北师大版数学八年级上册知识点复习提纲

合集下载

八年级上册北师大版数学概念复习提纲三四单元

八年级上册北师大版数学概念复习提纲三四单元

八年级上册北师大版数学概念复习提纲
第三单元位置与坐标
I.平面直角坐标系
I.在直角坐标系中,对于平面上的任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应。

II.关于x轴对称的两个点的坐标,横坐标相同,纵坐
标互为相反数。

II.关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。

第四单元函数
I.函数
I.一般,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x 的函数,其中x是自变量。

II.表示函数的方法有:列
表法,关系法和图像法。

III.对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a时的函数值。

III.一次函数的图象
I.在正比例函数y=kx 中,
当k>0时,y的值随着x 值的增大而减小;
当k<0时,y的值随着x 值的增大而减小。

II.一次函数Y=kx+b的
图象经过点(0,b).当k>0时,y的值随着x值得增大而增大;当x<0时,y 的值随着x值的增大而减小。

北师大版八年级上册数学知识点归纳总结

北师大版八年级上册数学知识点归纳总结

北师大版八年级上册数学知识点归纳总结一、整数1.整数的概念整数包括正整数、负整数和零,用于表示不同方向的数值,可以表示纯数量也可以表示位置;整数的计算规律包括加法、减法、乘法和除法,要注意正负数的运算规则和加减法规则;2.整数的比较整数大小的比较可以利用数轴进行表示,也可以通过大小比较的规则进行判断;二、分式1.分式的概念分式是含有分数的数值表达式,由分子和分母组成,分式中有约分和通分的概念;2.分式的加减法分式的加减法需要通分后进行计算,要注意计算过程中保持分母一致;3.分式的乘除法分式的乘法即将分子和分母分别相乘,分式的除法即将分子和分母倒置后相乘,也需要注意进行约分和化简;三、一元一次方程1.一元一次方程的概念一元一次方程是指只含有一个未知数,并且未知数的最高次幂为1的方程,通常可以用字母表示;2.一元一次方程的解法解一元一次方程的方法有加减消元法、倍加消元法和代入法,在解题中要注意整理方程和验证解;3.一元一次方程及其实际问题一元一次方程可以用来解决诸如商场打折、运动比赛、等时速运动等实际问题,需要根据实际情况建立方程并解决;四、图形的性质1.四边形的性质四边形包括矩形、正方形、菱形、平行四边形等,各种四边形有不同的性质和判定条件;2.三角形的性质三角形包括等边三角形、等腰三角形、直角三角形等,要掌握不同三角形的性质和判定条件;3.图形的面积和周长计算计算不同图形的周长和面积需要掌握相应的公式和计算方法,如正方形、矩形、三角形、圆等;五、比例与相似1.比例的概念比例是指两个量之间的对应关系,可以表示为两个有理数的比,也可以用分式、百分数等形式表示;2.比例的性质和应用比例的求解和应用涉及到多种问题,如物品的混合、速度、面积比等实际问题,需要掌握不同解法和计算方法;3.相似三角形的性质和判定相似三角形有相似的对应边和角,可以利用辅助线、相似三角形的相似定理等方法判定相似三角形;六、二次根式1.二次根式的概念与性质二次根式包括平方根和立方根,具有乘方和开方的性质,要注意二次根式的运算和化简;2.二次根式的运算二次根式的运算包括加减乘除、化简、估算等,需要掌握不同的运算方法和技巧;3.二次根式及其应用二次根式在实际中有广泛的应用,如水果的分割、建筑物的设计等,需要掌握相关的计算方法和应用技巧;七、平面直角坐标系1.平面直角坐标系的概念与性质平面直角坐标系是利用两条相互垂直的坐标轴来定位点的位置,可以表示平面上的任意点;2.点的坐标和点的对称点的坐标可以通过与坐标轴的交点来确定,点的对称包括关于x 轴、y轴和原点的对称,需要掌握坐标的计算和点的对称性质;3.直线的方程和性质直线的方程可以表示为一般式、斜截式、截距式、点斜式等形式,需要根据条件确定直线的方程和性质;八、统计与概率1.统计的概念与方法统计是指收集、整理和分析数据的方法,包括频数分布、频率分布、累计频率分布、频数直方图、频率多边形等;2.概率的概念与计算概率是指某一事件发生的可能性,可以通过实验、频率和古典概率进行计算,需要掌握计算概率的方法和技巧;以上就是北师大版八年级上册数学知识点的归纳总结,希望对你有所帮助。

