浅谈压力容器强度失效

合集下载

压力容器失效分析

压力容器失效分析
是一门综合性的技术学科,涉及材料 学、力学、摩擦学、腐蚀学和机械制造工 艺。
压力容器失效分析
如何开展失效分析工作
• 开展失效分析需要领导的重视和支持; • 需要有硬件的保证; • 需要失效分析人员有较高的素质; • 有正确的失效分析思路和失效分析步骤。
压力容器失效分析
对失效分析人员的要求
1、实事求是,用事实说话,勇于坚持真理; 2、敏锐的观察力和熟练的分析技术,善于 捕捉失效信息和证据; 3、正确的失效分析思路和良好的失效模式、 失效原因判断能力,要有“医生的思路,侦 探的技巧”; 4、善于学习,他人、书本、实践等; 5、扎实的专业基础知识和较广的知识面。
压力容器失效分析
失效分析的步骤
• 4 )深入分析研究: 失效件的宏观检查;断口 分析;无损探伤检查;表面及界面成分分析; 局部或微区成分分析;相结构分析等。
• 5 )综合分析归纳,推理判断提出初步结论 • 6 )撰写失效分析报告。
压力容器失效分析
失效分析的思路
失效分析全过程的思维路线。是指在思想 中以机械失效的规律为理论依据,把通过调 查、观察和实验获得的失效信息分别加以考 察,然后有机结合起来做为一个统一整体综 合考察,以获取的客观 事实为证据,全面应用 逻辑推理的方法,来判 断失效事件的失效模式, 并推断失效原因。
压力容器失效分析
失效分析的思路
1、撒大网逐个因素排除的思路 操作人员、机械设备系统、材料、
制造工艺、环境和管理 2、失效树(故障树) 3、逻辑推理
演绎推理、归纳推理、类比推理等
压力容器失效分析
材质工艺引起 延性断裂
材质工 艺复查
延性断裂
引起延性 断裂设计
设计复 核
严重超载引起 延性断裂

压力容器和压力管道的失效(破坏)与事故分析

压力容器和压力管道的失效(破坏)与事故分析

压力容器和压力管道的失效(破坏)1.失效的定义:完全失去原定功能;虽还能运行,但已失去原有功能或不能达到原有功能;虽还能运行,但已严重损伤而危及安全,使可靠性降低。

2.失效的方式:1)从广义上分类:过度变形失效:由于超过变形限度而失效。

断裂失效:由于出现裂口而失效。

表面损伤失效;因表面腐蚀而导至失效。

2)一般分类:可分为a)过度变形失效:失效后存在较大的变形。

b)断裂失效:失效是由于存在缺陷如裂纹、腐蚀等缺陷而引起的。

c)表面损伤失效:因腐蚀、表面损伤、材料表面损伤等原因引起的失效。

3.失效的原因1)韧性失效:容器所受应力超过材料的屈服强度发生较大的变形而导致失效,原因为设计不当、腐蚀减薄、材质劣化强度下降、超压、超温。

断口有纤维区、放射纹区、剪切唇区。

2)脆性失效:容器在无明显变形情况下出现断裂导致失效,开裂部位存在较大的缺陷(主要是裂缝),材质劣化变脆、应力腐蚀、晶间腐蚀、疲劳、蠕变开裂。

断口平齐,有金属光泽,断口和最大主应力方向垂直。

3)疲劳失效:容器长期受交变载荷引起的疲劳开裂导致疲劳失效。

原因为容器长期受交变载荷、开裂点应力集中、开裂点上有小缺陷。

断口比较平齐光整,有三个区萌生区、疲劳扩展区和瞬断区。

其中扩展区有明显的贝壳样条纹。

4)腐蚀失效:因腐蚀原因导致失效。

均匀腐蚀减薄导致强度不够;应力腐蚀导致断裂;晶间腐蚀导致开裂;氢蚀导致开裂、点蚀造成的泄漏;缝隙腐蚀造成的泄漏或开裂;冲蚀造成局部减薄,泄漏;双金属腐蚀造成局部减薄。

