人教版九年级数学上册导学案:《圆》第1节 圆周角导学案1
人教版-数学-九年级上册 24.1.4圆周角(1) 导学案

24.1.4《圆周角》(1)学习目标1.使学生理解圆周角的概念,掌握圆周角定理及其推论,并运用它们进行论证和计算. 2.了解分类思想和完全归纳的思想.学习重点:圆周角的概念、圆周角定理及其推论在论证和计算中的应用. 学习难点: 了解分类思想和化归思想. 学习过程 一.自主学习1.圆周角定义: 叫圆周角. 2.判断下列各图形中的是不是圆周角.(A )2个, (B )3个, (C )4个, (D )5个。
3.圆周角的两个特征: ① 角的顶点在 ;② 角的两边都 . 4.分别度量下图中AB 所对的两个圆周角∠C ,∠D 的度数,比较一下,∠C_____∠D.变动点C 的位置,圆周角的度数有没有发生变化? (1)一个弧上所对的圆周角的个数有多少个?(2)同弧所对的圆周角的度数是否发生变化?(3)同弧上的圆周角与圆心角有什么关系?从(1)、(2)、(3),我们可以总结归纳出: 圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角_____,都等于 的的一半. 二.探索新知如图所示,在⊙O 任取一个圆周角∠BAC ,将圆对折,使折痕经过圆心O 和圆周角的顶点C ,这时折痕可能下图出现三种情况:你能分别证明这三种情况中 AB 所对的圆周角等于它所对圆心角的一半的结论吗?(1)如图1,当圆周角∠BAC 的一边AB 刚好是折痕(⊙O 的直径)时;OA DB C(2)如图2,当圆周角∠BAC的两边AB、AC在折痕(⊙O的直径AD)的两侧时;(3)如图3,当圆周角∠BAC的两边AB、AC在折痕(⊙O的直径AD)的同侧时。
问题1:如图,在⊙O中,若圆周角∠BAC=∠DEF,那么AC =DF 吗?为什么?结论:___________________________________________三.应用新知例1 如图,点A、B、C、D都在同一个圆上,四边形ABCD的对角线将4个内角分成的8个角中,相等的角有几对?请分别指出来.例2 如图,OA=OB=OC都是⊙O的半径,∠AOB=2∠BOC,求证:∠ACB=2∠BAC.OCBA87654321DCBA例3 已知:四边形ABCD 的四个顶点都在圆上,且AB ∥CD . 求证:AB=CD四.发现总结1.在圆中进行角的转化与计算通常要用到_____________________.2.数学思想方法:在证明圆周角定理中用到________思想和_______思想. 五.巩固提高如图,AB 是⊙O 的直径,弦CD ⊥AB ,点P 是CAD 上的一点,(不与C 、D 重合) (1)求证:∠CPD=∠COD.(2)如图 2,若点P 在劣弧CD 上(不与C 、D 重合),∠CPD 与∠COD 的数量关系是否发生变化?写出结论,并画图证明. 图1 图2ODB AD C PD C六.课堂检测1.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为( )A .15︒B .28︒C .29︒D .34︒2.如图2,△ABC 内有一点D ,且DA=DB=DC ,若∠DAB=20°,∠DAC=30°,则∠BDC 的大小是( )A.100°B.80°C.70°D.50°3.如图3,在⊙O 中,弦BE 与CD 相交于点F ,CB 、ED 的延长线交于点A ,如果∠A=30°, ∠CFE=70°,∠CDE=( ) A .20° B.40 ° C.50 ° D.60°4.如图4,△ABC 的三个顶点都在⊙O 上,AD 、BE 是高,交点为H ,BE 的延长线交⊙O 于F ,下列结论:①∠BAO=∠CAD ;②AO=AH ;③DH=DC ;④EH=EF ,其中正确的的结论( ) A .①② B. ②③ C. ①④ D. ③④5.如图5,在⊙O 中,弦CD 垂直于直径AB ,E 为劣弧CB 上的一动点(不与B 、C 重合),DE 交弦BC 于点N ,AE 交半径OC 于点M ,在E 点运动过程中,∠AMC 与∠BNE 的大小关系为( )A .∠AMC>∠BNE B. ∠AMC=∠BNEC. ∠AMC<∠BNED. 随着E 点的运动以上三种关系都有可能6.如右图,在⊙O 中,∠ACB=∠BDC=60°,AC=32cm ,(1)求∠ABC 的度数; (2)求⊙O 的面积7.如下图,在平面直角坐标系中,M 为x 轴上的一点,⊙M 交x 轴于A 、B 两点,交y 轴于C 、D 两点,P 为BC 上的一个动点,CQ 平分∠PCQ ,A (-1,0),C (0,3).图2D C BA 图3OE FDB 图O F HE DC B A图5O N M E D CBA(1)求M 点的坐标.(2)当P 点运动时,线段AQ 的长度是否发生变化?若变化请求出其值,若改变说明理由.y x M O Q P DCB A。
九年级数学上册-圆的有关性质24.1.4圆周角导学案新版新人教版

