测量平差复习题及答案

合集下载

测量平差超级试卷含答案汇总

测量平差超级试卷含答案汇总

1 / 18一、填空题(每空1分,共20分) 1、测量平差就是在 多余观测 基础上,依据 一定的 原则,对观测值进行合理的调整,即分别给以适当的 改正数 ,使矛盾消除,从而得到一组最可靠的结果,并进行 精度评估 。

2、条件平差中,条件方程式的选取要求满足 、 。

3已知条件平差的法方程为024322421=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡k k ,则PV V T = ,μ= ,1k p =,2k p = 。

4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按条件平差进行求解时,条件方程式个数为 ,法方程式个数为 。

5、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数按具有参数的条件平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 ;若在22个独立参数的基础上,又选了4个非独立参数按具有条件的参数平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 。

6、间接平差中误差方程的个数等于2 / 18________________,所选参数的个数等于_______________。

7、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为 此公式变为中误差公式。

二、选择题(每题2分,共20分)1、观测条件是指:A)产生观测误差的几个主要因素:仪器,观测者,外界条件等的综合B)测量时的几个基本操作:仪器的对中,整平,照准,度盘配置,读数等要素的综合C)测量时的外界环境:温度,湿度,气压,大气折光……等因素的综合. D)观测时的天气状况与观测点地理状况诸因素的综合答:_____2、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝ ⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于?(A)1/4 (B)23 / 181/2(D )4答:__3、已知观测向量()L L L T=12的权阵P L =--⎛⎝ ⎫⎭⎪2113,单位权方差σ025=,则观测值L1的方差σL 12等于:(A)0.4 (B)2.5(C)3 (D)253答:____4、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。

误差理论和测量平差试卷及答案6套试题+答案

误差理论和测量平差试卷及答案6套试题+答案

误差理论和测量平差试卷及答案6套试题+答案(总23页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《误差理论与测量平差》课程自测题(1)一、正误判断。

正确“T”,错误“F”。

(30分)1.在测角中正倒镜观测是为了消除偶然误差()。

2.在水准测量中估读尾数不准确产生的误差是系统误差()。

3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y 相互独立()。

4.观测值与最佳估值之差为真误差()。

5.系统误差可用平差的方法进行减弱或消除()。

6.权一定与中误差的平方成反比()。

7.间接平差与条件平差一定可以相互转换()。

8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。

10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。

11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。

12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。

13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。

14.定权时σ0可任意给定,它仅起比例常数的作用()。

15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。

二、用“相等”或“相同”或“不等”填空(8分)。

已知两段距离的长度及其中误差为±;23±。

则:1.这两段距离的中误差( )。

2.这两段距离的误差的最大限差( )。

3.它们的精度( )。

4.它们的相对精度( )。

三、 选择填空。

只选择一个正确答案(25分)。

1.取一长为d 的直线之丈量结果的权为1,则长为D 的直线之丈量结果的权P D =( )。

a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±秒,如果要使其中误差为±秒,则还需增加的测回数N=( )。

(完整word版)测量平差经典试卷含答案

(完整word版)测量平差经典试卷含答案

一、填空题(每空2分,共20分)1、最优估计量应具有的性质为 、 和 最优估计量主要针对观测值中仅含 误差而言。

2、间接平差中,未知参数的选取要求满足 、 。

3已知条件平差的法方程为024322421=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡k k ,则PV V T = ,μ= , 1k p = ,2k p = 。

4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按间接平差进行求解时,误差方程式个数为 ,法方程式个数为 。

5、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数按具有参数的条件平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 ;若在22个独立参数的基础上,又选了4个非独立参数按具有条件的参数平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 。

6、条件平差中条件方程的个数等于________________,所选参数的个数等于_______________。

7、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为 此公式变为中误差公式。

二、计算题(每题2分,共20分)1、条件平差的法方程等价于:A 、0=+W K Q KB 、0=+W Q K WC 、0=+W P K WD 、0=+W P K K答:______2、水准测量中,10km 观测高差值权为8,则5km 高差之权为:A 、2B 、4C 、8D 、16答:______3、已知⎥⎦⎤⎢⎣⎡=∆3112P ,则2L p 为:A 、2B 、3C 、25D 、35答:______4、间接平差中,L Q ˆ为:A 、TA AN 1- B 、A N A T1-C 、T A AN P11--- D 、A N A P T 11---答:______5、观测条件是指:A)产生观测误差的几个主要因素:仪器,观测者,外界条件等的综合B)测量时的几个基本操作:仪器的对中,整平,照准,度盘配置,读数等要素的综合 C)测量时的外界环境:温度,湿度,气压,大气折光……等因素的综合. D)观测时的天气状况与观测点地理状况诸因素的综合答:______ 6、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝ ⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于?(A)1/4 (B)2 (C)1/2 (D)4 答:_____ 7、已知观测向量()L L L T=12的权阵P L =--⎛⎝ ⎫⎭⎪2113,单位权方差σ025=,则观测值L 1的方差σL 12等于:(A)0.4 (B)2.5 (C)3 (D)253答:____ 8、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。

