苏科版八年级数学上册第六章一次函数单元测试卷

合集下载

第六章 一次函数数学八年级上册-单元测试卷-苏科版(含答案)

第六章 一次函数数学八年级上册-单元测试卷-苏科版(含答案)

第六章一次函数数学八年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、已知一次函数. 若随的增大而增大,则的取值范围是()A. B. C. D.2、如果一次函数y=(m+1)x+m的图像不经过第一象限,那么关于x的一元二次方程x+2x-m=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.无法确定3、函数(1)y=2x+1,(2)y=﹣,(3)y=x2+2x+2,y值随x值的增大而增大的有()个.A.0个B.1个C.2个D.3个4、从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进,已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发xh后,到达离甲地ykm的地方,图中的折线OABCDE表示y与x之间的函数关系.①小明骑车在平路上的速度为15km/h②小明途中休息了0.1h;③小明从甲地去乙地来回过程中,两次经过距离甲地5.5km的地方的时间间隔为0.15h则以上说法中正确的个数为()A.0B.1C.2D.35、一次函数y=kx+b的图象如图所示,则k、b的值为()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<06、二次函数与一次函数在同一坐标系内的图象可能是图()A. B. C. D.7、对于一次函数y=﹣2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.函数的图象与x轴的交点坐标是(0,4)8、如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE 在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A. B. C. D.9、在同一坐标系内,一次函数 y=ax+b 与二次函数 y=ax2+8x+b 的图象可能是()A. B. C. D.10、下列语句.①横坐标与纵坐标互为相反数的点在直线y=-x上;②直线y=-x+2不经过第三象限;③除了用有序实数对,我们也可以用方向和距离来确定物体的位置;④若点P的坐标为(a,b),且ab=0,则P点是坐标原点;⑤函数中y的值随x的增大而减小.其中叙述正确的有()A.2个B.3个C.4个D.5个11、如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,线段BC 扫过的面积为().A.80B.88C.96D.10012、若点A(2,4)在函数y=kx的图象上,则下列各点在此函数图象上的是()A.(1,2)B.(﹣2,﹣1)C.(﹣1,2)D.(2,﹣4)13、在函数中,自变量x的取值范围是()A. B. 且 C. D. 且14、若点Α在一次函数y=3x+b的图象上,且3m-n>2,则b的取值范围为()A.b>2B.b>-2C.b<2D.b<-215、某书定价8元,如果一次购买10本以上,超过10本部分打八折,那么付款金额y与购书数量x之间的函数关系如何,同学们对此展开了讨论:⑴小明说:y与x之间的函数关系为y=6.4x+16⑵小刚说:y与x之间的函数关系为y=8x⑶小聪说:y与x之间的函数关系在0≤x≤10时,y=8x;在x>10时,y=6.4x+16⑷小斌说:我认为用下面的列表法也能表示它们之间的关系购买量/本 1 2 3 4 …9 10 11 12 …付款金额/元8 16 24 32 …72 80 86.4 92.8 …⑸小志补充说:如图所示的图象也能表示它们之间的关系.其中,表示函数关系正确的个数有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中点的坐标分别为,若直线与线段有公共点,则的取值范围是:________.17、若函数y=(m﹣1)x|m|是正比例函数,则该函数的图象经过第________象限.18、将直线向右平移2个单位,所得的直线的与坐标轴所围成的面积是________.19、已知一次函数y=mx+n(m≠0)与x轴的交点为(3,0),则方程mx+n=0(m≠0)的解是x=________.20、已知函数是正比例函数,且图象在第二、四象限内,则m的值是________21、已知一次函数y=kx+b,若3k﹣b=2,则它的图象一定经过的定点坐标为________.22、在函数y= + 中自变量x的取值范围是________.23、对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y ≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,图中的函数是有界函数,其边界值1.若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,则b的取值范围是________.24、如图,圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是________,因变量是________.25、在平面直角坐标系xOy中,过点P(0,2)作直线l:(b为常数且b<2)的垂线,垂足为点Q,则tan∠OPQ=________ .三、解答题(共5题,共计25分)26、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?27、已知一次函数y=kx+b的图象经过点(﹣2,1)和(0,3),求当x=4时的函数值.28、已知点A(m1,n1),B(m2,n2)(m1<m2)在直线y=kx+b上,若m1+m2=3b,n1+n2=kb+4,b>2, 试比较n1和n2的大小,并说明理由.29、当x=2及x=﹣3时,分别求出下列函数的函数值:(1)y=(x+1)(x﹣2);(2)y=.30、当k分别取-1,1,2时,函数y=(k-1)x2-4x+5-k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.参考答案一、单选题(共15题,共计45分)1、B2、C3、B4、D5、A6、D7、D8、A9、C10、B11、B12、A13、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、。

第六章 一次函数数学八年级上册-单元测试卷-苏科版(含答案)

第六章 一次函数数学八年级上册-单元测试卷-苏科版(含答案)