24.1.4 圆周角一、新课导入1.导入课题:情景:如图,把圆心角∠AOB的顶点O拉到圆上,得到∠ACB.问题1:∠ACB有什么特点?它与∠AOB有何异同?问题2:你能仿照圆心角的定义给∠ACB取一个名字并下个定义吗?由此导入课题.(板书课题)2.学习目标:(1)知道什么是圆周角,并能从图形中准确识别它.(2)探究并掌握圆周角定理及其推论.(3)体会“由特殊到一般”“分类” “化归”等数学思想.3.学习重、难点:重点:圆周角定理及其推论.难点:圆周角定理的证明与运用.二、分层学习1.自学指导:(1)自学内容:教材第85页到第86页倒数第6行之前的内容. (2)自学时间:10分钟.(3)自学方法:完成探究提纲.(4)探究提纲:1)圆周角的概念①顶点在圆上 ,并且两边都与圆相交的角叫做圆周角.②判别下列各图中的角是不是圆周角,并说明理由.②猜一猜:一条弧所对的圆周角与圆心角有何数量关系?②量一量:用量角器量一量圆心角∠AOB和圆周角∠ACB.a.如图,∠ACB=12∠AOB.b.你可以画多少个AB所对的圆周角?这些圆周角与∠AOB之间有什么数量关系?可以画无数个.这些圆周角都等于∠AOB的一半.③想一想:在⊙O中任画一个圆周角∠BAC,圆心O与∠BAC可能会有几种位置关系?有3种位置关系.③证一证:a.当圆心O在∠BAC的一条边上时(如图1):b.当圆心O在∠BAC的内部时(如图2):作直径AD,同a,得.c.当圆心O在∠BAC的外部时(如图3).作直径AD,同a,得⑤归纳:一条弧所对的圆周角等于它所对的圆心角的一半 .2.自学:学生可根据自学指导自主学习,相互交流.3.助学:(1)师助生:①明了学情:关注学生能否探究、归纳和证明圆周角定理.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:小组内交流、研讨.4.强化:(1)圆周角定理的内容.(2)证明圆周角定理所体现的数学思想.(3)练习:如图,OA,OB,OC都是⊙O的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC.证明:∵∠ACB=12∠AOB,∠BAC=12∠BOC,∠AOB=2∠BOC,∴∠ACB=2∠BAC.1.自学指导:(1)自学内容:教材第86页最后5行至第87页例4.(2)自学时间:10分钟.(3)自学方法:完成探究提纲.(4)探究提纲:①探究图中∠ACB,∠ADB和∠AEB的数量关系.a.如图1,∵∠ACB=12∠AOB,∠ADB=12∠AOB,∠AEB=12∠AOB,∴∠ACB = ∠ADB = ∠AEB.即同弧所对的圆周角相等 .b.如图2,AB=AE,∵AB=AE,∴∠AOB = ∠AOE.∵∠ACB=12∠AOB, ∠ADE=12∠AOE, ∴∠ACB = ∠ADE.即等弧所对的圆周角相等 .c.由此可得,同弧或等弧所对的圆周角相等 .d.练习:如图,点A、B、C、D在同一个圆上,四边形ABCD的对角线把四个内角分成8个角,这些角中哪些是相等的角? ∠1=∠4,∠2=∠7,∠3=∠6,∠5=∠8②半圆(或直径)所对的圆周角是 直角 ;90°的圆周角所对的弦是 直径 .为什么? 因为半圆(或直径)所对的圆心角是180°,所以它所对的圆周角是90°,即直角. 90°的圆周角所对的圆心角是180°,所以它所对的弦是直径. ④ 如图,用直角曲尺检查半圆形的工件,哪个是合格的?为什么?第二个工件是合格的.因为半圆所对的圆周角为直角.④如图, ⊙O 的直径AB 为10cm,弦AC 为6cm, ∠ACB 的平分线交⊙O 于D,求BC,BD 的长. ∵AB 是直径,∴∠ACB=90°, ∴在ACB Rt中,()BC AB AC cm =-=-=22221068. 同理∠ADB=90°,又CD 是∠ACB 的平分线, ∴∠DCA=∠DCB=12∠ACB=45°, ∴∠DBA=∠DAB=45°,∴AD=BD. 在ADB Rt中,AD 2+BD 2=AB 2,∴BD AB cm ==21522. ⑤ 如图,你能设法确定一个圆形片的圆心吗?你有多少种方法?能,方法很多,例如:利用三角尺的直角可以找出两条直径(90°的圆周角所对的弦是直径),两直径交点就是圆心.2.自学:学生可在自学指导的指引下自主学习,相互交流.3.助学:(1)师助生:①明了学情:关注学生是否会完成任务. ②差异指导:根据学情进行个别指导或分类指导. (2)生助生:小组内交流、研讨.4.强化:(1)常规辅助线:遇直径,想直角.(2)点一名学生口答探究提纲中的问题②,点两名学生板演问题④,并点评.1.自学指导:(1)自学内容:教材第87页“思考”到第88页“练习”之前的内容.(2)自学时间:7分钟.(3)自学方法:阅读课文,完成自学参考提纲.(4)自学参考提纲:①什么叫圆内接多边形和多边形的外接圆?如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.②在图中标出BAD和BCD所对的圆心角,这两个圆心角有什么关系?∠BAD+∠BCD= 180 度,同理可得:∠ABC+∠ADC= 180 度.③圆内接四边形的性质:圆内接四边形的对角互补 .④练习:a.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BAD=50° ,∠BCD=130° .b.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,求∠ADE的度数.∵四边形ABCD内接于⊙O,∴∠B+∠ADC=180°,又∠ADC+∠ADE=180°,∴∠ADE=∠B=110°.c.求证:圆内接平行四边形是矩形.∵圆内接四边形对角互补,而平行四边形对角相等,∴圆内接平行四边形四个角都是直角.∴圆内接平行四边形是矩形.d.已知:如图,两个等圆⊙O1和⊙O2都经过A,B两点,经过点A的直线与两圆分别交于点C,D,经过点B的直线与两圆分别交于点E,F.若CD∥EF,求证:四边形EFDC是平行四边形.连接AB.∵四边形ABEC是⊙O1的内接四边形,∴∠C+∠ABE=180°.又∵四边形ABFD是⊙O2的内接四边形.∴∠D+∠ABF=180°.又∵∠ABE+∠ABF=180°.∴∠C+∠D=180°.∴CE∥DF.又∵CD∥EF,∴四边形EFDC是平行四边形.2.自学:学生可结合自学指导自主学习.3.助学:(1)师助生:①明了学情:明了学生自学提纲的答题情况.