测量平差经典试卷含答案

测量平差经典试卷含答案

一、填空题(每空2分,共20分)1、最优估计量应具有的性质为 、 和 最优估计量主要针对观测值中仅含 误差而言。

2、间接平差中,未知参数的选取要求满足 、 。

3已知条件平差的法方程为024322421=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡k k ,则PV V T = ,μ= , 1k p = ,2k p = 。

4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按间接平差进行求解时,误差方程式个数为 ,法方程式个数为 。

5、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数按具有参数的条件平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 ;若在22个独立参数的基础上,又选了4个非独立参数按具有条件的参数平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 。

6、条件平差中条件方程的个数等于________________,所选参数的个数等于_______________。

7、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为 此公式变为中误差公式。

二、计算题(每题2分,共20分)1、条件平差的法方程等价于:A 、0=+W K Q KB 、0=+W Q K WC 、0=+W P K WD 、0=+W P K K答:______2、水准测量中,10km 观测高差值权为8,则5km 高差之权为:A 、2B 、4C 、8D 、16答:______3、已知⎥⎦⎤⎢⎣⎡=∆3112P ,则2L p 为:A 、2B 、3C 、25D 、35答:______4、间接平差中,L Q ˆ为:A 、TA AN 1- B 、A N A T1-C 、T A AN P11--- D 、A N A P T 11---答:______5、观测条件是指:A)产生观测误差的几个主要因素:仪器,观测者,外界条件等的综合B)测量时的几个基本操作:仪器的对中,整平,照准,度盘配置,读数等要素的综合 C)测量时的外界环境:温度,湿度,气压,大气折光……等因素的综合. D)观测时的天气状况与观测点地理状况诸因素的综合答:______ 6、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝ ⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于(A)1/4 (B)2 (C)1/2 (D)4 答:_____ 7、已知观测向量()L L L T=12的权阵P L =--⎛⎝ ⎫⎭⎪2113,单位权方差σ025=,则观测值L 1的方差σL 12等于:(A) (B) (C)3 (D)253答:____ 8、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。

测量平差-中国地质大学-北京-复习资料01

测量平差-中国地质大学-北京-复习资料01

一、填空题 (共20分,每空 2 分)1、如下图,其中A 、B 、C 为已知点,观测了5个角,若设L 1、L 5观测值的平差值为未知参数21ˆˆX X 、,按附有限制条件的条件平差法进行平差时,必要观测个数为 ,多余观测个数为 ,一般条件方程个数为 ,限制条件方程个数为ABCDEL 1L 2L 3L 4L 52、测量是所称的观测条件包括 、观测者、3、已知某段距离进行了同精度的往返测量(L 1、L 2),其中误差cm 221==σσ,往返测的平均值的中误差为 ,若单位权中误差cm 40=σ,往返测的平均值的权为4、已知某观测值X 、Y 的协因数阵如下,其极大值方向为 ,若单位权中误差为±2mm ,极小值F 为 mm 。

⎪⎪⎭⎫⎝⎛--=0.15.05.00.2XXQ 二、已知某观测值X 、Y 的协因数阵如下,求X 、Y 的相关系数ρ。

(10分)⎪⎪⎭⎫ ⎝⎛--=25.015.015.036.0XXQ 三、设有一函数2535+=x T ,6712+=y F 其中:⎩⎨⎧+++=+++=n n nn L L L y L L L x βββααα 22112211 αi =A 、βi =B (i =1,2,…,n )是无误差的常数,L i 的权为p i =1,p ij =0(i ≠j )。

(15分) 1)求函数T 、F 的权; 2)求协因数阵TF Ty Q Q 、。

四、如图所示水准网,A 、B 、C 三点为已知高程点, D 、E 为未知点,各观测高差及路线长度如下表所列。

(20分)用间接平差法计算未知点D 、E 的高程平差值及其中误差;ACBDh 1h 2h 3h 4h 5E h 6高差观测值/m 对应线路长度/km已知点高程/mh 1= -1.348 h 2= 0.691 h 3= 1.265 h 4= -0.662 h 5= -0.088 h 5= 0.7631 1 1 1 1 1H A =23.000 H B =23.564 C B =23.663五、如下图所示,A ,B 点为已知高程点,试按条件平差法求证在单一附合水准路线中,平差后高程最弱点在水准路线中央。