北师大版八年级数学上册知识点梳理

北师大版八年级数学上册知识点梳理

第一章 三角形初步[定义与命题]定义:规定某一名称或术语的意义的句子。

命题:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题。

命题一般由条件和结论组成,可以改为“如果……”,“那么……”的形式。

正确的命题叫真命题,不正确的命题叫假命题。

基本事实:人们在长期反复实践中证明是正确的,不需要再加证明的命题。

定理:用逻辑的方法判断为正确并作为推理的根据的真命题。

注意:基本事实和定理一定是真命题。

[证明]在一个特定的公理系统中,根据一定的规则或标准,由公理和定理推导出某些命题的过程。

[三角形]由三条不在同一直线上的线段首尾顺次相接组成的图形叫做三角形 [三角形按边分类]三角形()⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形底边和腰不相等的等腰三角形等腰三角形等边三角形正三角形[三角形按内角分类]三角形 锐角三角形:三个内角都是锐角直角三角形:有一个内角是直角 钝角三角形:有一个内角是钝角 [三角形的性质]三角形任意两边之和大于第三边,任意两边之差小于第三边。

三角形三内角和等于180°。

三角形的一个外角等于与它不相邻的的两个内角之和。

[三角形的三种线]顶角的角平分线:三条,交于一点 三角形的中线:三条,交于一点 三角形的高线:三条,交于一点。

思考:锐角、直角、钝角三角形高线的交点分别在什么位置[全等形]能够完全重合的两个图形叫做全等形. [全等三角形]能够完全重合的两个三角形叫做全等三角形.重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角. [全等三角形的性质]全等三角形的对应边相等,全等三角形的对应角相等。

还有其它推出来的性质:全等三角形的周长相等、面积相等。

全等三角形的对应边上的对应中线、角平分线、高线分别相等。

[三角形全等的证明]边边边:三边对应相等的两个三角形全等.(SSS)边角边:两边和它们的夹角对应相等的两个三角形全等.(SAS)角边角:两角和它们的夹边对应相等的两个三角形全等.(ASA)角的内部到角的两边的距离相等的点在角的平分线上。

八年级上册数学北师大版知识点总结

八年级上册数学北师大版知识点总结

第一章勾股定理1. 勾股定理:直角三角形两直角边的平方和等于斜边的平方。

如果直角三角形的两直角边长分别为\(a\),\(b\),斜边长为\(c\),那么\(a^2 + b^2 = c^2\)。

2. 勾股定理的逆定理:如果三角形的三边长\(a\),\(b\),\(c\)满足\(a^2 + b^2 = c^2\),那么这个三角形是直角三角形。

第二章实数1. 无理数:无限不循环小数叫做无理数。

2. 平方根:如果一个数的平方等于\(a\),那么这个数叫做\(a\)的平方根。

一个正数有两个平方根,它们互为相反数;\(0\)的平方根是\(0\);负数没有平方根。

3. 算术平方根:正数\(a\)的正的平方根叫做\(a\)的算术平方根,记作\(\sqrt{a}\)。

4. 立方根:如果一个数的立方等于\(a\),那么这个数叫做\(a\)的立方根。

正数的立方根是正数,负数的立方根是负数,\(0\)的立方根是\(0\)。

第三章位置与坐标1. 在平面内,确定物体的位置一般需要两个数据。

2. 平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

水平的数轴称为\(x\)轴或横轴,竖直的数轴称为\(y\)轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