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:生生互动,交流研讨.4.强化:(1)圆内接四边形的性质.(2)让学生完成自学参考提纲中的第④题,并点评.(3)练习:圆内接四边形ABCD中,∠A、∠B、∠C的度数的比是2∶3∶6,求四边形ABCD 各内角的度数.解:∵∠A∶∠C=2∶6,∠A+∠C=180°,∴∠A=45°,∠C=135°.又∠A∶∠B=2∶3,∴∠B=67.5°,∠D=180°-∠B=112.5°.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?在哪些方面还感到比较困难?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、积极性、小组探究协作情况以及存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)这节课首先是类比圆心角得出圆周角的概念.在探究圆周角与圆心角关系过程中,要求学生学会使用分类讨论以及转化的数学思想解决问题,同时也培养了学生勇于探究的精神.其次,本节课还学习了圆内接四边形定义及圆内接四边形的性质,通过例题和习题训练,可以使学生在解答问题时灵活运用前面的一些基础知识,从中获取成功的经验,建立学习的自信心.(2)圆周角定理的证明分了三种情况探讨,这里蕴含着重要的数学思想——分类思想,教材中多处闪烁着分类思想的光环:三角形分类、方程的分类等,故教学过程中要整理相互交融的知识结构,加强分类思想的渗透.(时间:12分钟满分:100分)一、基础巩固(80分)1.(10分)下列四个图中,∠x是圆周角的是(C)2.(10分)如图,⊙O中,弦AB、CD相交于E点,且∠A=40°,∠AED=75°,则∠B=(D)A.15°B.40°C.5°D.35°3.(10分)如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD= 80° .4.(10分)如图,点B、A、C都在⊙O上,∠BOA=110°,则∠BCA=125° .5.(10分)如图,⊙O中,弦AD平行于弦BC,∠AOC=78°,求∠DAB的度数.解:∵AD∥BC,∴∠DAB=∠B.又∵∠B=12∠AOC=39°.∴∠DAB=39°.6.(10分)如图,⊙O的半径为1,A,B,C是⊙O上的三个点,且∠ACB=45°,求弦AB的长.解:连接OA 、OB.∵∠BCA=45°,∴∠BOA=2∠BCA=90°. 又OA=OB,∴△AOB 是等腰直角三角形. ∴AB OA OB OA OA =+===222222.7.(10分)如图,A,P,B,C 是⊙O 上的四点,∠APC=∠CPB=60°,判断△ABC 的形状并证明你的结论.解:△ABC 是等边三角形.证明如下: ∵∠APC=∠ABC=60°,∠CPB=∠BAC=60°, ∴∠ACB=180°-∠ABC-∠BAC=60°, ∴△ABC 是等边三角形.8.(10分)如图,已知A,B,C,D 是⊙O 上的四点,延长DC,AB 相交于点E,若BC=BE .求证:△ADE 是等腰三角形.证明:∵∠A+∠BCD=180°,∠BCE+∠BCD=180°. ∴∠A=∠BCE. ∵BC=BE,∴∠E=∠BCE,∴∠A=∠E, ∴AD=DE,∴△ADE 是等腰三角形. 二、综合应用(10分)9.(10分)如图,已知EF 是⊙O 的直径,把∠A 为60°的直角三角板ABC 的一条直角边BC 放在直线EF 上,斜边AB 与⊙O 交于点P,点B 与点O 重合;将三角形ABC 沿OE 方向平移,使得点B 与点E 重合为止.设∠POF=x °,则x 的取值范围是 30≤x ≤60 .三、拓展延伸(10分)10.(10分)如图,BC 为半圆O 的直径,点F 是BC 上一动点(点F 不与B 、C 重合),A 是BF 上的中点,设∠FBC=α,∠ACB=β.(1)当α=50°时,求β的度数;(2)猜想α与β之间的关系,并给予证明.解:(1)连接OA,交BF于点M.∵A是BF上的中点,∴OA垂直平分BF. ∴∠BOM=90°-∠B=90°-α=40°.∴∠C=12∠AOB=12×40°=20°,即β=20°.(2)β=45°-12α.证明:由(1)知∠BOM=90°-α.又∠C=β=12∠AOB,∴β=12(90°-α)=45°-12α.。
人教版九年级数学上册24.1.4圆周角导学案

24.1.4《圆周角》导学案一、学习目标1、理解圆周角的概念,让学生探索和掌握圆周角定理,并能灵活地应用圆周角定理解决圆的有关说理和计算问题。
2、让学生在探究过程中体会“由特殊到一般”、“分类”、“化归”等数学思想;二、预习内容自学课本85页至86页,完成下列问题:1、圆周角:2、(针对训练)下列各图中,∠ABC 不是圆周角的是 .(填序号)3、分别做出这三个图中的圆心角∠BOC① 圆心O 在∠BAC 的内部 ②圆心O 在∠BAC 的一边上 ③圆心O 在∠BAC 的外部 ∠BAC= 度, ∠BOC= 度。
三、探究学习1、∠BAC 与圆心角∠BOC 的关系是:2、由于测量存在误差,因此实验、观察等方法得出的猜想的正确性是需要进一步验证。
证明:3、圆周角定理:4、圆周角定理推论:5、圆内接四边形性质:·· ·· O BAC AAABBBC CC OOO ⑴⑵⑶⑷四、巩固新知1、如图,在⊙O 中,若C 是弧BD 的中点,则图中与∠BAC 相等的角有( )A .1个B .2 个C .3个D .4个2、如图,圆心角∠BOC =78°,则圆周角∠BAC 的度数是()A .156°B .78°C .39°D .12°3、(2012·云南)如图,AB 、CD 是⊙O 的两条弦,连接AD 、BC ,若∠BAD =60°,则∠BCD 的度数为( )A .40°B .50°C .60°D .70°4、如图,AB 是⊙O 的直径,点C 在⊙O 上,若∠A =40 º,则∠B 的度数为( )A .80 ºB .60 ºC .50 ºD .40 º五、学习心得 。
