九年级数学圆周角1

合集下载

人教版九年级数学上册《圆周角》优秀PPT课件

人教版九年级数学上册《圆周角》优秀PPT课件
∠ ABC = ∠ADC=∠ AEC
课堂练习
1.如图,⊙O是 ABC的外接圆,连接OA,OB,
∠ OBA=50°,求∠C的度数.
解:∵OA=OB
∴∠ OBA=∠ OAB=50° ∴∠ AOB=80°
由圆周角定理可知:
∠ C= 12∠AOB=40°
C O
A
B
课堂练习
2.试找出下图中所有相等的圆周角。
所对的圆心角的一半.
D
A
C

E
B
小试牛刀
1.如图,在⊙O中,∠BOC=60°, 求∠A、∠D的度数.
A
D
O
解:由圆周角定理可知:
∠A=
12∠BOC=
1 2
×60°=
30°
∠D= 12∠BOC= 12×60°= 30°
B
C
发现:同弧所对的圆周角相等
小试牛刀
2.如图,若 CD=EF ,∠A与∠B相等吗?
练一练:下列各图中的∠BAC是否为圆周角并简
述理由.
B O·
B
C
A

A
A
C O·
√ C (1) A
顶点(不2)在圆上 B
B 边(AC3没)有和圆相交

A O·
CC
·O
B
C
顶点(不4在)圆上
√ (5)
A B
√ (6)
探索新知
探究2:在⊙O上任取一条BC,画出BC所对的一 个圆周角∠BAC和圆心角∠BOC,用量角器测量
他所处的位置B对球门AC的张角∠ABC有关).
A
A
E B
C D
E
AC所对的角ห้องสมุดไป่ตู้ ABC 、∠ADC、

九年级圆周角知识点

九年级圆周角知识点

九年级圆周角知识点圆周角是指以圆心为顶点,两边分别为弧所对应的角。

在九年级数学学习中,圆周角是一个重要的概念,掌握圆周角的知识对于理解和解决相关问题至关重要。

本文将详细介绍九年级圆周角的相关知识点,帮助同学们更好地理解和应用。

1. 圆周角的定义圆周角是指以圆心为顶点,两边分别为弧所对应的角。

圆周角的度数等于所对应的弧度数,并且圆周角满足角度的加法定理,即两个相邻的圆周角的度数之和等于360度(或2π弧度)。

2. 圆周角的性质- 如果两个角的顶点在同一个圆上,并且两个角的两边分别与同一个弧相交,则这两个角互为圆周角,它们的度数相等。

- 如果两个角的顶点在同一个圆上,并且两个角的一边分别与同一个弦相交,则这两个角互为补角,它们的度数之和等于180度。

- 如果两个角的顶点在同一个圆上,并且两个角的一个角是直角,则另一个角也是直角。

3. 判断圆周角的大小对于给定的圆周角,可以通过以下方法来判断它的大小:- 将角的度数与360度(或2π弧度)进行比较,如果小于360度(或2π弧度),则圆周角是锐角;如果等于360度(或2π弧度),则圆周角是整圆角;如果大于360度(或2π弧度),则圆周角是钝角。

4. 圆周角的应用圆周角的概念在解决与圆相关的问题中发挥着重要作用,例如:- 弧长与角度之间的关系:圆周角的度数与所对应的弧长之间存在着等量关系,即弧长等于圆周角的弧度数乘以半径长度;- 扇形面积的计算:扇形是由圆心、两个半径所组成的图形,扇形的面积等于所对应的圆周角所占据的圆的面积的比例乘以整个圆的面积;- 弧度制的应用:弧度制是一种角度度量单位,它与度数之间存在着特定的换算关系,在解决复杂问题时非常有用。