晶间腐蚀:金属材料均属多晶材料,晶粒间存在晶界,晶间腐蚀是指晶界发生腐蚀。

应力腐蚀:金属材料的材质、介质、和拉应力三个因素共同作用下发生的裂纹不断扩大。

裂纹的发展可以是沿晶的也可以是串晶的。

氢蚀:在高温下氢气常形成原子状态氢极易渗透到钢材内部,进入钢材的氢与渗碳体中的碳生成甲烷,使渗碳体脱碳材料变软,生成的甲烷在金属中体积增大,使金属内压力增大金属表面形成鼓包。

腐蚀失效的形式:韧性失效、脆性失效、局部鼓胀、爆破、泄漏、裂纹泄漏、低应力脆断、材质劣化。

压力容器的失效形式

压力容器的失效形式

碳钢及低合金钢 奥氏体不锈钢
NaOH溶液、硝酸盐溶液、 HCN溶液、液氧、H2S溶液、 海水等
氯化物溶液、海水、高温水、 NaOH溶液、连多硫酸溶液、 HCL等
中国石化上海石油化工股份有限公司设备动力部
气液或固液二相造成的冲蚀
1.化工部丙稀腈装置管道腐蚀
2002年化工部丙稀腈装置蒸气管道腐蚀穿透,造成装 置停车,检查发现整根管道都发生了冲蚀。此管道由 于温度较低,存在气液二项。
五、今后进一步可以做的工作 根据历年使用经验,考虑选择合适的材料; 建议在制造或使用过程中尽量使环焊缝避开汽液
两相液位波动区域; 向天津、扬子、仪征等单位调查、取经; 进一步开展讨论分析。
中国石化上海石油化工股份有限公司设备动力部
应力腐蚀预防措施
降低应力 避免产生应力腐蚀的环境与材料的组合
如接管根部,开孔或其他局部结构不连续引起 的应力集中会使虚拟应力的峰值大大超过材料的屈 服点,导致很小范围内的材料进入塑性应变状态。 反复的塑性应变损伤将导致原应力集中部位很快萌 生出疲劳裂纹以至不断扩展而最终导致断裂。
中国石化上海石油化工股份有限公司设备动力部
预防疲劳失效的措施
预防疲劳失效(不论高周疲劳或低周疲劳) 的一般原则
四、原因分析
PTA 溶液中含有PT酸(对甲基苯甲酸)。 历年裂纹一直发生在筒体中间一条环焊缝热影响 区,该环焊缝正好处于汽液两相液位波动区域。 双相不锈钢S32205在酸性介质和焊接残余应力的 同时作用下在焊缝热影响区出现的脆性开裂现象,属 于不锈钢应力腐蚀。
中国石化上海石油化工股份有限公司设备动力部
腐蚀失效
压力容器和设备的腐蚀形态可以分为8大类型:
(1) 全面腐蚀(均匀腐蚀) (2) 孔蚀(点蚀) (3) 缝隙腐蚀 (4) 晶间腐蚀 (5) 应力腐蚀 (6) 氢腐蚀(化学腐蚀) (7) 冲蚀 (8) 双金属腐蚀。