C· BDO A。
人教版九年级上数学圆周角(1)导学案

图6O B A C圆周角导学案(1)导学案【学习目标】:1、 知道圆周角的概念,会证明圆周角定理。
【学习过程】知识回顾:☆顶点在圆心的角叫做 。
☆弧的度数:该弧所对的圆心角的度数。
专题一:操作与思考如图,点A 在⊙O 外,点B 1 、B 2 、B 3在⊙O 上,点C 在⊙O 内,度量∠A 、∠B 1 、∠B 2 、∠B 3 、∠C 的大小,你能发现什么?∠B 1 、∠B 2 、∠B 3有什么共同的特征? 1. ★圆周角定义:顶点 ,并且两边 的角。
◆强调:圆周角的两个特征:(1) (2)3、判断下列各图中,各图中的角是不是圆周角?4、下图中弧AB 心角相对位置关系在画出下图中弧AB 所对的圆周角。
(1) (2) (3)5、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角_____ ,并且都等于这条弧所对的圆心角的__________。
6、思考:(1) “同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗? (2)在同圆或等圆中,如果两个圆周角相等,它们所对弧一定相等吗?为什么?专题二:新知应用 1、如右图6,已知∠ACB = 20º,则∠AOB = _______.2、如图,AB 为⊙O 的直径,∠BOC 、∠BAC 分别是BC 所对的圆心角、圆周角,求出图(1)、(2)、(3)中∠BAC 的度数.4、如图,点A 、B 、C 、D 在同一个圆上,四边形的对角线 把4个内角分成8个角,这些角中哪些是相等的角?专题三:尝试练习1、如图,点A 、B 、C 、D 在⊙O 上,点A 与点D 在点B 、C 所在直线的同侧,∠BAC=350 (1)∠BDC=_______°,理由是_______________________.(2)∠BOC=_______°,理由是______________________.2、圆周角是24°,则它所对的弧是 [ ]A .12°;B .24°;C .36°;D .48°.3、在⊙O 中,∠AOB =84°,则弦AB 所对的圆周角是 [ ]A .42°;B .138°;C .84°;D .42°或138°.4、半径为R 的圆中,有一弦分圆周成1:2两部分,这条弦所对的圆周角的度数是A .1对;B .2对;C .3对;D .4对.5、在⊙O 中,∠CBD=30° ,∠BDC=20°,求∠A6、如图,点A 、B 、C 在⊙O 上,(1) 若∠BAC=60°,求∠BOC=______°;(2) 若∠AOB=90°,求∠ACB=______7、如图,点A 、B 、C 在⊙O 上,点D 在⊙O 内,点A 与点D 在点B 、C 所在直线的同侧,比较∠BAC 与∠BDC 的大小,并说明理由.8.如图,AC 是⊙O 的直径,BD 是⊙O 的弦,EC ∥AB ,交⊙O 于E 。
人教版九年级上24.1.4圆周角定理导学案(共2课时)

(5)(4)A24.1.4圆周角导学案(1)学习目标:1.了解圆周角的概念.理解圆周角的定理.理解圆周角定理的推论.(重点)2.熟练掌握圆周角的定理及其推理的灵活运用.(难点) 自主学习:阅读教材85至86页 1.定义:顶点在 ,并且两边都和圆 的角叫做圆周角.(完成书后练习第1题) 2. ① 如图,AB 为⊙O 的直径,∠BOC 、∠BAC 分别是所对的圆心角、圆周角,利用以前所学知识求出图(1),(2),(3)中∠BAC 的度数分别为 .通过计算发现:∠BAC = ∠BOC , 即, 。
② 观察图(4)和(5)中的圆周角和圆心角,它们与图(1)(2)(3)有什么不同?还能得到与①相同的结论吗?你是怎么得到的?③ 圆周角定理的证明运用了什么数学思想?3.如图(6),在⊙O 中,所对的圆心角为 ,所对的圆周角是 ,你能得到什么结论?合作探究探究1 教材88页练习3 探究2 教材88页练习2 典型题例1.如图(7),点A 、B 、C 、D 在⊙O 上,点A 与点D 在点B 、C 所在直线的同侧,∠BAC=350①∠BDC=_______°,理由是_________________. ②∠BOC=_______°,理由是_______________. 2.如图(8),点A ,B ,C 在⊙O 上, 若∠BAC=60°,则∠BOC=____°;若∠AOB=90°,则∠ACB=____°. 3.如图(9),点A 、B 、C 、D 在⊙O 上,∠ADC=∠BDC=60°.判断△ABC 的形状,并说明理由.4.如图(10),⊙O 的直径AB=8cm,∠CBD=30°,求弦DC 的长.BC (1) (2) (3)BC (6)(7)(8)(9)(10)B(13)圆周角(1)限时训练1.在半径为R 的圆中有一条长度为R 的弦,则该弦所对的圆周角的度数是( ) A.30° B.30°或150° C.60° D.60°或120°2.如图,A 、B 、C 三点都在⊙O 上,点D 是AB 延长线上一点,∠AOC=140°, ∠CBD 的度数是( ) A.40° B.50° C.70° D.110°3.如图,已知圆心角∠BOC=100°,则圆周角∠BAC 的度数是( ) A.50° B.100° C.130° D.200°4.如图,A 、B 、C 、D 四点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等的角有( ) A.2对 B.3对 C.4对 D.5对5.