3. 点的坐标:对于平面内任意一点\(P\),过点\(P\)分别向\(x\)轴、\(y\)轴作垂线,垂足在\(x\)轴、\(y\)轴上对应的数\(a\),\(b\)分别叫做点\(P\)的横坐标、纵坐标,有序数对\((a,b)\)叫做点\(P\)的坐标。

4. 各象限内点的坐标的特征:点\(P(x,y)\)在第一象限:\(x>0\),\(y>0\);点\(P(x,y)\)在第二象限:\(x0\),\(y>0\);点\(P(x,y)\)在第三象限:\(x0\),\(y0\);点\(P(x,y)\)在第四象限:\(x>0\),\(y0\)。

北师大版八年级上册数学提纲

北师大版八年级上册数学提纲

北师大版八年级上册数学提纲数学毫无疑问是科学的基础,想要学好数学也是有一定难度的,你是不是需要一份数学提纲呢?下面小编给大家分享北师大版八年级上册数学提纲,希望能够帮助大家,欢迎阅读!北师大版八年级上册数学提纲知识点1 一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.知识点2 函数的图象由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。

.不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.知识点3一次函数y=kx+b(k,b为常数,k≠0)的性质(1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;②k﹤O时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②如图所示,当k>0,b③如图所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点4 正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点5 点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点6 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点7 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点8 用待定系数法确定一次函数表达式一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.思想方法小结 (1)函数方法.(2)数形结合法.知识规律小结 (1)常数k,b对直线y=kx+b(k≠0)位置的影响.①当b>0时,直线与y轴的正半轴相交;当b=0时,直线经过原点;当b﹤0时,直线与y轴的负半轴相交.②当k,b异号时,直线与x轴正半轴相交;当b=0时,直线经过原点;当k,b同号时,直线与x轴负半轴相交.提高数学成绩的方法不论学什么学科,课前预习还是有必要的,因为课前预习可以让你大概了解一下老师下一节课上什么东西,我哪里不会,上课时有针对性的解决。

新版北师大版八年级数学上册知识点全面总结

新版北师大版八年级数学上册知识点全面总结

新版北师大版八年级数学上册知识点全面总结第一章 勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即222a b c +=。

2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。

3.勾股定理逆定理:如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形。

满足222a b c +=的三个正整数称为勾股数。

常见勾股数:(3、4、5)(6、8、10)(5、12、13)(8、15、17)第二章 实数1.平方根和算术平方根的概念及其性质:(1)概念:如果2x a =,那么x 是a的平方根,记作:a(2)性质:①当a ≥00;当a=aa =。

2.立方根的概念及其性质:(1)概念:若3a ,那么x是a(2a =;②3a = 3.实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。

无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。

4.与实数有关的概念: 在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。

每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。

因此,数轴正好可以被实数填满。

5 (a ≥0,b ≥0) a ≥0,b >0)。

第三章 图形的平移与旋转1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。

2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

这点定点称为旋转中心,转动的角称为旋转角。

旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。

北师大八年级数学上册总复习(知识点+例题)