浅谈压力容器设计中的常见问题及对策

浅谈压力容器设计中的常见问题及对策

浅谈压力容器设计中的常见问题及对策1. 引言1.1 背景介绍压力容器是工业生产中常用的装置,用于存储、运输或处理各种气体、液体或固体物质。

在压力容器设计过程中,常常会遇到一些问题,如果不加以注意和解决,可能会带来安全隐患和经济损失。

因此,对于压力容器设计中的常见问题及对策的探讨变得尤为重要。

在压力容器设计中,材料选择不当是一个常见的问题。

如果选择的材料强度不足或者耐蚀性差,容器可能会在工作过程中出现断裂或腐蚀现象,从而导致事故发生。

另外,设计计算不准确也是容易被忽视的问题之一。

如果设计计算不够精确,容器的承载能力可能无法满足实际工作条件,导致容器失效。

此外,几何形状不合理和操作条件考虑不周也会影响压力容器的安全性和稳定性。

为了解决这些问题,需要严格控制材料选择,确保选用符合标准和要求的材料。

同时,进行精确的设计计算,确保容器在工作过程中能够承受各种力的作用。

优化几何形状也是提高容器稳定性的重要措施,可以减少应力集中和减轻负荷。

最后,充分考虑操作条件,包括温度、压力、介质性质等因素,确保容器在各种工况下都能够正常工作。

通过有效地解决压力容器设计中的常见问题,可以提高容器的安全性和可靠性,保障工业生产过程的顺利进行。

在面对不断增长的工业需求和严格的安全要求下,压力容器设计师需要不断总结经验,不断改进设计方法,以确保压力容器的质量和安全性。

2. 正文2.1 压力容器设计中的常见问题在压力容器设计中,常见问题包括材料选择不当、设计计算不准确、几何形状不合理、以及操作条件考虑不周等方面。

材料选择不当可能导致压力容器的强度不足或耐久性不足,从而造成安全隐患。

设计计算不准确可能导致压力容器在使用过程中出现失效或漏气等问题。

几何形状不合理可能导致应力集中、疲劳破坏等问题,影响压力容器的使用寿命。

操作条件考虑不周可能导致压力容器在实际操作中受到过大的压力或温度变化,从而影响其安全性和稳定性。

对策包括严格控制材料选择,确保选择符合压力容器设计要求的材料;精确进行设计计算,确保设计计算符合相应标准和规范;优化几何形状,避免应力集中和疲劳破坏;充分考虑操作条件,确保压力容器在不同操作条件下的安全性和稳定性。

压力容器与管道失效分析和安全评价

压力容器与管道失效分析和安全评价
失效后果:设备损坏、人员伤亡、 环境污染等
失效模式:断裂、变形、腐蚀、 泄漏等
失效预防措施:加强设计审查、 提高制造质量、加强使用维护等
安全评价
01
失效原因分析: 材料缺陷、设计 不合理、制造工
艺问题等
02
失效后果评估: 人员伤亡、经济 损失、环境污染

03
安全措施建议: 加强材料检测、 优化设计、改进
优化结构设计: 采用合理的结 构设计,提高 容器和管道的 强度和稳定性
优化制造工艺: 采用先进的制 造工艺,提高 容器和管道的 质量和可靠性
优化检测与维 护:定期进行 检测和维护, 及时发现和处 理问题,确保
安全运行
材料选择
01
选用耐腐蚀、 耐高温、耐 高压的材料
02
选用具有良 好韧性和延 展性的材料
06
气蚀失效:由于流体高速 流动引起的材料气蚀损伤
失效后果
设备损坏:可能导致设备 无法正常工作,甚至造成 设备报废
生产中断:可能导致生产 过程被迫中断,影响生产 效率和效益
人员伤亡:可能导致操作 人员或其他相关人员受伤 甚至死亡
环境污染:可能导致有毒 有害物质泄漏,污染环境, 影响生态环境和人类健康
03
选用具有良 好焊接性能
的材料
04
选用具有良 好抗疲劳性
能的材料
维护保养
定期检查压力容器 和管道的腐蚀情况, 及时处理腐蚀问题
定期检查压力容器 和管道的密封情况, 确保密封性能良好
定期检查压力容器 和管道的支撑情况, 确保支撑结构稳定 可靠
定期检查压力容器 和管道的仪表和阀 门,确保仪表和阀 门性能良好
安全评价
2
评价方法
风险评估:对压力容 器和管道的潜在风险 进行评估