如图,D 是弧AC 的中点,则图中与∠ABD 相等的角的个数是( ) A.4个 B.3个 C.2个 D.1个6.如图,∠AOB=100°,则∠A+∠B 等于( ) A.100° B.80° C.50° D.40°7.如图⊙O 中弧AB 的度数为60°,AC 是⊙O 的直径,那么∠BOC 等于 ( ) A .150° B .130° C .120° D .60°8.如图,等边三角形ABC 的三个顶点都在⊙O 上,D 是弧AC 上任一点(不与A 、C 重合),则∠ADC 的度数是________.9.如图,四边形ABCD 的四个顶点都在⊙O 上,且AD ∥BC,对角线AC 与BD 相交于点E,那么图中有_________对全等三角形.10.已知,如图,∠BAC 的邻补角∠BAD=100°,则∠BOC=_____度. 11.如图,A 、B 、C 为⊙O 上三点,若∠OAB=46°,则∠ACB=_____度.12.如图,AB 是半圆O 的直径,AC=AD,OC=2,∠CAB= 30 °,则点O 到CD 的距离OE= . 13.如图(13),A 、B 、C 、D 四点都在⊙O 上,AD 是⊙O 的直径,且AD=6cm ,若∠ABC=∠CAD,求弦AC 的长.第2题第3题 第4题 第5题 第7题 第6题 第9题 第10题 CD 第11题 第12题24.1.4圆周角导学案(2)学习目标:1.掌握直径(或半圆)所对的圆周角是直角及90°的圆周角所对的弦是直径。
人教版初三数学上册圆周角(1)导学案

圆周角(1)导学案班级:_ ______ __ 姓名: __________【学习目标】1、知道圆周角的概念,会证明圆周角定理。
2、经历探索圆周角的有关性质的过程,体会分类、转化等数学思想方法。
3、会运用圆周角定理解决简单问题。
【学习重点】圆周角概念及圆周角定理.【学习难点】圆周角定理的推导过程。
【学习过程】一、知识回顾:☆顶点在圆心的角叫做 ,如图(1)中∠AOB是二、课堂探究:知识一:圆周角的概念(阅读教材P85内容,回答下列问题)1.圆周角的定义:图2中CD所对的圆周角的有_______________________________2.圆周角的两个特征:(1)(2)知识二:圆周角定理(阅读教材P85-86内容,回答下列问题)思考与探索:1、如图(3),∠BAC是圆周角,请作出BC所对的圆心角∠BOC∠BAC和∠BOC的度数,发现它们之间有什么关系?2、再在⊙O上任取一条弧,作出这条弧所对的圆周角和圆心角,测量它们的度数,是否得出同样的结论?你能发现什么规律吗?3、如何证明上面的结论?︵︵分析:在⊙O上任取BC,画出它所对的圆周角∠BAC,这样的圆周角有多少个?按圆心O与圆周角的位置关系又可以分成几种情况?(4) (5) (6)结合上图(4)(5)(6)分别完成证明过程。
4、圆周角定理:一条弧所对的________等于这条弧所对的圆心角的__________。
几何语言表示:三、随堂练习︵1、求⊙O 中角x 的度数:(1)(2)2、 如图,在直径为AB 的半圆中,O 为圆心,C 、D 为半圆上的两点,∠COD=500,则∠CAD=_______ 3、如右图,AB 、AC 、BC 都是⊙O 的弦,若∠CAB =∠CBA ,则∠COB =∠ ,AC=_____ ,AC=____4、如图,OA,OB,OC 都是⊙O 的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC.四、能力提升1、已知⊙O 中弦AB 的长度等于半径,求弦AB 所对的圆心角和圆周角的度数︵2、如图,点A、B、C、D在⊙O上,∠ADC=∠BDC=60°.判断△ABC的形状,并说明理由.【课堂小结】1.圆周角定义: ,并且的角叫圆周角.2.圆周角定理:一条弧所对的,等于所对的一半。
24.1.4圆周角--新人教版初中数学导学案九年级上册《圆》【一流精品】
课题:24.1.4 圆周角【学习目标】1.理解圆周角的定义,掌握圆周角定理.2.初步运用圆周角定理解决相关问题.3.掌握圆内接四边形的概念及其性质,并能灵活运用.【学习重难点】圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征;圆内接四边形的概念及其性质.运用数学分类思想证明圆周角的定理.【课前预习案】什么叫圆心角?在图1中画出所对的圆心角,能画几个?圆周角定义:1.定义:________________________________________叫圆周角.辨析:图中的角是圆周角的是_____________.2.在图1中画出弧所对的圆周角.能画几个?【课中探究案】探究1:1.根据圆周角与圆心的位置关系可将圆周角分为几类?在下图中画出所对的圆周角.2.量出所对的圆周角和∠AOB的度数你会发现: .3.尝试证明你的发现.归纳:圆周角定理: .在图中,由圆周角定理可知:∠ADB ∠ACB= .思考:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?探究2:在图中画出直径AB所对的圆周角,你有什么发现?归纳:圆周角定理的推论:探究3:如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做,这个圆叫做这个 .问题1:如图,四边形ABCD叫做☉O的内接四边形,而☉O叫做四边形ABCD的外接圆,猜想:∠A与∠C,∠B与∠D之间的关系为 . 由此得出圆内接四边形的性质: .典例精析1.如图,点A、B、C、D在同一个圆上,四边形ABCD的对角线把4个内角分成8个角,这些角中哪些是相等的角?2.四边形ABCD是☉O的内接四边形,∠A与∠C是一对对角,且∠A=110°,∠B=80°,则∠C=,∠D=.3.