测量平差的基本概念
测量平差期末总结

测量平差期末总结一、引言测量平差是地理信息系统(GIS)和工程测量领域非常重要的一部分,它涉及到对测量数据进行处理、分析和计算。
测量平差能够提高测量数据的准确性和精确度,使得测量结果更加可靠和可信。
本文将对测量平差的一些基本概念、方法和步骤进行总结和分析,以期加深对测量平差的理解和应用。
二、测量平差的基本概念1. 测量平差的定义测量平差是指通过一系列的数学模型和计算方法,对原始的测量数据进行处理和分析,以获取更加准确和精确的测量结果的过程。
测量平差的目的是消除测量误差,提高测量数据的可靠性和精度。
2. 测量平差的分类根据测量数据的性质和采集方式的不同,测量平差可以分为直接平差和间接平差。
直接平差是指对直接测量数据进行处理和分析,如经纬度测量、高程测量等;间接平差是指对间接测量数据进行处理和分析,如距离测量、角度测量等。
3. 测量平差的基本原理测量平差的基本原理是基于观测量的合理模型和模型的参数估计。
通过观测量的数学模型,利用最小二乘法或加权最小二乘法等方法,求解模型的未知参数,从而得到测量结果的最优估计。
三、测量平差的方法和步骤1. 校正平差校正平差是指对原始的测量数据进行检验和修正的过程。
校正平差的目的是通过剔除异常观测值和消除系统误差,得到更加准确和可靠的测量数据。
2. 数学模型的建立数学模型是测量平差的基础,它是通过观测量的几何关系和误差模型建立的。
数学模型可以根据测量任务的不同而定,常见的数学模型有三角形测量模型、高程测量模型等。
3. 参数估计参数估计是指根据观测量和数学模型,利用最小二乘法或其他的数学方法,求解模型的未知参数。
参数估计的目的是最小化观测量和模型的差异,得到最优估计。
4. 平差计算平差计算是指根据参数估计的结果,利用平差公式和计算方法,对测量数据进行处理和分析。
平差计算的目的是消除观测量和模型之间的差异,得到平差结果。
四、测量平差的应用1. 地理信息系统(GIS)测量平差在GIS中有广泛的应用。
测量平差概要

测量平差概要一、基本概念01、极条件的个数等于中点多边形、大地四边形和扇形的总数。
02、在间接平差中,独立未知量的个数等于必要观测数。
03、协方差与权互为倒数。
04、在测量中产生误差是不可避免的,即误差存在于整个观测过程,称为误差公理。
05、在间接平差中,误差方程的个数等于观测值的个数。
06、协因数阵与权阵互为逆阵。
07、偶然误差的四个统计特性是:有界性、聚中性、对称性和抵偿性。
08、圆周条件的个数等于中点多边形的个数。
09、偶然误差服从正态分布。
10、只有包含中点多边形的三角网才会产生圆周角条件。
11、条件平差的法方程个数等于多余观测个数,间接平差的法方程的个数等于必要观测数。
12、描述偶然误差分布常用的三种方法是:列表法、绘图法、密度函数法。
13、同一个量多次不等精度观测值的最或是值等于其加权平均值。
14、应用权倒数传播律时观测值间应误差独立。
15、极限误差是指测量过程中规定的最大允许误差值,通常取测量中误差的3倍作为极限误差。
16、在平地,水准测量的高差中误差与水准路线长度的算术平方根成正比。
17、在水准测量中要求前后视距相等是为了消除i角产生的系统误差。
18、在测角中正倒镜观测是为了消除系统误差。
19、水准网的必要起算数据为1个,独立测角网的必要起算数据为4个。
20、在水准测量中估读尾数不准确产生的误差是偶然误差。
21、独立测角网的条件方程有图形条件、圆周条件和极条件三种类型。
22、定权时单位权中误差可任意给定,它仅起比例常数的作用。
23、测角精度与角度的大小无关。
24、观测值的权通常是没有量纲的。
25、在山地,水准测量的高差中误差与测站数的算术平方根成正比。
26、测角网的必要观测个数等于待定点个数的2倍。
27、仪器误差、观测者和外界环境的综合影响称为观测条件28、独立水准网的条件方程式只有闭合水准路线。