北师大版八年级数学上册知识点及典型习题讲解目录《勾股定理》全章复习与巩固 (2)《实数和二次根式》全章复习与巩固 (8)《平面直角坐标系》全章复习与巩固 (16)《平面直角坐标系》全章复习与巩固 (24)《二元一次方程组》 (32)《平行线的证明》全章复习与巩固 (41)《勾股定理》全章复习与巩固要点一、勾股定理 1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.(即:) 2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是: (1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题; (3)解决与勾股定理有关的面积计算; (4)勾股定理在实际生活中的应用. 要点二、勾股定理的逆定理 1.勾股定理的逆定理如果三角形的三边长,满足,那么这个三角形是直角三角形. 要点诠释:应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤: (1)首先确定最大边,不妨设最大边长为; (2)验证:与是否具有相等关系:若,则△ABC 是以∠C 为90°的直角三角形; 若时,△ABC 是锐角三角形; 若时,△ABC 是钝角三角形. 2.勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形. 要点诠释:a b 、c 222a b c +=a b c 、、222a b c +=c 22a b +2c 222a b c +=222a b c +>222a b c +<222x y z +=x y z 、、知识点常见的勾股数:①3、4、5;②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果()是勾股数,当t为正整数时,以为三角形的三边长,此三角形必为直角三角形. 观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为,且,那么存在成立.(例如④中存在=24+25、=40+41等)要点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.类型一、勾股定理及逆定理的应用例1、如图所示,等腰直角△ABC中,∠ACB=90°,E、F为AB上两点(E左F右),且∠ECF=45°,求证:.举一反三:a b c、、at bt ct、、a b c、、a b c<<2a b c=+27 29222AE BF EF+=典型例题【变式】已知凸四边形ABCD 中,∠ABC =30°,∠ADC =60°,AD =DC ,求证:.例2、如图,在△ABC 中,∠ACB=90°,AC=BC ,P 是△ABC 内的一点,且PB=1,PC=2,PA=3,求∠BPC 的度数.类型二、勾股定理及逆定理的综合应用222BD AB BC =+例3、如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.例4、如图:正方形ABCD中,E是DC中点,F是EC中点.求证:∠BAF=2∠EAD.举一反三:【变式】如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A开始沿边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,问过3秒时,△BPQ 的面积为多少?类型三、勾股定理的实际应用例5、如图所示,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC=400米,BD=200米,CD =800米,牧童从A处把牛牵到河边饮水后再回家.试问在何处饮水,所走路程最短?最短路程是多少?举一反三:【变式】如图所示,正方形ABCD的AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP最短.求EP+BP的最小值.例6、台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.如图台风中心在我国台湾海峡的B处,在沿海城市福州A的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)该城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?《实数和二次根式》全章复习与巩固要点一、平方根和立方根 类型 项目平方根立方根 被开方数 非负数任意实数符号表示性质一个正数有两个平方根,且互为相反数; 零的平方根为零; 负数没有平方根;一个正数有一个正的立方根;一个负数有一个负的立方根; 零的立方根是零;重要结论要点二、无理数与实数 有理数和无理数统称为实数. 1.实数的分类实数 要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数. (2等;②有特殊意义的数,如π; ③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.a ±3a ⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a 333333)(aa a a aa -=-==⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎩⎭⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正有理数有理数零有限小数或无限循环小数负有理数正无理数无理数无限不循环小数负无理数532知识点2.实数与数轴上的点一 一对应数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应. 3.实数的三个非负性及性质在实数范围内,正数和零统称为非负数。

初二数学上册知识点.复习及配套练习(新北师大版本)

.新北师大版八年级数学上册知识点复习第一章勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即 2 2 2a b c 。

2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。

2 2 23.勾股定理逆定理:如果三角形的三边长a,b,c 满足a b c ,那么这个三角形是2 2 2直角三角形。

满足a b c 的三个正整数称为勾股数。

第二章实数1.平方根和算术平方根的概念及其性质:(1)概念:如果 2x a,那么x 是a 的平方根,记作: a ;其中 a 叫做a 的算术平方根。

(2)性质:①当a≥0 时, a ≥0;当a <0时, a 无意义;②2a =a ;③ 2a a 。

2.立方根的概念及其性质:(1)概念:若(2)性质:①33 a ;x a ,那么x 是a 的立方根,记作:33 a3 a ;② 3 a a;③ 3 a = 3 a3.实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。

无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。

4.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。

每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。

因此,数轴正好可以被实数填满。

a a5.算术平方根的运算律:(a ≥0,b ≥0);(a ≥0,b >0)。

a b a bb b第三章位置与坐标1.直角坐标系及坐标的相关知识。

2.点的坐标间的关系:如果点A、B横坐标相同,则AB ∥y 轴;如果点A、B 纵坐标相同,则AB∥x 轴。

3.将图形的纵坐标保持不变,横坐标变为原来的1倍,所得到的图形与原图形关于y 轴对称;将图形的横坐标保持不变,纵坐标变为原来的1倍,所得到的图形与原图形关于x 轴对称;将图形的横、纵坐标都变为原来的1倍,所得到的图形与原图形关于原点成中心对称。