☉O的内接四边形ABCD中,∠A,∠C是一对对角,∠A∶∠B∶∠C=1∶2∶3,则∠D=.【课末达标案】1.如图1,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B= 度.2.如图2,AB是半圆的直径,∠BAC=20°,D是的中点,则∠DAC的度数是.3.如图3,△ABC内接于⊙O,若⊙O的半径为4,∠A=60°,则BC的长为.图1 图2 图34.如图4,AB、AC是⊙O的弦,OE⊥AB、OF⊥AC,垂足分别为E、F.如果∠EOF=100°,∠C=60°,那么∠FEA= .5.如图5,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AE.若∠D=72°,则∠BAE= °.图5图 46.如图,AB是⊙O的直径,C、D两点在⊙O上,若∠C=45°.(1)求∠ABD的度数;(2)若∠CDB=30°,BC=3,求⊙O的半径.【课后拓展案】基础达标:1.如图1,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A.75° B.70° C.65° D.35°图1 图2 图3 图4 图5 图62.如图2,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A.40° B.30° C.45° D.50°3.如图3,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25° B.27.5°C.30° D.35°4.如图4,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为() A.100° B.110°C.120°D.130°5.如图5,A,B,C为⊙O上三点,∠AOB=110°,则∠ACB等于()A.55°B.110°C.125°D.140°6.如图6,点A、B、C、D都在⊙O上,且四边形OABC是平行四边形,则∠D的度数为()A.45°B.60°C.75°D.不能确定应用提高:7.已知在⊙O 上依次有A、B、C三点,∠AOB=100°,则∠ACB的度数是()A.50°B.130°C.50°或l30°D.100°8.如图,△ABC内接于⊙O,若∠BAC=30°,BC=3,则⊙O的半径为.9.如图,在△ABC中,AB=AC=13,BC=10,以AC为直径画⊙O交BC于点D,交AB于点E,连接CE.(1)求证:BD=CD;(2)求CE的长.思维拓展:10.如图,△ABC内接于⊙O,AD交BC于点D,点P是的中点,求证:AP平分∠OAD.11如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.。
最新人教版九年级数学上册《圆》全单元导学案
最新人教版九年级数学上册《圆》全单元导学案最新人教版九年级数学上册《圆》导学案研究目标:1.理解圆的概念;2.掌握解答基本的圆题型。
研究重点:1.圆的概念。
研究难点:1.解答基本的圆题型。
教学流程:导课】前段时间我们研究了图形的旋转,图形的旋转创造了生活中的许多美好的事物!我们知道:一条线段至少旋转360°能和自身重合;一个等边三角形至少旋转120°能和自身重合;一个正方形至少旋转90°能和自身重合;思考:圆绕其圆心旋转任何度数都能和自身重合吗?圆是生活中常见的图形,许多物体都给我们以圆的形象,比如:摩天轮、硬币、呼啦圈、方向盘、车轮、月亮、太阳等等。
那么,圆的基本要素是圆心和半径,其中圆心确定了圆的位置,半径确定了圆的大小。
当点A绕点B旋转一周时,点A的运动轨迹其实就是一个圆,其中点B是圆心。
阅读质疑自主探究】自学要求:阅读课本P78-P79圆的定义:1.在同一平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆。
2.到定点O的距离等于定长的所有的点组成的图形。
(含义也是判断点在圆上的方法)表示方法:“⊙O”读作“圆O”。
构成元素:1.圆心、半径(直径)。
2.弦:连接圆上任意两点的线段叫做弦。
直径是经过圆心的弦,是圆中最长的弦。
3.优弧:大于半圆的弧;半圆弧:直径分成的两条弧;劣弧:小于半圆的弧。
如图:优弧ABC记作,半圆弧AB记作,劣弧AC记作。
4.同心圆:圆心相同,半径不同的两圆。
5.等圆:能够重合的两个圆。
6.等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
多元互动合作探究】1.如图,在圆O中,AC、BD为直径,求证:XXX。
2.如图,OA、OB为圆O的半径,C、D为OA、OB上两点,且AC=BD。
求证:AD=BC。
训练检测目标探究】1.下列说法正确的是:①直径是弦;②弦是直径;③半径是弦;④半圆是弧,但弧不一定是半圆;⑤半径相等的两个半圆是等弧;⑥长度相等的两条弧是等弧;⑦等弧的长度相等。
圆周角导学案(学生用)
圆周角(1)导学案绵竹市孝德中学:王伦平【学习目标】:1、 理解圆周角的概念,能运用概念进行辩识圆周角。
2、 探索圆周角与圆心角及其所对弧的关系。
3、 经历探索过程,体会分类、化归和完全归纳等数学思想方法。
4、 会运用圆周角定理解决简单问题。
【学习重点】:圆周角概念及圆周角定理.【学习难点】:圆周角定理的探索过程。
【学习过程】专题一:课前预习: 1、观察右图1.1右图中∠C,∠D 和∠E 是圆心角吗?它们是____________.1.2右图中∠C,∠D 和∠E 有什么共同特点?2、★圆周角定义:阅读教材P84内容,回答下列问题 2.1什么是圆周角?2.2你觉得识别圆周角要把握哪些件: ; 。