总结:九年级的圆周角知识点对于数学学习至关重要,通过理解圆周角的定义、性质和判断方法,我们可以更好地解决与圆相关的问题,并灵活运用到实际生活中。

在学习过程中,我们还要注意弧长和扇形面积的计算,以及掌握弧度制的应用。

人教版九年级数学上册24.1.4圆周角第1课时圆周角定理及推论说课稿

人教版九年级数学上册24.1.4圆周角第1课时圆周角定理及推论说课稿
2.生生互动:组织学生进行小组讨论,让他们相互分享解题思路和方法,提高合作能力。此外,设计一些小组竞赛活动,激发学生的学习积极性,培养他们的团队精神。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我采用以下方式导入新课:
1.创设情境:通过展示一幅美丽的圆形喷泉图片,引导学生观察并思考:为什么喷泉的水流会呈现出圆形?这与我们今天要学习的圆周角有什么关系?
这些媒体资源在教学中的作用是:直观展示几何图形,降低学生的认知难度;激发学生的学习兴趣,提高他们的学习积极性;丰富教学手段,提高教学效果。
(三)互动方式
为促进学生的参与和合作,我计划设计以下师生互动和生生互动环节:
1.师生互动:在课堂提问环节,我将鼓励学生积极发言,及时给予肯定和鼓励,营造轻松、愉快的课堂氛围。同时,针对学生的疑问,给予耐心解答,引导他们深入思考。
在整个课程体系中,圆周角定理及推论处于几何模块的圆部分,是圆的基本性质和定理之一。在此之前,学生已经学习了圆的基本概念、圆的对称性以及圆的弦、弧等相关知识。本节课的主要知识点包括:圆周角的定义、圆周角定理及推论、圆内接四边形的性质等。
(二)教学目标
1.知识与技能目标:
(1)理解圆周角的概念,掌握圆周角定理及其推论。
在教学过程中,我预见到以下问题或挑战:
1.学生在理解圆周角定理的证明过程时可能存在困难。
2.部分学生对几何图形的空间想象能力较弱,影响解题效果。
3.课堂时间有限,可能无法充分满足所有学生的学习需求。
为应对这些问题,我将在课堂上增加师生互动,及时解答学生的疑问,并通过实际操作活动,培养学生的空间想象能力。课后,我将通过作业完成情况、课堂表现和学生反馈来评估教学效果。
4.数学游戏:设计一些与圆周角相关的数学游戏,让学生在游戏中学习,提高他们的学习积极性。

人教版九年级数学上章节知识点深度解析 圆周角 第1课时 圆周角定理及推论

人教版九年级数学上章节知识点深度解析 圆周角 第1课时 圆周角定理及推论
AD = CB . 求证: AM = CM .
证明:由圆周角定理推出∠ A =∠ C ,∠ D =∠B ,
在△ ADM 和△ CBM 中,
∠=∠,
ቐ=,
∠=∠,
∴△ ADM ≌△ CBM (ASA).∴ AM = CM .
1
2
3
4
5
谢谢观看
Thank you for watching!

.

定理的 2.半圆(或直径)所对的圆周角是 直角
推论 90°的圆周角所对的弦是 直径 .


图例
90°直径ຫໍສະໝຸດ 圆周角内容图例
①在圆中,利用“直径所对的圆周角是直
解题
角”构造直角三角形解题.
策略
②一条弦所对的圆周角有两种情况:相等
或互补.
当堂检测
1. 如图,已知圆心角∠ BOC =78°,则圆周角∠ BAC
的度数是( C

A. 156°
B. 78°
C. 39°
D. 12°
第1题图
1
2
3
4
5
2. 如图, AB 是圆 O 的直径,点 C 在圆 O 上,若∠ A =
30°,则∠ B 的度数为( B
A. 75°
B. 60°
C. 45°
D. 15°

第2题图
1
2
3
4
5
3. 如图, AB , BC 是☉ O 的弦, AB =3,∠ ACB =
30°,则☉ O 的半径等于(
A. 1.5
B. 3
C. 4.5
D. 6