第六章一次函数数学八年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、已知一次函数y=kx+b的图象如图所示,则关于x的不等式kx+b>0的解集是()A.x<-1B.x>-1C.x>1D.x<12、在同一坐标内,函数关系式为y=kx+b(k、b为常数且k≠0)的直线有无数条,在这些直线中,不论怎样抽取,至少要抽几条直线,才能保证其中的两条直线经过完全相同的象限()A.4B.5C.6D.73、随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520 C.一次性购买10本以上时,超过10本的那部分书的价格打八折 D.一次性购买20本比分两次购买且每次购买10本少花80元4、如图是一次函数(、是常数)的图象,则不等式的解集是()A. B. C. D.5、已知一次函数y=x+b的图象经过第一、二、三象限,则b的值可以是()A.-1B.0C.2D.任意实数6、已知一次函数y=kx+b的图象如图所示,当y<﹣2时,x的取值范围是()A.x>0B.x<0C.﹣2<x<0D.x<﹣27、在平面直角坐标系中,函数y=-x+1的图象经过()A.一、二、三象限B.二、三、四象限C.一、三、四象限D.一、二、四象限8、一次函数y=2x+2的大致图象是()A. B. C. D.9、已知:一次函数y=(a-1)x+b的图象如图所示,那么a的取值范围是()A.a>1B.a<1C.a>0D.a<010、如图,直线与=-x+3相交于点A,若<,那么()A.x>2B.x<2C.x>1D.x<111、一次函数y=(m-2)x+(m-1)的图象如图所示,则m的取值范围是( ).A.m<2B.1<m<2C.m<1D.m>212、已知点,,都在直线上,则,的大小关系是()A. B. C. D.无法比较13、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象可能是()A. B. C. D.14、已知函数y1=mx2+n,y2=nx+m(mn≠0),则两个函数在同一坐标系中的图象可能为()A. B. C.D.15、在以x为自变量、y为函数的关系式y=2πx中,常量为()A.2B.πC.2πD.πx二、填空题(共10题,共计30分)16、若函数y=(m+1)x|m|是正比例函数,则该函数的图象经过第________象限.17、如图是甲.乙两个施工队修建某段高速公路的工程进展图,从图中可见________施工队的工作效率更高.18、把抛物线向上平移个单位,再向左平移个单位,得到的抛物线的顶点坐标是________.19、校园里栽下一棵小树高1.8 米,以后每年长0.3米,则n年后的树高L米与年数n年之间的关系式为________.20、函数中自变量x的取值范围是________;21、如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为________.22、在函数y= 中,自变量x的取值范围是________.23、在函数y= 中,自变量x的取值范围是________.24、若点A(x1, y1)和点B(x1+1,y2)都在一次函数y= 2017x-2018的图象上,则y1________y2( y (选择“>"、“<"或“=”填空).25、如图,长方形ABCD中,AB=5,AD=3,点P从点A出发,沿长方形ABCD的边逆时针运动,设点P运动的距离为x;△APC的面积为y,如果5<x<8,那么y关于x的函数关系式为________.三、解答题(共5题,共计25分)26、在平面直角坐标系中,直线y=kx+3经过(2,7),求不等式kx﹣6≤0的解集.27、在同一直角坐标系上画出函数y=2x,y=﹣x,y=﹣0.6x的图象.28、从A、B两水库向甲乙两地调水,其中甲地需水15万吨,乙地需水13万吨,A、B两水库各可调出水14吨,从A地到甲地50千米,到乙地30千米,从B地到甲地60千米,到乙地45千米,设计一个调运方案使水的调运量(单位:万吨.千米)尽可能小。

第六章 一次函数数学八年级上册-单元测试卷-苏科版(含答案)

第六章 一次函数数学八年级上册-单元测试卷-苏科版(含答案)