压力容器失效介绍

压力容器失效介绍
压力容器失效介绍
事故由失效引起 关于失效
概念 压力容器的失效是指符合下列三种情况之一的现象: (1)完全失去原定的功能。 (2)虽还能运行,但已部分失去原有功能或不能良好地 达到原定的功能。 (3)虽还能运行,但已严重损伤而危及安全性,使可靠 性降低。 失效模式分类 为通用的分类方法可将失效形式分过度变形失效、断 裂失效、表面损伤失效和材料性能劣化四大类。
主要失效原因
大量统计资料表明,压力容器与管道的主要失效原因包 括运行操作、管理、设计制造、检测维修和外来损伤等 方面。 重大事故可定性为:责任事故或设备事故。
运行操作:违反操作规程、介质超标
压 力 容 器 与 管 道 主 要 失 效 原 因
管理:缺少现代安全管理体系、职工素质教育差
责 任 事 故
分类:爆炸事故、重大事故、一般事故 原因:设计、制造、使用、修理改造、安全附件 预防:
1.容器本身质量合格
2.使用管理 3.维护保养
4.安全附件
压力容器事故是根据事故造成的人员伤亡、直接 经济损失、中断运行时间、受事故影响人数等情况, 划分为特重大事故、重大事故、较大事故和一般事 故四级: 1、压力容器特别重大事故:有下列情形之一的 事故造成30人以上死亡,或者100人以上重伤(包 括急性工业中毒,下同),或者1亿元以上的直接 经济损失的; 压力容器有毒介质泄露,造成15万人以上转移的。 2、压力容器重大事故:有下列情形之一的: 事故造成10人以上30人以下死亡,或者50人以上 100人以下重伤,或者5000万元以上1亿元以下直接 经济损失;
(1) 过度变形失效 过度变形失效可分为过度弹性变形失效和过 度塑性变形失效两类。 虽未引起结构的破坏,但只要变形超过限度 也应判为失效。例如大型板式塔的塔盘过度挠曲而 使塔盘上流体分布明显不均匀,会引起气体穿过塔 盘时分布不均,严重时会影响传质或传热过程的正 常功能。即使塔盘的变形仍在弹性范围内,此时也 应判为过度弹性变形失效。 容器壳体局部鼓凸或凹陷,法兰明显扭转, 以至能明显观察到有残余塑性变形,最终导致不安 全或密封处的泄漏,则应判为过度塑性变形失效。 过度变形主要与强度或刚度不足有关。

浅谈压力容器设计中的常见问题及对策

浅谈压力容器设计中的常见问题及对策

浅谈压力容器设计中的常见问题及对策压力容器是工业生产中常见的设备,用于加工、储存和输送各种气体、液体和粉末。

它们承受着高压、高温或低温等复杂的工作环境,因此在设计和制造过程中要特别注意安全性和可靠性。

在压力容器设计中常常会遇到一些问题,下面就让我们来浅谈一下这些常见问题及对策。

一、焊接质量问题焊接是压力容器制造过程中最关键的环节之一,焊接质量直接影响着容器的安全性和可靠性。

常见的焊接质量问题包括焊接缺陷、焊接接头设计不合理和焊接接头处的应力集中等。

为了解决这些问题,首先应该加强焊工的技术培训,提高他们的焊接水平和质量意识;其次要严格控制焊接工艺参数,确保焊接质量符合标准要求;最后要设计合理的焊接接头结构,减少应力集中并提高接头的疲劳寿命。

二、材料选择和损伤问题压力容器的材料选择直接关系到其抗压性能和耐腐蚀性能。

选择不当或材料损伤都会导致容器失效。

为了避免这些问题,首先应该在设计阶段就对材料进行严格筛选和检测,确保材料符合要求;其次要加强对材料的管理和保养,及时发现并处理材料损伤问题;最后要严格按照材料的使用规范来设计和制造压力容器,确保其安全性和可靠性。

三、安全阀和压力表问题安全阀和压力表是压力容器的重要保护装置,它们直接关系到容器的安全运行。

常见的问题包括安全阀和压力表的选择不当、安装位置不合理和维护不及时等。

为了解决这些问题,首先应该对安全阀和压力表的性能和使用要求有清楚的了解,确保其选择和安装符合标准要求;其次要加强对安全阀和压力表的维护保养,及时发现并处理问题;最后要加强对安全阀和压力表的使用管理,确保其在容器运行过程中起到应有的作用。