B
第3题图
1
2
3

[初中++数学]圆周角++课件++华东师大版数学九年级下册

[初中++数学]圆周角++课件++华东师大版数学九年级下册
上的高,
又 :AB=AC,. ∴△ABC 是等腰三角形, . 点D 是BC 的中点
(2)△BECco△ADC,
[分析](2)利用“同弧所对的圆周角
相等”证得∠CBE=∠CAD, 再由公
共角∠C,即可得证;
(2):∠CBE与∠CAD都是DE所对 的圆周角,
.∴∠CBE=∠CAD.
又:∠C=∠C,.:△BEC 一△ADC.
B.5
C.√3
D.2√3
图2
图3
(3)如图3,点A、B、C、D 在 ○O 上,CB=CD,∠CAD=30°,
∠ACD=50°, 则∠ADB= 70
跟踪训练
1.(2024·宜宾)如图,AB是⊙O的直径,若∠CDB=60°,则 ∠ABC的度数等于(A )
A.30°
B.45°
C.60°
D.90°
2.如图,AB 为⊙O 的直径,点C、D 在⊙O 上,且AC=BC=2, ∠BCD=30°, 则BD 的长为(C)
(3)BC²=2ABCE.
[分析](3)欲证BC²=2AB ·CE, 可由△BECc△ADC, 得到
CD·BC=AC·CE, 再利用点D 是BC的中点及AB=AC 即可转
化得证△BEC-

即CD.BC=ACCE.
点 D 是BC 的 中 点 ,
又:AB=AC,
E,
. ∴BC²=2AB.CE.
[方法总结]运用同弧所对的圆周角相等是圆中证明角 相等常用到的方法,再结合相似三角形、勾股定理等知 识解决问题,
跟踪训练
4.如图,AD 平分∠BAC,A、B、C、 D 在同一圆 上,∠ABC 的平分线交AD 于点E.
(1)求证:DE=DB;
(1)证明::AD 平分∠BAC,BE 平分∠ABC,B ∠ABE=∠CBE,∠BAE=∠CAD,

九年级数学《圆周角》课件

九年级数学《圆周角》课件

方法一:
C
A
解:连接BC ∵AB为直径
D O
∴∠BCA=90°
(直径所对的圆周角为直角)
B
∴∠BCD+∠DCA=90°,∠ACD=15°
∴∠BCD=90°-15=75°
∴∠BAD=∠BCD=75°(同弧所对的圆周角相
等)
4.如图,AB是⊙O的直径,∠C=15°,求 ∠BAD的度数。
C
A
方法二:
解:连接OD
并且两边都和圆相交的角
A
叫圆周角.
特征:
① 角的顶点在圆上.
② 角的两边都与圆相交. B
.
O C
根据圆心与圆周角的位置关系
归纳同学们的意见我们得到以下几种情况。
A
C
A C
A C
O
B ①
O
O
B
B


圆周角和圆心角的关系
▪ 1.首先考虑一种特殊情况:
▪ 当圆心(O)在圆周角(∠ABC)的一边(BC)上时,圆周角
情境导入
• 当球员在B,D,E处射门时, 他所处的位置对球门AC 分别形成三个张角∠ABC, ∠ADC,∠AEC.你能观察 到这三个角有什么共同 特征吗?
A
E B
C D
1.顶点在圆上 2.两边和圆相交
A
E
●O
C
B
D
1、了解圆周角的概念。 2、会推导证明圆周角定理并会灵活运用。 3、灵活运用圆周角定理推论解决问题。
老师提示:能否转化为1的情况? 过点B作直径BD.由1可得:
AD C
●O
∠ABD
=
1∠AOD,∠CBD
2
=1 ∠COD,

