求△ABC的面积.15.如图,已知点A(3,0),B(0,2).(1)求直线AB所对应的函数解析式;(2)若C为直线AB上一点,当△OBC的面积为6时,求点C的坐标.16.如图,直线经过点A(1,6)和点B(﹣3,﹣2).(1)求直线a的函数表达式;(2)求△ABO的面积.17.如图,在平面直角坐标系xOy中,点A在y轴的正半轴上,点B在x轴的正半轴上,OA=OB=10.(1)求直线AB的解析式;(2)若点P是直线AB上的一点,且P的横坐标为4,C(6,0),求△OPC的面积.18.如图,在直角坐标系中,直线AB过点A(0,3)和B(6,﹣3),且与x轴相交于点C.(1)求直线AB所对应的函数表达式;(2)求△OAC的面积.19.如图,过点A(4,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=2.(1)求点B的坐标;(2)若△ABC的面积为20,求直线l2的解析式.20.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求一次函数的解析式;(2)求点C和点D的坐标;(3)求△AOB的面积.。

一次函数的图像和性质_经典题型

一次函数的图像和性质_经典题型

一次函数的图像和性质1、两直线的位置关系例1、在同一坐标系中,对于函数①y=-x-1,②y=x+1,③y=-x+1,④y=-2(x+1)的图象,通过点(-1,0)的是________,相互平行的是_______,交点在y•轴上的是_____.(填写序号)例2.函数y=kx+b 的图象平行于直线y=-2x ,且与y 轴交于点(0,3),则k=______,b=_______. 例3、.一次函数的图象经过点A (-2,-1),且与直线y=2x-3平行,•则此函数的解析式为( )A .y=x+1B .y=2x+3C .y=2x-1D .y=-2x-52、直线的平移规律例1、在平面直角坐标系中,直线y=3x+1向____平移____个单位,得到直线y=3x-43、用待定系数法求一次函数的解析式例1、根据下列条件写出相应的函数关系式:直线y =kx +5经过点(-2, -1);例2、 若一次函数y =mx - (m -2) 过点(0,3),求m 的值.例3、 已知一个一次函数y =kx +b ,当x =-2时,函数值y =9,当x =2时,y =-3.(1)求出这个一次函数的解析式 (2) 画出函数图象例4、 已知一次函数y =kx +b 的图象经过点(-1,1)和点(1,-5),求当x =5时,函数y 的值.例5.已知一次函数的图象如下图,写出这个函数的关系式。

例6、一个一次函数的图象经过点(-2,5)并且与y 轴相交于点P ,直线y =321+-x 与y 轴交于点Q ,点Q 与点P 关于x 轴对称,求这个一次函数解析式。

yQP y =321+-x y =kx +bx(-2,5)一、填空1、在函数y=2x中,函数y随自变量x的增大__________。

2、已知一次函数y=kx+5过点P(-1,2),则k=_____。

3、已知一次函数y=2x+4的图像经过点(m,8),则m=________。

4、若一次函数y=x+b的图象过点A(1,-1),则b=__________。

一次函数的图像和性质练习题

一次函数的图像和性质练习题

一次函数的图像和性质练习题一、填空题1.正比例函数一定经过 点,经过,一次函数(0)y kx k =≠(1), 经过点,点. (0)y kx b k =+≠(0), (0) ,2.直线与轴的交点坐标是 ,与y 轴的交点26y x =-+x 坐标是。

与坐标轴围成的三角形的面积是。

3.若一次函数的图象过原点,则的值为 .(44)y mx m =--m4.如果函数的图象经过点,则它经过轴上的点的坐标为 y x b =-(01)P ,x .5.一次函数的图象经过点( ,5)和(2,)3+-=x y 6.已知一次函数y=x+m 和y=-x+n 的图像都经过点A(-2,0), 且与y 轴分别2321交于B,C 两点,求△ABC 的面积。