北师大版八年级上册数学知识点总结

北师大版八年级上册数学知识点总结1. 整数与有理数- 整数的概念和表示方法- 正数、零和负数- 整数的加法、减法、乘法和除法- 绝对值和相反数- 分数和有理数的概念2. 代数式和算式- 代数式的概念和基本性质- 算式的定义和组成部分- 代数式的运算法则:加法、减法、乘法和除法- 化简代数式的方法3. 线段和角- 线段的概念和表示方法- 线段的比较和运算- 角的概念和表示方法- 角的比较和运算- 垂直角、相邻角和对顶角4. 图形的相似- 相似图形的定义和性质- 两个图形是否相似的判断方法- 相似图形的比例关系- 相似三角形的性质5. 数据的处理与统计- 平均数的概念和计算- 中位数和众数的概念和计算- 数据的收集、整理和分析- 统计图的绘制和解读6. 几何的变换- 平移、旋转、翻转和镜像的概念- 几何变换的性质和判断方法- 图形的恒等变换和相似变换- 几何变换在图形位置和形状中的应用7. 方程与方程组- 方程和方程组的概念- 一元一次方程的解和性质- 解方程的方法和步骤- 一元一次方程在实际问题中的应用- 方程组的解和性质8. 三角形的性质- 三角形的定义和分类- 三角形内角和外角的性质- 三角形边长和角度的关系- 三角形中的相似关系9. 比例与等比数列- 比例的定义和性质- 比例的计算和应用- 等比数列的定义和性质- 等比数列的计算和应用10. 数据的图象与函数- 数据的统计图和数据图象- 函数的概念和表示方法- 函数的四种基本关系- 函数的图象和函数的性质11. 一次函数与一次函数方程- 一次函数的概念和性质- 一次函数方程的解和性质- 一次函数图象和一次函数方程的关系- 一次函数在实际问题中的应用12. 平行四边形和梯形- 平行四边形的定义和性质- 平行四边形判定的条件- 梯形的定义和性质- 梯形判定的条件13. 圆的相关概念和性质- 圆的定义和要素- 圆的周长和面积的计算- 弦、弧和扇形的概念和计算- 切线和切点的性质14. 琴弦定理和割剧定理- 琴弦定理的概念和性质- 琴弦定理的证明和应用- 割剧定理的概念和性质- 割剧定理的证明和应用15. 测量单位- 长度、面积、体积和质量的测量单位- 测量单位之间的换算- 时、速和密度的概念和计算- 测量单位在实际问题中的应用。

北师大版数学八年级上册知识点复习提纲

北师大版数学八年级上册知识点复习提纲第一章勾股定理1、勾股定理:若a,b,c分别为直角三角形的两直角边与斜边则满足a2+b2=c2。

2、直角三角形的判别法已知三角形的三边a,b,c满足a2+b2=c2,则这个三角形是直角三角形,另外有两锐角互余的三角形是直角三角形,一边上的中线等这一边的一半的三角形是直角三角形。

3、问题的转化(1)表面路径最短的问题,一般用侧面展开法,展成平面后,运用勾股定理. (2)空间距离问题,一般从立体图形中找到直角三角形并运用勾股定理.第二章实数1、无理数定义:无限不循环小数叫无理数。

2、算术平方根、平方根、立方根(1)正数a的平方根有两个,即+ ,其中叫做a的算术平方根。

0的平方根、算术平方根都是0,负数没有平方根。

(2)一个实数a的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0立方根是0。

3、实数(1)有理数和无理数统称为实数。

(2)实数和数轴上的点是一一对应的。

(3)在实数范围内许多有理数范围内学过的基础知识都适用。

①相反数实数a的相反数是-aa a>0②绝对数实数a的绝对值:│a│={0 a=0-a a<0③倒数实数a的倒数有(a≠0)④有理数范围内运算法则与运算律在实数范围内仍成立。