29、根据误差对观测结果的影响,观测误差可分为系统误差和偶然误差两类。
30、观测值的协因数与方差成正比,观测值的权与方差反比。
测量平差——精选推荐

测量平差一.测量平差基本知识 1.测量平差定义及目的在设法消除系统误差、粗差影响下,其基本任务是求待定量的最优估量和评定其精度。
人们把这一数据处理的整个过程叫测量平差。
测量平差的目的:一是通过数据处理求待定量的最优估值;二是评定观测成果的质量。
2.协方差传播律及协方差传播律是观测值(向量)与其函数(向量)之间精度传递的规律。
①观测值线性函数的方差: 函数向量:Y=F(X) Z=K(X)其误差向量为:ΔY=F ΔX ΔZ=K ΔX则随机向量与其函数向量间的方差传递公式为⎪⎪⎪⎭⎪⎪⎪⎬⎫====F D K D K D F D K D K D F D F D TXZYTXYZTXZTXY②多个观测值线性函数的协方差阵t×n×n ×t×n T n XX t t ZZ K D K D =③非线性的协方差传播T XX ZZ K KD D =3.权及常用的定权方法①权表示比例关系的数字特征称之为权,也就是权是表征精度的相对指标。
权的意义不在于它们本身数值的大小,而在于它们之间所存在的比例关系。
()n i iiP ,...,2,1220==σσ i P 为观测值i L 的权,20σ是可以任意选定的比例常数。
②单位权方差权的作用是衡量观测值的相对精度,称其为相对精度指标。
确定一组权时,只能用同一个0σ,令0σσ=i ,则得:iiP ===02202021σσσσ上式说明20σ是单位权(权为1)观测值的方差,简称为单位权方差。
凡是方差等于20σ的观测值,其权必等于1。
权为1的观测值,称为单位权观测值。
无论2σ取何值,权之间的比例关系不变。
③测量中常用的定权方法 ⅰ.水准测量的权NC P h =式中,N 为测站数。
SC P h =式中,S 为水准路线的长度。
ⅱ.距离量测的权ii S C P =式中,i S 为丈量距离。
ⅲ.等精度观测算术平均值的权CP ii N=式中,i N 为i 次时同精度观测值的平均值。
测量平差概要

测量平差概要一、基本概念01、极条件的个数等于中点多边形、大地四边形和扇形的总数。
02、在间接平差中,独立未知量的个数等于必要观测数。
03、协方差与权互为倒数。
04、在测量中产生误差是不可避免的,即误差存在于整个观测过程,称为误差公理。
05、在间接平差中,误差方程的个数等于观测值的个数。
06、协因数阵与权阵互为逆阵。
07、偶然误差的四个统计特性是:有界性、聚中性、对称性和抵偿性。
08、圆周条件的个数等于中点多边形的个数。
09、偶然误差服从正态分布。
10、只有包含中点多边形的三角网才会产生圆周角条件。
11、条件平差的法方程个数等于多余观测个数,间接平差的法方程的个数等于必要观测数。
12、描述偶然误差分布常用的三种方法是:列表法、绘图法、密度函数法。
13、同一个量多次不等精度观测值的最或是值等于其加权平均值。
14、应用权倒数传播律时观测值间应误差独立。
15、极限误差是指测量过程中规定的最大允许误差值,通常取测量中误差的3倍作为极限误差。
16、在平地,水准测量的高差中误差与水准路线长度的算术平方根成正比。
17、在水准测量中要求前后视距相等是为了消除i角产生的系统误差。
18、在测角中正倒镜观测是为了消除系统误差。
19、水准网的必要起算数据为1个,独立测角网的必要起算数据为4个。
20、在水准测量中估读尾数不准确产生的误差是偶然误差。
21、独立测角网的条件方程有图形条件、圆周条件和极条件三种类型。
22、定权时单位权中误差可任意给定,它仅起比例常数的作用。
23、测角精度与角度的大小无关。
24、观测值的权通常是没有量纲的。
25、在山地,水准测量的高差中误差与测站数的算术平方根成正比。
26、测角网的必要观测个数等于待定点个数的2倍。
27、仪器误差、观测者和外界环境的综合影响称为观测条件28、独立水准网的条件方程式只有闭合水准路线。