7.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2)随的增大而减小.请你写出一个满足上述条件的函数 y x 8.在同一坐标系内函数y=2x 与y=2x+6的图象的位置关系是 .9.若直线y=2x+6与直线y=mx+5平行,则m=____________.10.在同一坐标系内函数y=ax+b 与y=3x+2平行,则a, b 的取值范围是 .11.将直线y= -- 2x 向上平移3个单位得到的直线解析式是 ,将直线y= -- 2x 向下移3个单得到的直线解析式是 .将直线y= -- 2x+3向下移2个单得到的直线解析式是 .12.一次函数的图象经过一、三、四象限,则的取值范围是 (2)4y k x k =-+-k .13.已知点A(-4, a),B(-2,b)都在一次函数y=x+k(k 为常数)的图像上,则a21与b 的大小关系是a____b(填”<””=”或”>”)14.直线经过一、二、三象限,则 0, 0,经过二、三、四象y kx b =+k b 限,则有 0, 0,经过一、二、四象限,则有 0, 0.k b k b 15.如果直线与轴交点的纵坐标为,那么这条直线一定不经过第 3y x b =+y 2-------------象限.16、直线与轴的交点坐标是_______,与轴的交点坐标是_______.152y x =-17、直线可以由直线沿轴_______而得到;直线可以23y x =-2y x =32y x =-+由直线轴_______而得到.3y x =-18、已知一次函数.()()634y m x n =++-(1)当m______时,y 随x 的增大而减小;(2)当m______,n______时,函数图象与y 轴的交点在x 轴的下方;(3)当m______,n______时,函数图象过原点.二、选择题1.已知函数,要使函数值随自变量的增大而减小,则的取(3)2y m x =+-y x m 值范围是( )A.B.C.D.3m -≥3m >-3m -≤3m <-2.一次函数中,的值随的减小而减小,则的取值范围是( (1)5y m x =++y x m )A.B.C.D.1m >-1m <-1m =-1m <3.已知直线,经过点和点,若,且,y kx b =+11()A x y ,22()B x y ,0k <12x x <则与的大小关系是( )1y 2y A.B.C.D.不能确定12y y >12y y <12y y =4. 若直线经过第二、三、四象限,则的取值范围是( )23y mx m =--m A.B.C.D.32m <32m -<<32m >0m >5.一次函数的图象不经过( )31y x =-A.第一象限B.第二象限 C.第三象限D.第四象限6.如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若一次函数y=kx+b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.(m 9.两个一次函数与,它们在同一直角坐标系中的图象可能1y ax b =+2y bx a =+D.C.B .A .是( )10、下列一次函数中,y 的值随x 值的增大而减小的是( )A 、y=x -8 B 、y=-x+3 C 、y=2x+5D 、y=7x -63211、在一次函数中,的值随值的增大而减小,则的取值范围是( ()15y m x =++)A 、B 、C 、D 、1m <-1m >-1m =-1m <12、若一次函数的图象经过一、二、三象限,则应满足的条件是:( b kx y +=b k ,)A.B.C.D.0,0>>b k 0,0<>b k 0,0><b k 0,0<<b k 13、将直线y=2x 向上平移两个单位,所得的直线是 ( )A 、y=2x+2B 、y=2x -2C 、y=2(x -2)D 、y=2(x+2)14.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )15.李老师骑自行车上班,最初以某一速度匀速行进, 中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )三、解答题1、在同一个直角坐标系中,画出函数与的图象,并判断点21y x =-34y x =-+A (1,1)、B (-2,10)是否在所画的图象上?在哪一个图象上?2.已知一次函数y=(3-k)x-2k+18,(1) k 为何值时,它的图像经过原点; (2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与y 轴的交点在x 轴的上方;(4) k 为何值时,它的图像平行于直线y=-x;(5) k 为何值时,y 随x 的增大而减小.3、已知一次函数y=kx+b (k 、b 为常数且k≠0)的图象经过点A (0,﹣2)和点B (1,0),求此函数的解析式4、求函数与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成323-=x y 的三角形的面积.5、根据下列条件,确定函数关系式:(1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).6、某摩托车的油箱最多可存油5升,行驶时油箱内的余油量y (升)与行驶的路程x(km)成一次函数关系,其图象如图。

一次函数图像及性质专项练习题

一次函数图像及性质专项练习题

一次函数图像及性质专项练习题姓名:第1题. 如图所示,函数y=mx +m 的图像中可能是( )第2题. 当自变量x 增大时,下列函数值反而减小的是( )A . y=3xB .y=2xC .y=3x- D .y=-2+5x第3题. 直线y=(2-5k )x +3k -2不过第一象限,则k 需满足第4题. 直线y=4x -2与x 轴的交点是 ,与y 轴的交点是 . 第5题. 直线y=(2-5k)x+3k-2若经过原点,则k= ;若直线与x 轴交于点(-1,0),则k= ,第6题. 一次函数24y x =-+的图像经过的象限是____,它与x 轴的交点坐标是____,与y 轴的交点坐标是____,y 随x 的增大而____. 第7题. 如图,直线l 是一次函数y=kx+b 的图像,看图填空:(1) b =______,k =______; (2) x =-20时,y =_______; (3) 当y =-20时,x =_______.第8题. 若一次函数y=kx+b 交于y 轴的负半轴,且y的值随x 的增大而减小,则k_____0,b ______0.(填">"、"="、或"<")(A)(C)(D)(B)ABCD第9题. 如图,函数y=kx-2中,y随x的增大而减小,则它的图像是()第10题. 若一次函数y=k x+b的图象经过一、三、四象限,则k,b应满足()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0求一次函数的表达式(待定系数法)专项训练知识点:先设待求函数表达式(其中含有待定系数)再根据条件列出方程或方程组,求出待定系数,从而得到所求结果的方法,叫做待定系数法。