第六章一次函数数学八年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、一次函数y=ax+b,b>0,且y随x的增大而减小,则其图象可能是()A. B. C. D.2、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数y=(b+c)x与反比例函数y= 在同一坐标系中的大致图象是()A. B. C. D.3、在平面直角坐标系中,函数的图象如图所示,则函数的图象大致是()A. B. C. D.4、一支蜡烛长20m,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图像是A. B.C. D.5、在函数y= 中,自变量x的取值范围是()A.x>2B.x≥2C.x<2D.x≤26、如图,一次函数y1=ax+b和y2=﹣bx+a(a≠0,b≠0)在同一坐标系的图象.则的解中()A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<7、已知A(2,a)、B(-1,b)、C(c,0)都在一次函数y=kx+3(k<0)的图象上,则下列结论一定正确的是()A.a<bB.a>bC.a>3D.c<08、如图,小刚骑电动车到单位上班,最初以某一速度匀速行进,途中由于遇到火车挡道,停下等待放行,耽误了几分钟,为了按时到单位,小刚加快了速度,仍保持匀速行进,结果准时到单位.小刚行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,你认为正确的是()A. B. C. D.9、已知腰围的长度“cm”与裤子的尺码“英寸”之间存在一种换算关系如下:腰围cm 67.5 77.5 82.5尺码/英寸25 29 31小聪量了一下自己所穿裤子的腰围长是70cm,那么他的裤子尺码是()A.30英寸B.28英寸C.27英寸D.26英寸10、如图,已知直线y=3x+b与y=ax-2的交点的横坐标为-2,根据图象有下列3个结论:①a>0;②b>0;③x>-2是不等式3x+b>ax-2的解集.其中正确的个数是()A.0B.1C.2D.311、下列命题:( 1 )三边长为5,12,13的三角形是直角三角形;( 2 )等边三角形是轴对称图形,它只有一条对称轴;( 3 )有两边及第三边上的高线对应相等的两个锐角三角形全等;( 4 )把正比例函数y=2x的图象向上平移两个单位所得的直线表达式为y=2x+2.其中真命题的是()A.(1)(2)(3)B.(1)(3)(4)C.(1)(2)(4) D.(1)(4)12、一次函数y=ax+b和反比例函数y=在同一个平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A. B. C. D.13、在平面直角坐标系中,将直线沿坐标轴方向平移后,得到直线与关于坐标原点中心对称,则下列平移作法正确的是()A.将向右平移4个单位长度B.将向左平移6个单位长度C.将向上平移6个单位长度 D.将向上平移4个单位长度14、设直线kx+(k+1)y=1(k≥1且为正整数)与两坐标轴围成的三角形的面积为S k(k=1,2,…,2011),则S1+S2+…+S2011=()A. B. C. D.15、如图为一次函数y=kx+b(k≠0)的图象,则下列正确的是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0二、填空题(共10题,共计30分)16、若是关于的一次函数,则________.17、已知一次函数的图象经过第一、二、三象限,则b的取值范围是________.18、如图,用一段长为20米的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD,设AB为x米,则菜园的面积y(平方米)与x(米)的关系式为________.(不要求写出自变量x的取值范围)19、李老师开车从甲地到相距240km的乙地,如果油箱剩余油量与行驶里程之间是一次函数关系,其图象如图所示,那么,达到乙地时油箱剩余油量是________L.20、已知点A(-3,m)与点B(2,n)是直线y=-x+b上的两点,则m与n的大小关系是________.21、如图,已知函数y=3x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式3x+b>ax-3的解集是________.22、3x﹣y=7中,变量是________,常量是________.把它写成用x的式子表示y的形式是________.23、已知点P(-2,m)和点Q(2,n)是一次函数y=2x+3的图象上的两点,则m与n的大小关系是________.24、已知直线经过点,其中,则的值为________.25、当x=1时,函数y=3x-5的函数值等于________.三、解答题(共5题,共计25分)26、在平面直角坐标系中,直线y=kx+3经过(2,7),求不等式kx﹣6≤0的解集.27、已知y-1与2x+3是正比例关系, y是关于x的一次函数吗?请说明理由.28、某学校要制作一批安全工作的宣传材料.甲公司提出:每份材料收费10元,另收1000元的版面设计费;乙公司提出:每份材料收费20元,不收版面设计费.请你帮助该学校选择制作方案.29、直线y=kx﹣3经过点A(﹣1,﹣1),求关于x的不等式kx﹣3≥0的解集.30、对于某一个函数,自变量x在规定的范围内,若任意取两个值x1和x2,它们的对应函数值分别为y1和y2.若x2>x1时,有y2>y1,则称该函数单调递增;若x2>x1时,有y2<y1,则称该函数单调递减.例如二次函数y=x2,在x≥0时,该函数单调递增;在x≤0时,该函数单调递减.(1)二次函数:y=(x+1)2+2自变量x在哪个范围内,该函数单调递减?(2)证明:函数:y=x﹣在x>1的函数范围内,该函数单调递增.(3)若存在两个关于x的一次函数,分别记为:g=k1x+b1和h=k2x+b2,且函数g在实数范围内单调递增,函数h在实数范围内单调递减.记第三个一次函数y=g+h,则比例系数k1和k2满足何种条件时,函数y在实数范围内单调递增?参考答案一、单选题(共15题,共计45分)1、C2、C3、C4、D5、A6、A7、A8、D9、D11、B12、A13、D14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、30、。

第六章 一次函数数学八年级上册-单元测试卷-苏科版(含答案)

第六章 一次函数数学八年级上册-单元测试卷-苏科版(含答案)