四、设备结构设计问题压力容器的结构设计直接关系到其承压性能和使用寿命。

常见的结构设计问题包括受力分析不合理、结构尺寸设计不合理和支撑方式选择不当等。

为了解决这些问题,首先应该加强对设备结构设计的理论研究和实践经验总结,确保设计合理性;其次要加强对设备结构的计算分析,确保其受力性能符合要求;最后要结合实际情况对设备结构进行合理优化,确保容器的安全运行。

压力容器--设计基础(二)

压力容器--设计基础(二)

压力容器的强度与设计(江苏省压力容器检验员培训考核班专题讲座)第三节强度理论一、压力容器的失效压力容器在设定的操作条件下,因尺寸、形状或材料性能发生改变而完全失去或不能达到原设计要求(包括功能和寿命等)的现象,称为压力容器失效。

尽管失效的原因多种多样,失效的最终表现形式均为泄漏、过度变形和断裂。

压力容器的失效形式大致可分为强度失效、刚度失效、稳定失效和泄漏失效等四大类。

1.强度失效因材料屈服或断裂引起的压力容器失效,称为强度失效。

包括韧性断裂、脆性断裂、疲劳断裂、蠕变断裂、腐蚀断裂等。

韧性断裂:是压力容器在载荷作用下,产生的应力达到或接近所用材料的强度极限而发生的断裂。

其特征是断后有肉眼可见的宏观变形,断口处厚度显著减薄;没有或偶尔有碎片。

厚度过薄和内压过高是引起压力容器韧性断裂的主要原因。

脆性断裂:是指变形量很小、且在壳壁中的应力值远低于所用材料的强度极限时所发生的断裂。

这种断裂是在较低应里状态下发生,故又称为低应力脆断。

其特征是断裂时容器没有鼓胀,即无明显的塑性变形;其断口齐平,并与最大应力方向垂直;断裂的速度极快,常使容器断裂成碎片。

材料脆性和缺陷两种原因都会引起压力容器发生脆性断裂。

疲劳断裂:压力容器在服役中,在交变载荷作用下,经一定循环次数后产生裂纹或突然发生断裂失效的过程,称为疲劳断裂。

交变载荷是指大小和(或)方向都随时间周期性(或无规则)变化的载荷,它包括压力波动、热应力变化、开车停车等;原材料或制造过程中产生的裂纹,在交变载荷的反复作用下扩展也会导致压力容器的疲劳破坏。

由于疲劳源于局部应力较高的部位,如接管根部,往往在压力容器工作时发生,因而破坏时容器总体应力水平较低,没有明显的变形,是突发性破坏,危险性很大。

随着交变载荷反复作用次数的增加,疲劳裂纹不断扩展。

只有当疲劳裂纹扩展到一定值时,才回发生疲劳破坏。

因此,疲劳破坏需要有一定时间。

蠕变断裂:压力容器在高温下长期受载,随时间的增加材料不断发生蠕变变形,造成厚度明显减薄与鼓胀变形,最终导致压力容器断裂的现象,称为蠕变断裂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈压力容器强度失效
作者:袁向东刘新尚张阳
来源:《中国科技纵横》2014年第05期
【摘要】压力容器是危险性较大的一种特种设备,一旦发生事故,轻则影响生产,重则造成爆炸,使人民的生命、财产遭受重大损失。

压力容器强度失效是压力容器最主要的的失效形式,作者针对其失效的特点,进行原因分析,并提出了相应措施。

【关键词】压力容器强度失效
压力容器失效是指压力容器在规定的使用环境和寿命期限内,因结构尺寸、形状和材料性能发生变化,完全失去原设计功能或未能达到原设计要求,而不能正常使用的现象。