新人教版九年级数学上册圆周角课件PPT

新人教版九年级数学上册圆周角课件PPT
上任意一点(除点A、B),那么, ∠ACB 就是直径AB 所对的圆周角. 想想看,∠ACB 会是怎么样的角?
为什么呢?
新人教版九年级数学上册24.1.4圆周 角第1课 时 课件
新人教版九年级数学上册24.1.4圆周 角第1课 时 课件
证明:
因为OA=OB=OC,所以△AOC、 △BOC 都是等腰三角形,所以 ∠OAC=∠OCA,∠OBC=∠OCB. 又∠OAC+∠OBC+∠ACB=180°, 所以∠ACB=∠OCA+∠OCB=90°. 因此,不管点C在⊙O上何处(除点A、 B),∠ACB总等于90°,
结论: 半圆或直径所对的圆周角是90°(直角),反
过来也是成立的,90°的圆周角所对的弦是直径。
新人教版九年级数学上册24.1.4圆周 角第1课 时 课件
例题赏析:
例1 如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB平
分线交⊙O于D,求BC、AD、BD的长.
解:∵AB是直径,
∴ ∠ACB= ∠ADB=90°.
一、复习检测
1. 什么叫圆心角? __________________________________ __________.
2. 你能找出下面图形中的圆心角吗? (口述判断的理由)
探究一、圆周角的定义
顶点在圆心的角叫圆心角。
你能仿照圆心角的定义,给下图中象∠ACB 这样的角下个定义吗?
顶点在圆上,并且两边都和 圆相交的角叫做圆周角.
B
C
即 A 1 BOC 2
一条弧所对的圆周角等于它所对的圆心角的一半.
新人教版九年级数学上册24.1.4圆周 角第1课 时 课件
新人教版九年级数学上册24.1.4圆周 角第1课 时 课件
(2)在圆周角的内部.

3.5 圆周角第1课时 圆周角(1) 浙教版数学九年级上册课件

3.5 圆周角第1课时 圆周角(1) 浙教版数学九年级上册课件

又∵△ABC是等腰三角形,
五 1. 如图,在直径为AB的半圆中,O为圆心,C,D为半圆上的 两点,∠COD=50°,则∠CAD=___2_5_°_.
2.使用曲尺检验工件的凹面,成半圆时为合格.如图所示的 三种情况中,哪种是合格的?哪种是不合格的?为什么?
解:第三种合格,第一种和第二种不合格. 因为半圆(或直径)所对的圆周角是直角,所以第三个凹面 为半圆.
D
反之,若∠ACB是直角,则∠AOB=_1_8_0_°_, 所以点A,O,B在一条直线上,AB是⊙O的__直__径___.
由此我们得到圆周角定理的一个推论:
半圆(或直径)所对的圆周角是直角. 90°的圆周角所对的弦是直径.
D

例1 如图,等腰三角形ABC的顶角∠BAC为50°,以腰AB 为直径作半圆,交BC于点D,交AC于点E.求弧BD,弧DE, 弧AE的度数. 解:连结BE,AD. ∵AB是圆的直径, ∴∠AEB=∠ADB=90°. ∵∠BAC=50°, ∴∠ABE=90°-∠BAC=90°-50°=40°.
3.5 圆周角
第1课时 圆周角(1)一源自认识圆周角,掌握圆周角定理和它的推论. 会用圆周角定理和它的推论进行简单的计算证明. 在证明圆周角定理的过程中体会分类讨论的思想.
二 如下图,你能找到圆心角吗?它具有什么样的特征?
O
O
O
O
O
(√1)
(2)
(3)
(4)
(5)
圆心角的顶点在圆心,两边与圆相交.
A
O
B
C
(2)当圆心O在∠BAC的内部时,如图, 连结AO并延长,交⊙O于点D.利用(1)的结果,有
A
O
BD
C
(3)当圆心O在∠BAC的外部时,如图, 连结AO并延长,交⊙O于点D.利用(1)的结果,有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

是 不是 不是 不是
不是
圆周角
顶点在圆周上,它的两边都和圆相交, 这样的角叫圆周角.
同弧所对的圆心角与圆周角
之间有怎样的关系呢?
C
O A
B
圆周角定理
一条弧所对的圆周角等于它所对的圆心角的一半
⌒ 已知: ∠BAC,∠BOC分别是BC所对的圆周角与圆心角
求证: ∠ABC = 1 ∠AOC.
2
A A
3 4
∠ EOD=64°,求∠ A的度数。