第六章一次函数数学八年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、在平面直角坐标系中,一次函数y=-3x+1的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2、下列选项中,能描述函数与图象的是()A. B. C.D.3、在函数y= 中,自变量x的取值范围是()A.x≤1B.x≥1C.x<1D.x>14、矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)5、下列各曲线表示的y与x之间的关系中,y不是x的函数()A. B. C. D.6、一次函数y=(m﹣3)x﹣m的图象经过一、二、四象限,则m的取值范围是()A.m<0B.m<3C.0<m<3D.m>07、下列各图象中能表示y是x的函数的是().A. B. C. D.8、已知正比例函数的图象过点(2,-3),则该函数图象经过以下的点( )A.(3,-2)B.(-3,2)C.(-2,3)D.(2,3)9、关于函数y=x ,下列结论正确的是()A.函数图像必经过点(1,2)B.函数图像经过二、四象限C.y随x 的增大而减小D.y随x的增大而增大10、对于一次函数y=-2x+4,下列结论错误的是( )A.函数值随自变量的增大而减小B.当x<0时,y<4C.函数的图象向下平移4个单位长度得y=-2x的图象D.函数的图象与y轴的交点坐标是(0,4)11、函数y=中,自变量x的取值范围是()A.x>3B.x<3C.x=3D.x≠312、下列函数中,是一次函数但不是正比例函数的为()A.y=—B.y=—C.y=—D.y=13、已知函数y=8x-11,要使y>0,那么x应取( )A.x>B.x<C.x>0D.x<014、王大爷饭后出去散步,从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中.下面图形表示王大爷离时间x(分)与离家距离y(米)之间的关系是()A. B. C.D.15、已知w关于t的函数:,则下列有关此函数图象的描述正确的是()A.该函数图象与坐标轴有两个交点B.该函数图象经过第一象限C.该函数图象关于原点中心对称D.该函数图象在第四象限二、填空题(共10题,共计30分)16、对于一次函数,若y随x的增大而增大,则m的取值范围是________.17、若一次函数的函数值y随自变量x的增大而增大,则实数k的取值范围是________.18、如图,若y关于x的函数和的图象交于点,则关于x的不等式的解集是________.19、若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是________(写出一个即可).20、若将直线y=﹣2x向上平移3个单位后得到直线AB,那么直线AB的解析式是________.21、声音在空气中的传播速度与温度的关系如表:温度(℃) 0 5 10 15 20速度331 336 341 346 351若声音在空气中的传播速度是温度的一次函数;当时,声音的传播速度为________ .22、写出一个函数,当自变量取值范围为时,函数值随着的增大而减小的函数是________.23、直线y=3x+2是由直线y=3x﹣5向________平移________个单位得到的.24、一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1>y2中,正确的序号是________25、把直线绕原点旋转180 ,所得直线的解析式为________.三、解答题(共5题,共计25分)26、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.27、圆柱的底面半径是2cm,当圆柱的高h(cm)由大到小变化时,圆柱的体积V(cm3)随之发生变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)在这个变化过程中,写出圆柱的体积为V与高h之间的关系式?(3)当h由5cm变化到10cm时,V是怎样变化的?(4)当h=7cm时,v的值等于多少?28、如图,函数y=2x和y=﹣x+4的图象相交于点A,(1)求点A的坐标;(2)根据图象,直接写出不等式2x≥﹣x+4的解集.29、如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于O 点,训练时要求A、B两船始终关于O点对称.以O为原点,建立如图所示的坐标系,x 轴、y轴的正方向分别表示正东、正北方向.设A、B两船可近似看成在双曲线y=上运动,湖面风平浪静,双帆远影优美,训练中当教练船与A、B两船恰好在直线y=x上时,三船同时发现湖面上有一遇险的C船,此时教练船测得C船在东南45°方向上,A船测得AC与AB的夹角为60°,B船也同时测得C船的位置(假设C船位置不再改变,A、B、C三船可分别用A、B、C三点表示).(1)发现C船时,A、B、C三船所在位置的坐标分别为A(_______,_______)、B(_______,_______)和C(_______,_______);(2)发现C船,三船立即停止训练,并分别从A、O、B三点出发沿最短路线同时前往救援,设A、B两船的速度相等,教练船与A船的速度之比为3:4,问教练船是否最先赶到?请说明理由30、甲、乙两家旅行社为了吸引更多的顾客,分别提出了赴某地旅游的团体优惠方法,甲旅行社的优惠方法是:买4张全票,其余人按半价优惠;乙旅行社的优惠方法是:一律按7折优惠,已知两家旅行社的原价均为每人100元;那么随着团体人数的变化,哪家旅行社的收费更优惠?参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、C5、C6、A7、C8、C9、D10、B11、D12、C13、A14、D15、D二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。