常见的压力容器失效模式大致可以分为强度失效、刚度失效、失稳失效和泄漏失效四大类。

其中强度失效是压力容器最主要的的失效形式。

压力容器强度失效是指压力容器在压力等荷载的作用下,因材料屈服或破裂而引起的失效模式,称为强度失效。

通常包括五种形式:韧性破裂、脆性破裂、疲劳破裂、腐蚀破裂、蠕变破裂。

1 韧性破裂
韧性破裂是在容器承受的内压力超出安全限度后,先出现塑性变形,随着压力继续增大就会产生破裂。

1.1 韧性破裂特点
(1)内压力过高,超过了容器最高工作压力,设计压力,达到了容器的爆破压力值。

(2)容器发生破裂前,容器就有明显的变形,破裂处的器壁显著减薄。

(3)发生韧性破裂的容器一般无碎片飞出,只裂开一个口。

(4)断口呈撕裂状。

1.2 发生韧性破裂的原因
(1)违反操作规程,操作失误引起超压。

(2)仪表控制系统出现故障。

(3)超压泄放装置失灵。

(4)液化气体储存严重超装,致使气相空间过小,温度升高时造成超压。

(5)因腐蚀等容器壁厚变薄。

1.3 韧性破裂的预防措施
(1)严格遵守安全操作规程。

(2)经常检查仪表及安全装置灵活准确程度。

(3)严禁超载、超温运行。

(4)作好运行期间的维护保养。

2 脆性破裂
压力容器在正常压力范围内,没有发生或还未充分发生塑性变形时就破裂或爆炸的破坏称为脆性破裂。

2.1 脆性破裂的特点
(1)容器并无宏观塑性变形或变形量很小。

(2)容器壁未变薄,破裂是在低压下发生的。

(3)破裂时很可能有碎片。

(4)脆性破裂多发生在温度较低或温度突变时。

(5)脆性破裂更容易在高强度钢制的压力容器和用中、低强度钢制造的厚壁容器上发生。

2.2 发生脆性破裂的原因
(1)由于材料的脆性转变而引起。

材料选用不当、焊接与热处理不当使材料脆化、低温条件下材料脆化、长期在高温下运行材料脆化、应变时导致材料脆化。

(2)由于焊接接口存在严重缺陷。

原始缺陷、制造缺陷,或使用中产生危险缺陷,在较大的应力条件下发生的脆性破裂。

2.3 脆性破裂的预防措施
(1)选择缺陷较少,韧性适当的材料。

(2)结构设计应尽量减少应力集中,采取措施消除残余应力。

(3)容器使用前,要按规定进行认真宏观检查。

3 疲劳破裂
疲劳破裂系指压力容器器壁在反复加压和卸压过程中受到交变载荷的长期作用,没有经过明显的塑性变形而导致容器破裂,这种破坏形式称疲劳破裂。

疲劳破裂是突然发生的,因此具有很大的危险性。

3.1 疲劳破裂特点
(1)容器疲劳破裂时没有明显的塑性变形。

(2)疲劳破裂与脆性破裂的断口形貌不同,疲劳断口存在两个明显的区域,一个是疲劳裂纹产生及扩展区,另一个是最终破裂区。

(3)容器的疲劳破裂一般是疲劳裂纹穿透器壁而泄漏失效。

(4)疲劳破裂总是在经过多次的反复加压和卸压以后发生的,因为压力容器开、停车一次可视为一个循环周次,在运行过程中容器内介质压力的波动也是一种交变载荷,若交变载荷变化大、开停车次数较多,容器就容易发生疲劳破裂。

3.2 疲劳破裂的原因
(1)内部因素:即压力容器存在着局部高应力区(如压力容器接管、开孔、转角以及其他几何形状不连续处,在焊缝附近以及钢板原有缺陷处等都会有程度不同的应力集中,有些地方的局部应力比计算应力大好多倍),其峰值应力会超过材料的屈服极限,随着载荷的周期性变化,该部位将产生很大的应力变化幅,因而具备了微裂纹向疲劳裂纹的扩展开裂的条件。