第三章图形的平移与旋转1、平移定义和规律(1)定义:在平面内将一个图形沿某个方向移动一定的距离,这样饿图形运动称为平移。

关键:平移不改变图形的形状和大小,也不会改变图形的方向。

(2)平移规律:经过平移,对应线段、对应角分别相等,对应点所连的线段平行且相等。

(3)简单作图:平移作图要注意:①方向;②距离。

整个平移的作图,就是把整个图案的每一个特征按一定方向和一定的距离平行移动。

2、旋转的规律(1)定义:在平面内,将一个图形饶一个定点沿某一方向转动一个角度,这样的图形运动称为旋转。

关键:旋转不改变图形的大小和形状,但改变图形的方向。

(2)旋转的规律:经过旋转,图形上每一个点都饶旋转中心沿相同的角度,任意一对对应点与旋转中心的连线所成角都是旋转角,对应点到旋转中心的距离相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上半期考知识点复习题纲第一章 勾股定理1、勾股定理(1)直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222cb a =+(2)勾股定理的适用范围:仅限于直角三角形2、勾股定理的逆定理(证明这个三角形是直角三角形) 如果三角形的三边长a ,b ,c 满足222c b a =+,那么这个三角形是直角三角形。

例题:1.下列几组数能否作为直角三角形的三边长?为什么 (9,12,15) (4,3,6) 9²+12²=225 42+32=2515²=225 62=36 所以9²+12²=15² 所以42+32≠62所以可作为直角三角形的三条边长 所以不可作为直角三角形的三条边长3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

常见的勾股数有:(6,8,10)(3,4,5)(5,12,13)(9,12,15)……4、 构成三角形的条件 (1)两边之和大于第三边, (2)两边之差小于第三边。

(畅想教育)八年级数学上半期考知识点复习题纲第二章 实数一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数(包可除尽的分数)和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数:无限不循环小数(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,无限但不循环,如0.1010010001…等;3、每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一、一对应的。

二、实数的倒数、相反数和绝对值1、相反数如果a=—b ,那么a 与b 互为相反数,则有a+b=0。

0的相反数是0……2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

若a ≥0, 则 |a|=a ; 若a ≤0,则|a|=-a 。

0的绝对值为03、倒数如果a 与b 互为倒数,则有ab=1。

倒数等于本身的数是1和-1,0没有倒数。

5、 估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

(只有正数才有算术平方根,负数没有,算术平方根的值是正数,不可能等于负数)特别0的算术平方根为0 表示方法:记作“a ”,读作根号a 。

性质:正数和零的算术平方根都只有一个。

2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。

表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。

性质:一个正数有两个平方根,一正,一负,它们互为相反数;只有正数有平方根,负数没有平方根。

0的平方根是0;开平方:求一个数a 的平方根的运算,叫做开平方,a 叫做被开方数。

例题:1.求下列各数的平方根 169 1212.求下列各式的值注意两例题的不同(例1值等于+、-;例2值只等于+)0≥a 注意a 的双重非负性:a ≥0例题:1.X 满足什么条件才有意义?因为a 的双重非负性,所以≥0,X-2≥0,所以X ≥22. 5-a +3+b ,求a,b 的值。

因为a 的双重非负性,所以3+b ≥0因为5-a ≥0,题中两式相加等于0,所以只能是0+0=0 所以b+3=0 b=-3 ; a-5=0 a=5 3、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。

求一个数a 的立方根的运算叫做开立方,a 叫做被开方数 表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。

四、实数大小的比较1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

2、实数大小比较的几种常用方法(判断实数哪个大哪个小的方法有) (1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

(2)求差比较:设a 、b 是实数,,0b a b a >⇔>- ,0b a b a =⇔=-b a b a <⇔<-0(3)求商比较法:设a 、b 是两正实数,;1;1;1b a bab a b a b a b a<⇔<=⇔=>⇔> (4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>。