苏科版八年级数学上册《第六章一次函数》单元测试卷-附答案

苏科版八年级数学上册《第六章一次函数》单元测试卷-附答案

苏科版八年级数学上册《第六章一次函数》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________1.函数y=ax+b与y=bx+a的图像在同一坐标系内的大致位置正确的是 ( )2.一次函数y₁=kx+b与y₂=x+a的图像如图,给出下列结论:①k<0;②a>0;③当x>2时, y₂>y₁,其中正确的个数是 ( )A.0B. 1C.2D.33.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在平面直角坐标系内它的大致图像是( )4.下列函数图像不可能是一次函数y=ax-(a-2)图像的是( )5.一次函数y₁=kx+b与y₂=x+a的图像如图所示,则下列结论:①k<0;②a>0;③当x=3时y₁=y₂;④当x>3时,y₁<y₂中,正确的判断是 .6.如图,已知函数y₁=ax+b和y₂=kx的图像交于点 P,则根据图像可得,当x时,y₁27.已知一次函数y=kx+b的图像如图所示,当y<0时,x的取值范围是 .8.小张骑车从图书馆回家,中途在文具店买笔耽误了1分钟,然后继续骑车回家.若小张骑车的速度始终不变,从出发开始计时,小张离家的距离s(单位:米)与时间t(单位:分钟)的对应关系如图所示,则文具店与小张家的距离为米.9.某天早晨,王老师从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是王老师从家到学校这一过程中所走路程s(米)与时间t(分)之间的关系.(1)学校离他家米,从出发到学校,王老师共用了分钟;王老师吃早餐用了分钟?(2)观察图形直接回答王老师吃早餐以前的速度快还是吃完早餐以后的速度快?10.快车与慢车分别从甲、乙两地同时相向出发,匀速而行,快车到达乙地后停留1h,然后按原路原速返回,快车比慢车晚1h到达甲地,快慢两车距各自出发地的路程y(km)与所用的时x(h)的关系如图所示.(1)甲、乙两地之间的路程为 km,快车的速度为 km/h,慢车的速度为 km/h;(2)求出发几小时后,快、慢两车距各自出发地的路程相等;(3)出发几小时快、慢两车相距150 km?11.如图1,某物流公司恰好位于连接A、B两地的一条公路旁的C 处.某一天,该公司同时派出甲、乙两辆货车以各自的速度匀速行驶.其中,甲车从公司出发直达B地;乙车从公司出发开往A地,并在A地用1h配货,然后掉头按原速度开往B地.图2 是甲、乙两车之间的距离s(km)与他们出发后的时间x(h)之间函数关系的部分图像.(1)由图像可知,甲车速度为 km/h,乙车速度为 km/h.(2)已知最终甲、乙两车同时到达 B 地.①从乙车掉头到乙车到达B地的过程中,求s与x的函数表达式以及关于x的取值范围,并在图2中补上函数图像;②从两车同时从 C 地出发到两车同时到达 B 地的整个过程中,两车之间的距离何时为80 km?0参考答案1. C2. C3. C4. B5. ①③④6. <-47. x<18. 9009.(1)由图像可知,学校离他家 1000 米,从出发到学校,王老师共用了25分钟;王老师吃早餐用了20-10 =10(分钟),故答案为:1000;25;10. (2)根据图像可得:王老师吃早餐以前的速度为: 50010=50(米/分),吃完早餐以后的速度为:1000−50025−20=100(米/分),50<100,答:吃完早餐以后的速度快.10.(1)由图像可得,甲、乙两地之间的路程为420km,快车的速度为420÷(4-1)= 140(k m/h),慢车的速度为420÷[4+(4-1)-1]=70(km/h),故答案为:420;140;70. (2)由图像和(1)可得,A 点坐标为(3,420),B 点坐标为(4,420),由图可知:快车返程时,两车距各自出发地的路程相等,设出发x 小时,两车距各自出发地的路程相等,70x=2×420-140(x-1),解得 x =143,答:出发 143小时后,快慢两车距各自出发地的路程相等. (3)由题意可得,第一种情形:没有相遇前,相距150km,则140x+70x+150=420,解得 x =97;第二种情形:相遇后而快车没到乙地前,相距150km,140x+70x-420=150,解得 x =197;第三种情形:快车从乙往甲返回,相距150km,70x-140(x-4)= 150,解得 x =417,由上可得,出发 97ℎ或 197ℎ或 417ℎ快慢两车相距150 km.11. (1)由图像可知,甲车速度为:(100-60)÷(1.5-0.5)= 40÷1=40(km/h),乙车的速度为:60÷0.5-40=120-40=80(km/h),故答案为:40;80. (2)①由题意可得,s=80×0.5+40x -80(x -1.5)=-40x+160,当80×0.5+40x=80(x -1.5)时,解得x=4,即s 与x 的函数表达式是s=-40x+160(1.5≤x≤4),补全的函数图像如下图所示;②当0.5≤x≤1.5时60+40(x-0.5)= 80,解得x=1,当 1.5≤x ≤4时 40x +80×0.5−80(x −1.5)=80,解得x =2,,即从两车同时从C 地出发到两车同时到达 B 地的整个过程中,两车之间的距离在1h 或2 h 时为80km.。