29、根据误差对观测结果的影响,观测误差可分为系统误差和偶然误差两类。
30、观测值的协因数与方差成正比,观测值的权与方差反比。
测绘学概论--测量平差基础

测量平差的研究内容
因观测量不可避免带有误差,如何处理由于多余观测 引起的观测值之间的不符值或闭合差,求出未知量的 最佳估值并评定结果的精度是测量平差的基本任务; 由于多余观测值之间的不符来自观测的偶然误差,故 必须研究误差概率统计理论,包括偶然误差分布、评 定精度指标、误差传播律、误差检验与误差分析等;
Z = k1X1 + k2X2 + …+ knXn + k0
当Xi两两独立时,Z的方差可由下式计算得到:
σ2z = k21σ2x1 + k22σ2x2 + … + k2nσ2xn
传播律示例
例1: 1:500图上,量得某两点间距为d= 23.4mm, 量 测中误差为0.2mm,求该两点实地距离S的中误差
观测误差理论
偶然误差规律性及其统计分布
真误差为真值与观测值之差,即△=X – Li 偶然误差特性:
值有一定范围;满足正态分布[基于概率统计];
衡量精度的指标
精度反映了测绘成果质量;由误差的大小表示 中误差是普遍采用的表达精度的指标,其平方称为方差 依据概率统计,中误差与真误差之间存在数学关系,如:
显然,精度越高,权越大,在平差中所占分量越大
协方差
描述两个相关观测量之间的相关精度的指标 也可以用相关系数描述两个变量之间的相关性
误差传播律
已知观测量的中误差,如何求观测量函数的中误差 设z=f(x, y),当x, y的中误差已知时,z的中误差为
σz = F(σx, σy)
设观测量序列Xi (i = 1, …,n), Z为线性函数,可表达为:
测量平差

t ,t t ,n n,n n,t
DYY = F DXX F T
r ,r r ,n n,n n,r
它们的互协方差阵
DYZ = F DXX K T= DZY r ,n n, t
r ,t n, n
t ,r T T = FD K K D F ( XX ) XX t ,n n,n n,r
DZX F1 DXX + F2 DYX 互协方差阵 =
= DZY F1 DXY + F2 DYY
当 X,Y 独立观测时
T D = D = 0 XY YX
= DZZ F1 DXX F1T + F2 DYY F2T DZX = F1 DXX DZY = F2 DYY
非线性函数 Z=f ( X1, X2, …, Xn ) , Y=f ( X1, X2, …, Xt )
dZ = KdX
各自的协方差阵
dY = FdX
DZZ = KDXX K T
它们的互协方差阵
DYY = FDXX F T
DYZ = FDXX K
T
DZY = KDXX F
T
线性函数组合 协方差阵
Z = [ F1
X F2 ] Y
DZZ = [ F1
DXX F2 ] DYX
DXY F1T T DYY F2
DZZ = F1 DXX F1T + F1 DXY F2T + F2 DYX F1T + F2 DXX F2T
协方差传播率-1
= Z K X + K0
r ,1 1 ,n n,n 1 ,1
2 T σ = D= KD K ZZ Z XX
测量平差的基本原理和计算方法

测量平差的基本原理和计算方法测量平差是测量学中一个重要的概念,它用于消除测量误差,提高测量精度。
本文将介绍测量平差的基本原理和计算方法。
一、测量平差的基本原理测量平差的基本原理是通过对测量数据进行处理,消除不可避免的误差,得到更为准确的结果。
在实际的测量过程中,由于各种因素的影响,测量结果往往不是完全准确的。
而通过平差可以将这些误差分布在测量要素上,使得整个测量结果更为合理。
平差的基本原理包括以下几个方面:1. 观测误差的性质:观测误差是服从一定的概率分布的,一般满足正态分布或其近似分布。
2. 绘图、观测和计算误差的连接性:测量平差将绘图误差、观测误差和计算误差联系在一起,通过适当的方法进行计算处理。