2.3运用圆周角的定义,判断下列各图中,各图中的角是不是圆周角?并说出判断理由.......(1)(2)(3)(4)(5)专题二:新知探究 3. ★探究圆周角定理 3.1 :量一量①还能再画一个与∠C 具有共同特点的角吗?观察演示(一): 观察»AB所对的圆周角有多少个? 结论:在同一个圆中,同弧所对的圆周角有_____个。
②同学乙、丙、丁看到的海洋范围(视角)一样吗?观察演示(二):观察»AB所对的圆周角的大小关系 结论:在同一个圆中,同弧所对的圆周角________。
③乙、丙、丁的视角∠C 、∠D 、∠E 与同学甲的视角∠AOB 又有什么关系?观察演示(三):»AB所对的圆周角与»AB 所对的圆心角的大小有什么关系? 结论:同弧所对的圆周角等于这条弧所对的圆心角的_______.④根据度量结果和观察结论猜想::在同圆或等圆中,同弧或等弧所对的圆周角_____ ,并且都等于这条弧所对的圆心角的__________。
玻璃丁乙玻璃丁乙3.2 定理证明已知:在⊙O 中,»BC所对的圆周角是∠A ,圆心角是∠BOC 求证:1= BOC 2A ∠∠观察演示(四):观察»AB所对圆心角的顶点O 与»AB 所对圆周角有几种不同的位置关系?Ⅰ:圆心在圆周角一边上时(图1) Ⅱ: 圆心在圆周角内部时(图2) 证明:如图1 证明:如图2_________21_____2O OA OCA BOC A BOC AA =∴∠=∠=∠+∴∠=∠∠=e Q Q 在中即: Ⅲ:圆心在圆周角外部时(图3)定理辩析:圆周角定理使用条件是什么?结论有几个?它们是?圆周角定理的三种语言:(1)文字语言:(在上面)(2)图形语言(如右图) (3)符号语言图11____=____(1)21____=____(2)22_______I ∠∠∠∠∠∠e 连接AO 并延长交O于点D 由证明易得:1由(1)___()得:_____=21____=____(1)21____=____(2)22_______I ∠∠∠∠∠∠e 连接AO 并延长交O 于点D 由证明易得:1由(1)___()得:_____=2»______O AB ∴∠=∠e Q 在中»1______21___2O ABD AOB∴∠=∠∠=∠e Q 在中图2图33.3 及时反溃1、如图,点A 、B 、C 、D 在⊙O 上,若∠C=60°,则∠D=____,∠O=____.2、如图,点A 、B 、C 、D 在同一个圆上,四边形的对角线把4个内角分成8个角,这些角中哪些是相等的角?3.4 例题讲解:例1:在⊙O 中, AB 是⊙O 的一条弦,圆周角∠CBD=30° ,∠BDC=20°, 求∠A想一想:(1)在圆周角定理中,能把 “同弧”能否改成“同弦”吗?为什么?专题三:学习小结请你选择下面一个或几个关键词谈本节课的体会:知识、方法、思想、收获、喜悦、困惑、成功……作业:必做:①87页 87页 习题21﹒4 第 4题、第5题 ②完成例1的解题过程;③选做:88页 第12题第2题图专题四:尝试练习1、如图1,AB 是⊙O 的直径,»»BCBD ,∠A=30°,则∠BOD=_______。
九年级数学上册 24.1.4 圆周角导学案 新人教版(1)(2021学年)
九年级数学上册24.1.4圆周角导学案(新版)新人教版(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册24.1.4 圆周角导学案(新版)新人教版(1))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册24.1.4 圆周角导学案(新版)新人教版(1)的全部内容。
24.1.4 圆周角预习案一、预习目标及范围:1。
理解圆周角的概念,会叙述并证明圆周角定理.2.理解圆周角与圆心角的关系并能运用圆周角定理及推论解决简单的几何问题。
3.了解圆周角的分类,会推理验证“圆周角与圆心角的关系”。
预习范围:P85—88二、预习要点1、圆周角定义: 叫圆周角.特征:①角的顶点在;②角的两边都。
2、圆心角与所对的弧的关系:3、圆周角与所对的弧的关系:4、同弧所对的圆心角与圆周角的关系:圆周角定理:一条弧所对的圆周角等于的一半.三、预习检测1。
如图,点A、B、C、D在☉O上,点A与点D在点B、C所在直线的同侧,∠BAC=35º.(1)∠BOC= º, 理由是;(2)∠BDC= º,理由是2.四边形ABCD是⊙O的内接四边形,且∠A=110°,∠B=80°,则∠C= ,∠D= .3.⊙O的内接四边形ABCD中,∠A∶∠B∶∠C=1∶2∶3,则∠D= .探究案一、合作探究活动内容1:活动1:小组合作探究1:圆周角的定义定义:叫做圆周角判一判:下列各图中的∠BAC是否为圆周角并简述理由。
探究2;圆周角定理及其推论如图,连接BO,CO,得圆心角∠BOC.试猜想∠BAC与∠BOC存在怎样的数量关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆》第一节圆周角导学案1
主编人:主审人:
班级:学号:姓名:
学习目标:
【知识与技能】
理解圆周角的概念及其相关性质,并能运用相关性质解决有关问题
【过程与方法】
经历探索圆周角的有关性质的过程,体会分类、转化等数学思想方法,学会数学地思考问题
【情感、态度与价值观】
在探求新知的过程中学会合作、交流体会数学中的分类转化等方法。
【重点】
圆周角及圆周角定理
【难点】
圆周角定理的应用学习过程
一、自主学习
(一)复习巩固
1、叫圆心角。
2、在同圆或等圆中,圆心角的度数等于它所对的度数。
(二)自主探究
1、如图,点A在⊙O外,点B1、B
2、B3在⊙O上,点C在⊙O内,度量∠A、∠B1、
∠B2、∠B3 、∠C的大小,你能发现什么?