第六章 一次函数数学八年级上册-单元测试卷-苏科版(含答案)

第六章 一次函数数学八年级上册-单元测试卷-苏科版(含答案)

第六章一次函数数学八年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、关于函数y=﹣2x﹣1,下列结论正确的是()A.图象必经过(﹣2,1)B.若两点A(x1,y1),B(x2,y )在该函数图象上,且x1<x2,y1<y2C.函数的图象向下平移1 2个单位长度得y=﹣2 x﹣2的图象 D.当x>0.5时,y>02、甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有()A.4个B.3个C.2个D.1个3、如图,已知直线y= x-3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB。

则△PAB面积的最大值是()A.8B.C.12D.4、甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象,则下列叙述正确的个数为()(1)乙车的速度为80km/h(千米/小时);(2)a=40,m=1;(3)甲车共行驶了7h;(4)乙车一定行驶了h或h,两车恰好距离50km.A.1个B.2个C.3个D.4个5、张师傅驾车从甲地到乙地匀速行驶,已知行驶中油箱剩余油量y(升)与行驶时间t (小时)之间的关系用如图的线段AB表示.根据图象求得y与t的关系式为,这里的常数“-7.5”,“25”表示的实际意义分别是()A.“-7.5”表示每小时耗油7.5升,“25”表示到达乙地时油箱剩余油25升B.“-7.5”表示每小时耗油7.5升,“25”表示出发时油箱原有油25升C.“-7.5”表示每小时耗油7.5升,“25”表示每小时行驶25千米 D.“-7.5”表示每小时行驶7.5千米,“25”表示甲乙两地的距离为25千米6、若正比例函数y=kx的图象经过点(1,2),则k的值为()A.﹣B.﹣2C.D.27、早上小明以一个较快的速度匀速赶往学校,上午在教室里上课,中午以较慢的速度匀速回家,下列图象能大致反应这一过程的是()A. B. C. D.8、函数y=a +c与y=-ax+c(a≠0)在同一坐标系内的图像是图中的()A. B. C. D.9、如图1,在平面直角坐标系中,在第一象限,且轴.直线从原点出发沿x轴正方向平移.在平移过程中,直线被截得的线段长度n与直线在x轴上平移的距离m的函数图象如图2所示.那么的面积为()A.3B.C.6D.10、平行四边形的周长为50,设它的长为x,宽为y,则y与x的函数关系为()A.y=25﹣xB.y=25+xC.y=50﹣xD.y=50+x11、为鼓励市民绿色低碳方式出行,县政府开通了公共自行车出租服务,每次租车1个小时内免费,若超过1小时,将按以下标准收费:第一个小时为1元,第二个小时为2元,第三个小时及以上,按每小时3元计费,不足1小时按1小时计算,一天收取的费用最高不超过10元.如果小明上午9:00租车,当天11:30还车,那么小明应付租车费()A.1元B.2元C.3元D.6元12、在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y= 上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3B.2C.D.13、下列函数中,图象经过坐标原点的是()A. B. C. D.14、在一次函数 y=﹣3x+9 的图象上有两个点 A(x1, y1),B(x2, y2),已知 x1>x2,则 y1与 y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.无法确定15、已知二次函数y=a(x﹣1)2+c的图象如图,则一次函数y=ax+c的大致图象可能是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,已知一次函数的图象,则关于x的不等式的解集是________.17、如图,已知一次函数y=ax+b和y=kx的图象相交于点P,则根据图中信息可得二元一次方程组的解是________.18、若一次函数y=kx﹣(2k+1)是正比例函数,则k的值为________19、函数的自变量x的取值范围是________.20、一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为s(km).y1, y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示.则下列判断:①图1中a=3;②当x=h时,两车相遇;③当x=时,两车相距60km;④图2中C点坐标为(3,180);⑤当x=h或h时,两车相距200km.其中正确的有________(请写出所有正确判断的序号)21、新定义:[a,b,c]为函数y=ax2+bx+c (a,b,c为实数)的“关联数”.若“关联数”为[m-2,m,1]的函数为一次函数,则m的值为________.22、如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为________.23、如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是________.24、如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B.BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1. B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C n的坐标是________25、在函数中,自变量x的取值范围是________.三、解答题(共5题,共计25分)26、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?27、求出下列函数中自变量x的取值范围.①y=②y=.28、已知函数y=(k+1)x2+(k﹣3)x+k,当k取何值时,y是x的一次函数?29、四川省第十二届运动会将于8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.30、用图象法解下列二元一次方程组:(1)(2).参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、D5、B6、D7、A8、C10、A11、D12、D13、A14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、29、30、。