3. 误差的耦合性:测量过程中的各个要素之间存在着一定的关系,其误差也会相互影响。
通过平差可以将这些误差合理地分配和补偿。
二、测量平差的计算方法测量平差的计算方法有很多种,下面将介绍几种常见的方法。
1. 最小二乘法:最小二乘法是一种常用的测量平差方法,其基本思想是将误差的平方和最小化。
通过对误差进行建模和优化,可以得到一组最优解。
2. 最大似然估计法:最大似然估计法是一种基于统计原理的测量平差方法。
它根据观测数据的概率分布,选择出最具可能性的结果。
通过最大化似然函数,可以得到一组最优解。
3. 权值平差法:权值平差法是一种根据观测精度的大小,给予不同权值的平差方法。
通过给观测数据引入权值,可以使得精度高的数据在计算过程中起到更大的作用,从而提高整体的测量精度。
4. 卡尔曼滤波法:卡尔曼滤波法是一种基于状态估计的测量平差方法。
它通过建立状态模型和测量模型,利用观测数据进行误差修正,从而得到更加准确的结果。
三、测量平差的应用测量平差在实际应用中有着广泛的应用。
以下通过几个领域的案例来说明。
1. 地理测量:在地理测量中,测量平差常用于大地测量和地图制图。
通过平差可以消除地球曲率、大地水准面等因素的影响,得到更加准确的测量结果,提高地图的精度和真实度。
平差的名词解释

平差的名词解释在测量领域中,平差是一种常用的技术手段,它的作用是对测量结果进行处理和修正,以提高测量数据的准确性和可靠性。
平差的核心思想是通过对测量误差进行分析和处理,得到更接近真实值的测量结果。
一、平差的概念和背景平差是一个摘自英文单词“adjustment”的中文翻译,它最初源于土地测量工程,并在后来广泛应用于各个测量领域。
在传统的测量中,由于各种误差的存在,例如仪器、人为、大地形态等因素,所得到的测量结果是不完全准确的。
因此,平差便成为了必不可少的一环,用以处理和修正这些误差,以达到更高的测量精度。
二、平差的基本原理平差的基本原理是通过测量数据的统计分析和数学模型的建立,对原始测量数据进行加权调整,以降低误差对测量结果的影响。
具体而言,平差过程包括以下几个步骤:1. 数据预处理:对原始测量数据进行检验和筛选,去除明显的异常值和错误数据。
2. 观测方程的建立:通过观测原理和测量公式,建立代表测量对象间关系的数学模型,即观测方程。
3. 误差分析:对观测方程中各个观测量的误差进行分析,确定其误差特征和大小。
4. 加权计算:根据误差分析结果,对观测方程中的各个观测量进行加权计算,以提高高精度数据的权重,低精度数据的权重降低。
5. 解算和调整:通过数值计算方法,解算出最优平差结果,并进行调整,使观测方程的残差(测量值和计算值之间的差异)达到最小。
6. 结果评定:对平差结果进行可靠性评估,包括检验残差是否符合一致性条件、评定测量精度等。
三、平差的应用领域平差广泛应用于各个测量领域,包括但不限于:1. 土地测量:在土地测量中,平差常用于确定地块边界和计算地形图等工作。
通过对地块边界点的测量数据进行平差处理,可以提高地块边界的准确性和精度,避免土地纠纷的发生。
2. 工程测量:在工程测量中,平差常用于确定建筑物、桥梁、道路等工程物体的位置和形态。
通过对工程测量数据的平差处理,可以提高工程设计的精度,确保施工的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
~ h1
X~1
HA
~ h2
X~2
HA
~ h3
X~2 X~3
~ h4
X~3 H A
~ h5
X~1
X~2
~ h6
X~1
X~3
间接平差函数模型
方程个数n<n+t未知数个数 (观测值改正数n;参数改正数t)
L~ B X~ຫໍສະໝຸດ n1ntt1d0
n1
L
n1
B (X o
nt
B ~x l
测量平差的基本概念
测量平差简介 必要元素数
必要元素数的概念 必要元素数的性质
必要观测数
必要观测数的概念 平差问题存在的条件
间接平差模型
什么是测量平差?