∠B1、∠B2、∠B3有什么共同的特征?_________________。
归纳得出结论,顶点在_______,并且两边________________________的角叫做圆周角。
强调条件:①_______________________,②___________________________。
识别图形:判断下列各图中的角是否是圆周角?并说明理由.
2、如图,AB为⊙O的直径,∠BOC、∠BAC
分别是BC所对的圆心角、圆周角,求出图(1)、(2)、(3)中∠BAC的度数.
通过计算发现:∠BAC=__∠BOC.试证明这个结论:
3、如图,BC所对的圆心角有多少个?BC所对的圆周角有多少个?请在图中画出BC所对的圆心
角和圆周角,并与同学们交流。
4、思考与讨论(1)观察上图,在画出的无数个圆周角中,这些圆周角与圆心O有几种位置(2)设所对的圆周角为∠BAC,除了圆心O在∠BAC的一边上外,圆心O与∠BAC还有哪几种位置关系?,对于这几种位置关系,结论∠BAC=∠BOC还成立吗?试证明之.
通过上述讨论总结归纳出圆周角定理:
在同圆或等圆中,同弧或等弧所对的相等,都等于这条弧所对的.
表达式:
在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定.
2
1
表达式:
(三)、归纳总结:
1.圆周角与圆心角的相同点是,不同点是
2.一条弧所对的圆周角与圆心角有三种位置关系,即圆心角的顶点在圆周角的“”,“”,“”;
(四)自我尝试:
1、如图,点A、B、C、D在⊙O上,点A与点D在点B、C所在直线的同侧,∠BAC=350
(1)∠BDC=_______°,理由是_______________________.
(2)∠BOC=_______°,理由是_______________________.
2、如图,点A、B、C在⊙O上,
(1) 若∠BAC=60°,求∠BOC=______°;(2) 若∠AOB=90°,求∠ACB=______°.
3、如图,点A、B、C在⊙O上,点D在圆外,CD、BD分别交⊙O于点E、F,比较∠BAC与
∠BDC的大小,并说明理由。
二、教师点拔
圆周角的性质:①一条弧所对的圆周角等于该弧所对的圆心角的。
对于这一结论要掌握同一条弧所对的圆周角与圆心角的三种位置关系,即圆心角的顶点在圆周角的“”、“”、“”;②在同一个圆中,同弧或等弧所对的圆周角,都等于这条弧所对的圆心角的;在同圆或等圆中,相等的圆周角所对的弧相等。
该结论是证明相等或相等的常用方法:“由角找弧”“由弧找角”;③半圆(或直径)所对的圆周角是;90°的圆周角所对的弦是,这一结论:一是用来确定圆心,二是为在圆中确定直角、构成垂直关系创造条件,并为在圆中证明直径提供了理论依据。
三、课堂检测
1、如图,点A、B、C在⊙O上,点D在⊙O内,点A与点D在点B、C所在直线的同侧,
比较∠BAC与∠BDC的大小,并说明理由.
2、如图,AC 是⊙O 的直径,BD 是⊙O 的弦,EC ∥AB ,交⊙O 于E 。
图中哪些与∠BOC 相等?
请分别把它们表示出来.
3、如图,在⊙O 中,弦AB 、CD 相交于点E ,∠BAC=40°,∠AED=75°,求∠ABD 的度数.
四、课外训练
1、如图,△ABC 的3个顶点都在⊙O 上,∠ACB=40°,则∠AOB=_______,∠OAB=_____。
2、如图,点A 、B 、C 、D 在同一个圆上,四边形ABCD 的对角线把4个内角分成8个角,
在这8个角中,有几对相等的角?请把它们分别表示
3
、如图,AB 是⊙O 的直径,∠BOC=120°,CD ⊥AB ,则∠ABD =___________。
4、如图,△ABC 的3个顶点都在⊙O 上,∠BAC 的平分线交BC 于点D ,交⊙O 于点E ,则图中相等的圆周角有______________________ 。
5、如图,点A 、B 、C 、D 在⊙O 上,∠ADC=∠BDC=60°.判断△ABC 的形状,并说明理由.
2
1。