E C A B D O
九年级(上)第三章圆
教学目标: 理解圆周角的概念. 经历探索圆周角定理的过程. 掌握圆周角定理和它的推论. 会运用圆周角定理及其推论解决简单的几何问题. 教学重点:圆周角定理 教学难点:圆周角定理的证明要分三种情况讨论,有一定的难度. 教法:探索式,启发式,合作学习,直观法 学法:动手实验,合作学习
1、请说出圆心角的定义
C O A B
顶点在圆心的角叫圆心角。 2、如图,已知∠AOB=80°, ①求弧AB的度数; 80° ②延长AO交⊙O于点C,连结CB, 40° 求∠C的度数。
圆周角:顶点在圆上,并且两边都和 圆相交的角。
圆周角
顶点在圆周上,它的两边都和圆相交, 这样的角叫圆周角.
判别下列各图形中的角是不是圆周角,并说明理由。
C O. A D B
半径为R的圆中,有一弦分圆周成1:2两部分, 则弦所对的圆周角的度数是 。
1
O 2
1、圆周角定义。
2、圆周角定理及其定理应用。
①一条弧所对的圆周角等于它所对的圆 心角的一半 ②半圆(或直径)所对的圆周角是直角; 90°的圆周角所对的弦是直径。 ③圆内接四边形对角互补
想一想:
5.如图,⊙C经过原点,并与两坐标轴交于A,D 两点,已知∠OBA=30°,点D的坐标为(0,2), 求点A与圆心C的坐标
y D
.C
O
B
A
x
6.如图,AB是⊙O的直径,AB=AC, ∠BAC=50°,BC交⊙O于点D, ①求证:BD=CD ②求∠BOD的度数
B O A
D
C
思考题:如图,在⊙O中,DE=2BC,

圆内接四边形对角互补
A


B 四边形的四个顶点都在圆上,称四边形内接于圆, 这个四边形叫做圆的内接四边形
• 随堂练习2:
1、如图,A,B,C,D是⊙O上的四点,且 ∠BCD=100°,求∠BOD和∠BAD的大小
A O. B
100°
D
C
2.如图,AB是⊙O的直径,C是⊙O上的点, 22.5° 已知∠AOC=45°,则∠B=_______, 62.5° 90° ∠A=_________; ∠ACB=_______
O
B
.
C B
1
.O
2
D
C B
O
.
C
A
D
( 1)
( 2)
( 3)
圆周角定理
一条弧所对的圆周角等于它所对的圆 心角的一半
圆周角等于它所对弧的度数的一半 ⌒ ∵∠AOB和∠ACB是AB所对的圆心角和圆周角
C
1 ∴ ∠ACB= ∠AOB 2 m 1 ⌒ = AB 2
O A B
• 随堂练习1:
1、如图在⊙O中,已知∠AOB=70° 70 ° AB 度数是_______, 则 ⌒ 35 ° ∠ACB=__________
B O. D
100°
C O.
85°
A C
A
B
E
3.如图,四边形ABCD内接于⊙O , ∠A=85°,
∠D=100°,点E在AB的延长线上,求∠C, ∠CBE的度数.
4.⊙O中,圆心角∠AOB=56°,则弦AB所对 的圆周角等于( ) A.28 ° B.112 °
C.28 °或 152 °
D.124 °或56 °
A O
70°
.
C B
• P77
课内练习1,2
2.如图,BC是⊙O的直径,A是⊙O上任一点,
求∠BAC的度数. A B
E
A
O
F
C
B

O
C
3.如图,圆周角∠BAC =90º,弦BC经过圆心O吗?为什么?
推论1: 半圆(或直径)所对的圆周角是直角;
90°的圆周角所对的弦是直 求证:∠B+∠D=180º
相关文档
最新文档