(2)外部因素:即压力容器存在着反复交变载荷,这种交变载荷的形式不是对称循环型,而是变化幅较大的非对称循环载荷。

例如,间隙式操作的容器,器内压力、温度波动较大;周围环境对压力容器造成的强迫振动;外界风、雨、雪、地震对容器造成的周期性外载荷等,都会导致疲劳破坏。

3.3 预防措施
(1)在于设计中尽量减少应力集中,采用合理的结构和制造的工艺。

(2)选择合适的抗疲劳材料。

(3)尽量减少不必要的加压,卸压次数。

(4)严格控制压力和温度的波动。

4 腐蚀破裂
腐蚀破裂系指压力容器材料在腐蚀性介质作用下,引起容器壁由厚变薄或材料组织结构改变、机械性能降低,使压力容器承载能力不够而发生的破坏,这种破坏形式称为腐蚀破裂。

从腐蚀形式上腐蚀分为全面腐蚀和局部腐蚀;从腐蚀机理上分可分为化学腐蚀和电化学腐蚀两大类。

4.1 腐蚀破裂特点
(1)因均匀腐蚀导致的厚度减薄。

(2)局部腐蚀造成的大面积凹坑。

4.2 腐蚀破裂的原因
(1)压力容器维护保养不当。

(2)选材不当或未采取有效防腐措施。

(3)结构不合理或焊接不符合规范要求。

(4)介质中杂质的影响。

4.3 预防措施
(1)根据介质选用合适厚度的抗腐蚀材料的容器。

(2)对奥氏体不锈钢容器应严格控制氯离子含量,并避免在不锈钢敏感温度下使用,防止破坏不锈钢表面的钝化膜和防止晶间腐蚀的产生。

(3)选用有防腐隔离措施的容器,以避免腐蚀介质对容器壳体产生腐蚀。

(4)选用结构合理、设计制造质量符合国家标准和要求的容器。

(5)使用中采取适当的工艺措施降低腐蚀速度。

5 蠕变破裂
压力容器母体材料长期处于高温下受到拉应力的作用,而缓慢产生地塑性变形,称为蠕变,材料蠕变而使容器发生的破裂称为蠕变破裂。

5.1 蠕变破裂的特点
(1)蠕变破坏往往发生于容器温度达到或超过其材料熔化温度25%—35%的时候。

(2)蠕变破坏是高温及拉应力长期作用的结果,因而通常有明显的塑性变形,其变形量大小取决于材料的塑性。

破坏时的应力值低于材料在使用温度下的强度极限。

5.2 蠕变破裂的原因
(1)压力容器发生蠕变破裂往往是由于容器长期在某一高温下运行,即使其应力低于材料的屈服极限,材料也能发生缓慢塑性变形。

(2)压力容器因选材不当、结构不合理,造成蠕变破坏。

(3)容器由于结垢、结炭、结疤等影响传热,造成局部过热。

5.3 预防蠕变破裂发生的措施
(1)选择满足高温机械性能要求的合金钢材料制造压力容器。

(2)选用结构合理、制造质量符合标准的压力容器。

(3)在使用中防止容器局部过热。

经常维护保养,清除积垢、结炭,可有效防止蠕变破坏事故发生。

6 结语
压力容器作为特种设备发生事故时,往往不仅是容器本身遭到破坏,而且还会危及到人身财产的安全。

因此,我们应该了解、掌握各种破坏形式的机理、产生原因、主要特征,以便有效防止压力容器爆炸事故的发生。

参考文献:
[1]张合官.压力容器安全运行与管理[M].合肥:安徽科学技术出版社,2006.
[2]贾耀卿.常用金属材料手册[M].北京:中国标准出版社,2000.
[3]丁惠麟,金荣芳.机械零件缺陷、失效分析与实例[M].北京:化学工业出版社,2013.
[4]唐迎春,裘荣鹏,郭英等.焊接质量检测技术[M].北京:中国人民大学出版社,2012.
[5]谭丽主编.化工设备设计基础[M].上海:同济大学出版社,2007.
[6]秦大同,谢里阳.现代机械设计手册[M].北京:化学工业出版社,2011.。

相关文档
最新文档