观测值中包含有“误差”
对某“量”进行多次观测,多次观测结果并不相 等
问:如果对该“量”只作一次观测,该观测值是 否不含误差?
此时观测值所含误差不能被发现,这个结果是不可靠 的。为了保证观测结果的正确性必须对该“量”进行 两次或两次以上的观测,使得误差通过观测值之间的 差异表现出来,平差的一个主要任务就是“消除差 异”,求出被观测量的最可靠结果。
~x )
t1
d0
n1
n1 nt t1 n1
l BX o d0 L
内容小结
必要元素数的概念 必要元素数的性质 必要观测数的定义 平差问题存在的条件 间接平差模型
c hc
hb b
(6) 坐标差:ΔXAB ,ΔYAB ;……
ha
C
(7) 面积、周长……
B
a
必要元素数的概念
确定一个几何模型,需确定其中的部分“量”
(1) 形状 任意两个内角 (2个元素)
(2) 形状与大小 2内角+1边长,1内角+2边长,3边长 (3个元素)
(3) 形状、大小与位置 2点坐标+(1) 1点坐标+ 1边方位角+(2) 3点坐标 (6个元素)
必要元素数的概念
确定某个模型所必需的最少的元素个数,称 为必要元素数。
记必要元素数的符号为T。
必要元素数的性质
必要元素的个数T只取决于模型本身 所有的必要元素都是彼此函数独立的量 模型中所有的量都是必要元素的函数 一个模型中函数独立的量最多只有T个 模型中作为必要元素的“量”不是唯一
的
必要观测数的定义
外部配置:用于推算其它元素的平差前后不 发生改变的元素。
外部配置不需通过观测得到。
必要观测数:确定某个模型所必需的最少的 观测值的个数,称为必要观测数。
必要观测数用符号t表示。
必要观测数的性质
必要元素 外部配置
必要观测
平差问题存在的条件
总观测数用n表示: 当n<t时:
平差问题存在的前提条件。
必要元素数的概念
几何模型中包含多种“量”(真值)
以平面三角形为例:
(1) 角度:三个内角∠A、∠B、∠C
(2) 边长:三条边长a、b、c
(3) 高:三边上的高ha、hb、hc
(4) 坐标:三点的平面坐标
A
Xa,Ya; Xb,Yb; Xc,Yc; (5) 方位角:TAB ;TBC ;TCA
模型不能确定 当n=t时:
模型能唯一确定 当n>t时:
可以确定多个模型 平差问题存在的条件是:n>t
间接平差函数模型
在实际计算中可以把观测量或待定量设为参数X 选定t个相互独立参数
L~ F ( X~ )
n1
t1
L~
n1
B
nt
X~
t 1
d0
n1
水准网间接平差示例
必要观测数:3
设参数: X~ X~1 X~2 X~3 T H~B H~C H~D T