1、如果一次函数y=kx+3的图像经过点(1,1),那么一次函数的解析式是x+b(k,b为常数,k≠0)的图像经过点A 2、(2014常州)已知一次函数y=k(0,-2)和点B(1,0),则k= ,b= .x+b的图象与y轴的交点的纵坐标为-5,且当x=1时,y=-2,3、一次函数y=k那么这个函数的表达式为。

一次函数的图像和性质练习题

一次函数的图像和性质练习题

一次函数的图像和性质练习题1.一次函数y=kx+b(k≠0)经过正比例函数y=kx(k≠0)一定经过点(0,0),经过点(1,k+b),经过点(-b/k,0)。

2.直线y=-2x+6与x轴的交点坐标是(3,0),与y轴的交点坐标是(0,6)。

与坐标轴围成的三角形的面积是9.3.若一次函数y=mx-(4m-4)的图象过原点,则m的值为1.4.如果函数y=x-b的图象经过点P(0,1),则它经过x轴上的点的坐标为(0,b+1)。

5.一次函数y=-x+3的图象经过点(-2,5)和(2,1)。

6.已知一次函数y=(1/2)x+2的图象与x轴、y轴分别交于点A(4,0)、B(0,2),求△XXX的面积。

答案为4.7.满足条件的函数为y=-x。

8.函数y=2x与y=2x+6的图象平行且不重合。

9.若直线y=2x+6与直线y=mx+5平行,则m=2.10.函数y=ax+b与y=3x+2平行,则a=3,b为任意实数。

11.将直线y=-2x向上平移3个单位得到的直线解析式是y=-2x+3,将直线y=-2x向下移3个单位得到的直线解析式是y=-2x-3,将直线y=-2x+3向下移2个单位得到的直线解析式是y=-2x+1.12.一次函数y=(k-2)x+4-k的图象经过一、三、四象限,则k的取值范围是k≤2或k≥4.13.已知点A(-4.a),B(-2,b)都在一次函数y=3x+1的图象上,且a<b,则系是a<7/2.14.直线y=kx+b经过一、二、三象限,则k>0,b>0;经过二、三、四象限,则k0.15.如果直线y=3x+b与y轴交点的纵坐标为-2,那么这条直线一定不经过第三象限。

16.直线y=(1/2)x-5与x轴的交点坐标是(10,0),与y轴的交点坐标是(0,-5/2)。

17.直线y=2x-3可以由直线y=2x沿y轴上移3个单位而得到;直线y=-3x+2可以由直线y=-3x沿y轴下移2个单位而得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理
一次函数的图像和性质练习题
一、填空题
1.正比例函数(0)y kx k =≠一定经过 点,经过(1), ,一次函数(0)y kx b k =+≠经过(0), 点,(0) ,点.
2. 3.4.5.6.ABC 7.8.9.10.11. 12.的取值范围是 .13.已知点A(-4,a),B(-2,b)都在一次函数y=2
1
x+k(k 为常数)的图像上,则a 与b 的大小关系是a____b(填”<””=”或”>”)
14.直线y kx b =+经过一、二、三象限,则k 0,b 0,经过二、三、四象限,则有k 0,b 0,经过一、二、四象限,则有k 0,b 0.
15.如果直线3y x b =+与y 轴交点的纵坐标为2-,那么这条直线一定不经过第 ------------
象限. 16、直线1
52
y x =
-与轴的交点坐标是_______,与轴的交点坐标是_______. 17、直线23y x =-可以由直线2y x =沿轴_______而得到;直线32y x =-+可以由直线3y x =-轴_______而得到.
18、已知一次函数()()634y m x n =++-. (1)当m______时,y 随x 的增大而减小;
(2
(31. ) A.2.A.
3
A.4.A.5.6.如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过() A.第一象限B.第二象限C.第三象限 ..................... D.第四象限
7.若一次函数y=kx+b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过() A.第一象限B.第二象限C.第三象限 ..................... D.第四象限 8.(m 9 )
10
11、在一次函数()15y m x =++中,的值随值的增大而减小,则的取值范围是() A 、1m <-B 、1m >-C 、1m =-D 、1m <
12、若一次函数b kx y +=的图象经过一、二、三象限,则b k ,应满足的条件是:() A.13A 14151B (-22.(1)k (2)k (3)k (4)k 为何值时,它的图像平行于直线y=-x; (5)k 为何值时,y 随x 的增大而减小.
3、已知一次函数y=kx+b (k 、b 为常数且k≠0)的图象经过点A (0,﹣2)和点B (1,0),
求此函数的解析式 x x

CB . A .
4、求函数32
3
-=
x y 与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积. 5、根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;
(2)y=kx+b 的图象经过点(3,2)和点(-2,1).
6、某摩托车的油箱最多可存油5升,行驶时油箱内的余油量y (升)与行驶的路程x(km)成一次函(1(27(1(2)(3
60。

相关文档
最新文档