(5)平方法:设a 、b 是两负实数,则b a b a <⇔>22。

五、算术平方根有关计算(二次根式)1、含有二次根号“”;被开方数a 必须是非负数,也就是大于等于02、性质:(1))0()(2≥=a a a)0(≥a a(2)==a a 2)0(<-a a(3))0,0(≥≥∙=b a b a ab ()0,0(≥≥=∙b a ab b a )(4))0,0(>≥=b a bab a ()0,0(>≥=b a baba )3、运算结果若含有“a ”形式,必须是最简二次根式,也就是须满足:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式六、实数的运算(1)六种运算:加、减、乘、除、乘方、开方(2)实数的运算顺序先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

(3)运算律加法交换律a+=bba+加法结合律)a+++b=+)c(c(ba乘法交换律baab=乘法结合律)aab=c()(bc乘法分配律ac=+)(a+abcb七、完全平方公式:(a+b)²=a²+2ab+b² 或者(a-b)²=a²-2ab+b²平方差公式: a ²-b ²=(a +b)(a -b)相互转化: a ²+b ²=(a+b)²-2ab =(a-b)²+2ab例题:a ²-6a+9= a ²-6a+3²=(a-3)²把9看成3²(畅想教育)八年级数学上半期考知识点复习题纲第三章 位置的确定一、 在平面内,确定物体的位置一般需要两个数据。

二、平面直角坐标系及有关概念 1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;x 轴和y 轴统称坐标轴。

它们的公共原点O 称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

2、为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点(坐标轴上的点),不属于任何一个象限。

3、点的坐标的概念在直角坐标系中,对于平面上的任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应。

点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

4、不同位置的点的坐标的特征 (1)、各象限内点的坐标的特征点P(x,y)在第一象限0,0>>⇔y x (1,2)点P(x,y)在第二象限0,0><⇔y x (-1,2) 点P(x,y)在第三象限0,0<<⇔y x (-1,-2) 点P(x,y)在第四象限0,0<>⇔y x (1,-2)(2)、坐标轴上的点的特征点P(x,y)在x 轴上0=⇔y ,x 为任意实数 点P(x,y)在y 轴上0=⇔x ,y 为任意实数点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0)即原点 (3)、平行于x 轴的直线上的各点的纵坐标相同。

(4)、平行于y 轴的直线上的各点的横坐标相同。

(5)、关于x 轴、y 轴或原点对称的点的坐标的特征点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数,即点P (x ,y )关于x 轴的对称点为P ’(x ,-y )点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数,即点P (x ,y )关于y 轴的对称点为P ’(-x ,y )点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数,即点P (x ,y )关于原点的对称点为P ’(-x ,-y )(6)、点到坐标轴及原点的距离1)点P(x,y)到x 轴的距离等于y 2)点P(x,y)到y 轴的距离等于x 3)点P(x,y)到原点的距离等于22y x +三、坐标变化与图形变化的规律:(畅想教育)八年级数学上半期考知识点复习题纲第四章 一次函数一、函数:一般地,如果在一个变化过程中有两个变量x 与y ,并且对于变量x 的每一个值,变量y 都有唯一的值与它对应,那么我们称y 是x 的函数,其中x 是自变量,y 是因变量。

常量:有些量的数值是始终不变的,我们称它为常量 二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

三、函数的三种表示法及其优缺点(1)关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图象法用图象表示函数关系的方法叫做图象法。

四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

五、正比例函数和一次函数 1、正比例函数和一次函数的概念若两个变量x ,y 间的对应关系可以表示成b kx y +=(k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量)。

特别地,当一次函数b kx y +=中的b=0时(即y=kx )(k 为常数,k ≠0),称y 是x 的正比例函数。

2、一次函数的图像: 所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是一条经过原点(0,0)的直线,因此只要再确定一个点,过这点与原点(0,0)画直线就可以了。

相关文档
最新文档