八年级上册数学单元测试卷-第六章 一次函数-苏科版(含答案)

八年级上册数学单元测试卷-第六章 一次函数-苏科版(含答案)

八年级上册数学单元测试卷-第六章一次函数-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,一次函数的图象经过点,则下列说法正确的是()A. B.C.方程的解是D. 随的增大而减小2、如图,过点Q(0,3.5)的一次函数的图象与正比例函数的图象相交于点P ,能表示这个一次函数图象的方程是()A. B. C. D.3、一蓄水池中有的水,打开排水阀门开始放水后水池中的水量与放水时间有如下关系:放水时间/分 1 2 3 4 …水池中的水量/ 48 46 44 42 …下列说法不正确的是()A.蓄水池每分钟放水B.放水18分钟后,水池中的水量为C.放水25分钟后,水池中的水量为D.放水12分钟后,水池中的水量为4、一次函数y=kx+3的图象如图所示,当y<0时,x的取值范围是()A.x<0B.x>0C.x<2D.x>25、一次函数y=-3x-2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6、已知一次函数图象上的三点,,,则,,的大小关系是()A. B. C. D.7、平行四边形的周长为50,设它的长为x ,宽为y ,则y与x的函数关系为()A. y=25- xB. y=25+ xC. y=50- xD. y=50+ x8、小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分钟30米的速度行走了前半程,为了不迟到他加快了速度,以每分钟45米的速度行走完了剩下的路程,那么小亮行走的路程y(米)与他行走的时间t(分)(t>15)之间的函数关系正确的是()A.y=30t(t>15)B.y=900﹣30t(t>15)C.y=45t﹣225(t>15)D.y=45t﹣675(t>15)9、若函数y= ,则当函数值y=8时,自变量x的值是()A.±B.4C.±或4D.4或﹣10、如图所示,函数y1=|x|和y2=的图象相交于(-1,1),(2,2)两点.当y1>y2时,x的取值范围是( )A.x<-1B.-1<x<2C.x>2D.x<-1或x>211、已知函数y1=的图象为“W”型,直线y=kx﹣k+1与函数y1的图象有三个公共点,则k的值是()A.1或B.0或C.D. 或﹣12、如图,函数经过点,则关于x的不等式的解集为()A. B. C. D.13、如图,若一次函数y=﹣2x+b的图象交y轴于点A(0,3),则不等式﹣2x+b>0的解集为()A.x>B.x>3C.x<D.x<314、清明节假期的某天,小强骑车从家出发前往革命烈士陵园扫墓,匀速行驶一段时间后,因车子出现问题,途中耽搁了一段时间,车子修好后,以更快的速度匀速前行,到达烈士陵园扫完墓后匀速骑车回家.其中表示小强从家出发后的时间,表示小强离家的距离,下面能反映变量与之间关系的大致图象是()A. B. C. D.15、如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥B.x≤3C.x≤D.x≥3二、填空题(共10题,共计30分)16、如图,,,,动点从点出发,以每秒个单位长的速度向右移动,且经过点的直线也随之移动,设移动时间为秒.若与线段有公共点,则的取值范围为________.17、某书定价每本20元,如果一次购买超过10本,超过10本的部分每本只需15元,若未超过10本,每本仍需20元,则购书金额(单位:元)与购买数量(单位:本)之间的函数表达式为________.18、函数中,自变量x的取值范围是________.19、上海市居民用户燃气收费标准如下表:分档户年用气量(立方米) 天然气价格(元/立方米) 第一档0-310(含) 3.00第二档310-520(含) 3.30第三档520以上 4.20某居民用户用气量在第一档,那么该用户每年燃气费y(元)与年用气量x(立方米)的函数关系式是________20、已知函数y=(m+2)x+m2﹣4是一次函数,则m________.21、正比例函数y=(m﹣2)x m的图象的经过第________ 象限,y随着x的增大而________ .22、函数的自变量x的取值范围是________.23、直线y= 不经过第________象限,y随x的增大而________.24、如图,已知直线y=ax+b和直线y=kx交于点P,则关于x,y的二元一次方程组的解是________25、如图,在同一平面直角坐标系中作出相应的两个一次函数的图象,则不等式组的解为________三、解答题(共5题,共计25分)26、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.27、一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P(x,y),请用“列表法”或“树状图法”求点P(x,y)在函数y=-x+5图象上的概率.28、若一次函数y=kx+b的自变量x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y ≤9,求此函数的表达式.29、如图,在平面直角坐标系中,点A坐标为(6,0),在B在y轴的正半轴上,且S△=24.AOB(1)求点B坐标;(2)若点P从B出发沿y轴负半轴运动,速度每秒2个单位,运动时间t秒,△AOP的面积为S,求S与t的关系式,并直接写出t的取值范围;(3)在(2)的条件下,若S△AOP:S△ABP=1:3,且S△AOP+S△ABP=S△AOB,在线段AB的垂直平分线上是否存在点Q,使得△AOQ的面积与△BPQ的面积相等?若存在,求出Q点坐标;若不存在,请说明理由.30、已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.若这个函数是一次函数,求m的值;参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、D6、A7、A8、C9、D10、D11、B12、A13、C14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

苏科版八年级数学上册《第六章一次函数》单元测试卷含答案

苏科版八年级数学上册《第六章一次函数》单元测试卷含答案

苏科版八年级数学上册《第六章一次函数》单元测试卷含答案1.直线y=kx+2过点(−1,4),则k的值是( )A.−2B.−1C.1D.22.一次函数y=kx+b的图象如图所示,则下列结论正确的是( )A.k<0B.b=−1C.y随x的增大而减小D.当x>2时kx+b<03.若m<−2,则一次函数y=(m+1)x+1−m的图象可能是( )A.B.C.D.4.数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是( )A.x=20B.x=5C.x=25D.x=155.下列四个选项中,不符合直线y=3x−2的性质的是( )A.经过第一、三、四象限B.当x=1时,y=1C.与x轴交于点(−2,0)D.与y轴交于点(0,−2)6.已知一次函数y=(m+1)x+n−2的图象经过第一、三、四象限,则m,n的取值范围是( )A.m>−1,n>2B.m<−1,n>2C.m>−1,n<2D.m<−1,n<27. 将直线 y =3x +2 向下平移 a 个单位长度,得到直线 y =3x −3,则 a 的值为 ( )A . 1B . 3C . 5D . 68. 若二元一次方程组 {3x −y =5,3x −y =−1无解,则一次函数 y =3x −5 与 y =3x +1 的图象的位置关系为 ( )A .平行B .垂直C .相交D .重合9. 如图,直线 y =kx +b (b >0) 经过点 (2,0),则关于 x 的不等式 kx +b ≥0 的解集是 ( )A . x >2B . x <2C . x ≥2D . x ≤210. 在函数 y =√x−3√x+11x−5 中,自变量 x 的取值范围是 .11. 把直线 y =2x −1 向左平移 1 个单位长度,再向上平移 2 个单位长度,则平移后所得直线的表达式为 .12. 已知 y −2 与 x +3 成正比例,且当 x =1 时y =−2,则 y 与 x 之间的函数表达式为 .13. 某公司营销人员的月收入与每月的销售量成一次函数关系,已知销售 1 万件时,收入为 800 元,销售 3万件时,收入为 1600 元,那么没有销售量时其收入为 元.14. 如图,在平面直角坐标系中,点 A 在直线 y =12x 上,过点 A 作 y 轴的平行线交直线 y =2x 于点 B ,点 A ,B 均在第一象限,以 AP 为边向右作正方形 ABCD ,若 AB =1,则点 C 的坐标为 .15. 甲、乙两个探测气球分别从海拔 5 m 和 15 m 处同时出发,匀速上升 60 min .如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1) 求这两个气球在上升过程中y关于x的函数表达式;(2) 当这两个气球的海拔高度相差15m时,求上升的时间.16.如图,在平面直角坐标系中,一次函数y1=ax+b的图象与x轴,y轴交于点A,B,与直线y2=kx交于点P(2,1),且PO=PA.(1) 求点A的坐标和k的值;(2) 求a,b的值;(3) 点D为直线y1=ax+b上一动点,其横坐标为m(m<2),DF⊥x轴于点F,交y2=kx于点E,且DF=3EF,求点D的坐标.17.一艘游轮从杭州出发前往衢州,线路如图(1)所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图(2)所示(游轮在停靠前后的行驶速度不变).(1) 写出图(2)中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2) 若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?②游轮与货轮何时相距12km?参考答案1. 【答案】A2. 【答案】B3. 【答案】D4. 【答案】A5. 【答案】C6. 【答案】C7. 【答案】C8. 【答案】A9. 【答案】D10. 【答案】 x ≥3 且 x ≠511. 【答案】 y =2x +312. 【答案】 y =−x −113. 【答案】 40014. 【答案】 (53,43)15. 【答案】(1) 设甲气球在上升过程中 y 关于 x 的凼数表达式为 y =kx +b (k ≠0),乙气球在上升过程中 y 关于 x 的函数表达式为 y =mx +n (m ≠0),分别将 (0,5),(20,25) 和 (0,15),(20,25) 代入得 {5=b,25=20k +b, {15=n,25=20m +n,解得 {k =1,b =5, {m =12,n =15,所以甲气球在上升过程中 y 关于 x 的函数表达式为 y =x +5(x ≥0),乙气球在上升过程中 y 关于 x 的函数表达式为 y =12x +15(x ≥0) .(2) 由初始位置可得,当 x >20 时,两个气球的海拔高度可能相差 15 m ,且此时甲气球海拔更高 所以 x +5−(12x +15)=15,解得 x =50所以当这两个气球的海拔高度相差 15 m 时,上升的时间为 50 min .16. 【答案】(1) 作 PQ ⊥OA 于点 Q .∵PO =PA ,PQ ⊥OA ,P (2,1)∴OQ =QA =2∴OA =4∴A (4,0)把 P (2,1) 代入 y =kx 中得 2k =1 ∴k =12.(2) 把 A (4,0),P (2,1) 代入 y =ax +b 得 {4a +b =0,2a +b =1,∴{a =−12,b =2.(3) 由(1)(2)可得 D (m,−12m +2),E (m,12m),F (m,0) ∴DF =∣∣−12m +2∣∣,EF =∣∣12m ∣∣ ∵DF =3EF∴∣∣−12m +2∣∣=3∣∣12m ∣∣ 当 −12m +2=3×12m 时,解得 m =1 ∴D (1,32) 当 −12m +2=−3×12m 时,解得 m =−2 ∴D (−2,3).17. 【答案】(1) C 点横坐标的实际意义是游轮从杭州出发前往衢州共用了 23 h .∴ 游轮在“七里扬帆”停靠的时长为 23−(420÷20)=23−21=2(h ).(2) ① 280÷20=14(h )∴ 点 A (14,280),点 B (16,280).∵36÷60=0.6(h),23−0.6=22.4(h)∴点E(22.4,420).设直线BC的表达式为s=20t+b,把B(16,280)代入s=20t+b,可得b=−40∴s=20t−40(16≤t≤23).同理,由D(14,0),E(22.4,420)可得直线DE的表达式为s=50t−700(14≤t≤22.4).由题意得20t−40=50t−700,解得t=22.∵22−14=8(h)∴货轮出发后8小时追上游轮.②相遇之前相距12km时20t−40−(50t−700)=12,解得t=21.6.相遇之后相距12km时50t−700−(20t−40)=12,解得t=22.4.当游轮刚离开杭州12km时,此时根据图象可知货轮在杭州∴此时游轮与货轮也是相距12km,即在0.6h的时候,游轮与货轮相距12km∴0.6h或21.6h或22.4h时游轮与货轮相距12km.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版八年级数学上册第六章一次函数单元测试卷
一、选择题(每小题3分,共30分)
1.下列函数中,自变量x的取值范围是x≥2的是()
A.y=B.y=C.y=D.y=·
2.下面哪个点在函数y=x+1的图象上()
A.(2,1)B.(-2,1)C.(2,0)D.(-2,0)
3.下列函数中,y是x的正比例函数的是()
A.y=2x-1 B.y=C.y=2x2D.y=-2x+1
4.一次函数y=-5x+3的图象经过的象限是()
A.一、二、三B.二、三、四C.一、二、四D.一、三、四
6.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()
A.k>3 B.0<k≤3C.0≤k<3D.0<k<3
7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-1
8.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间t(时)的函数关系用图象表示应为下图中的()
9.李老师骑自行车上班,最初以某一速度匀速行进, 中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()
10.一次函数y=kx+b的图象经过点(2,-1)和(0,3), 那么这个一次函数的解析式为()
A.y=-2x+3 B.y=-3x+2 C.y=3x-2 D.y=x-3
二、填空(每小题3分,共30分)
11.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________, 该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为________.
13.已知一次函数y=kx+b的图象经过点A(1,3)和B(-1,-1),则此函数的解析式为_________.
14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+ 2 上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.
16.若一次函数y=kx+b交于y 轴的负半轴, 且y 的值随x 的增大而减少, 则k____0,b______0.(填“>”、“<”或“=”)
17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组的解是________.
18.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.
19.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.
20.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.
三、认真解答,一定要细心哟!(共60分)
21.(14分)根据下列条件,确定函数关系式:
(1)y与x成正比,且当x=9时,y=16;
(2)y=kx+b的图象经过点(3,2)和点(-2,1).
第20题
23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售
出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图
象回答下列问题:(1)农民自带的零钱是多少?
(2)降价前他每千克土豆出售的价格是多少?
(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?
24.(10分)如图所示的折线ABC 表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t (分钟)之间的函数关系的图象(1)写出y与t 之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?
25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米, 现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1. 1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0. 9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.
①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;
②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?
答案
1.A
2. D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.16
16.<;< 17.18.0;7 19.±6 20.y=x+2;4
21.①y=x;②y=x+22.y=x-2;y=8;x=14
23.①5元;②0.5元;③45千克
24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.
②2.4元;6.4元
25.①y=50x+45(80-x)=5x+3600.
∵两种型号的时装共用A种布料[1.1x+0. 6(80-x)]米,
共用B种布料[0.4x+0.9(80-x)]米,
∴解之得40≤x≤44,
而x为整数,
∴x=40,41,42,43,44,
∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);
②∵y随x的增大而增大,
∴当x=44时,y最大=3820,
即生产M型号的时装44套时,该厂所获利
润最大,最大利润是3820元.。

相关文档
最新文档