测量平差超级经典试卷含答案汇总

测量平差超级经典试卷含答案汇总

一、填空题(每空1分,共20分) 1、测量平差就是在 多余观测 基础上,依据 一定的 原则,对观测值进行合理的调整,即分别给以适当的 改正数 ,使矛盾消除,从而得到一组最可靠的结果,并进行 精度评估 。

2、条件平差中,条件方程式的选取要求满足 、 。

3已知条件平差的法方程为024322421=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡k k ,则PVVT= ,μ= ,1k p = ,2k p = 。

4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按条件平差进行求解时,条件方程式个数为 ,法方程式个数为 。

5、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数按具有参数的条件平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 ;若在22个独立参数的基础上,又选了4个非独立参数按具有条件的参数平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 。

6、间接平差中误差方程的个数等于________________,所选参数的个数等于_______________。

7、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为 此公式变为中误差公式。

二、选择题(每题2分,共20分)1、观测条件是指:A)产生观测误差的几个主要因素:仪器,观测者,外界条件等的综合B)测量时的几个基本操作:仪器的对中,整平,照准,度盘配置,读数等要素的综合C)测量时的外界环境:温度,湿度,气压,大气折光……等因素的综合.D)观测时的天气状况与观测点地理状况诸因素的综合答:_____2、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于? (A)1/4(B)21/2(D)4答:__3、已知观测向量()L L L T=12的权阵P L =--⎛⎝ ⎫⎭⎪2113,单位权方差σ025=,则观测值L 1的方差σL 12等于:(A)0.4 (B)2.5(C)3 (D)253答:____4、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。

《测量平差》复习题

《测量平差》复习题第一章:绪论1、什么是观测量的真值?任何观测量,客观上总存在一个能反映其真正大小的数值,这个数值称为观测量的真值。

2、什么是观测误差?观测量的真值与观测值的差称为观测误差。

3、什么是观测条件?仪器误差、观测者和外界环境的综合影响称为观测条件。

4、根据误差对观测结果的影响,观测误差可分为哪几类?根据误差对观测结果的影响,观测误差可分为系统误差和偶然误差两类。

5、在测量中产生误差是不可避免的,即误差存在于整个观测过程,称为误差公理。

6、观测条件与观测质量之间的关系是什么?观测条件好,观测质量就高,观测条件差,观测质量就低。

7、怎样消除或削弱系统误差的影响?一是在观测过程中采取一定的措施;二是在观测结果中加入改正数。

8、测量平差的任务是什么?⑴求观测值的最或是值(平差值);⑵评定观测值及平差值的精度。

第二章:误差理论与平差原则1、描述偶然误差分布常用的三种方法是什么?⑴列表法;⑵绘图法;⑶密度函数法。

2、偶然误差具有哪些统计特性?(1) 有界性:在一定的观测条件下,误差的绝对值不会超过一定的限值。

(2) 聚中性:绝对值较小的误差比绝对值较大的误差出现的概率要大。

(3) 对称性:绝对值相等的正负误差出现的概率相等。

(4) 抵偿性:偶然误差的数学期望或偶然误差的算术平均值的极限值为0。

3、由偶然误差特性引出的两个测量依据是什么?⑴制定测量限差的依据;⑵判断系统误差(粗差)的依据。

4、什么叫精度?精度指的是误差分布的密集或离散的程度。

5、观测量的精度指标有哪些?(1) 方差与中误差;(2) 极限误差;(3) 相对误差。

6、极限误差是怎样定义的?在一定条件下,偶然误差不会超过一个界值,这个界值就是极限误差。

通常取三倍中误差为极限误差。

当观测要求较严时,也可取两倍中误差为极限误差。

7、误差传播律是用来解决什么问题的?误差传播律是用来求观测值函数的中误差。

8、应用误差传播律的实际步骤是什么?(1) 根据具体测量问题,分析写出函数表达式;(2) 根据函数表达式写出真误差关系式;(3) 将真误差关系式转换成中误差关系式。

测量平差复习题答案

测量平差复习题答案一、单项选择题1. 在测量平差中,观测值的改正数与观测值的符号相反,说明该观测值是()。

A. 正误差B. 负误差C. 系统误差D. 偶然误差答案:B2. 测量平差中,观测值的中误差是指()。

A. 观测值的标准差B. 观测值的均值C. 观测值的偏差D. 观测值的最大误差答案:A3. 测量平差中,单位权中误差的计算公式为()。

A. σ0 = √(Σσ²) / nB. σ0 = Σσ² / nC. σ0 = √(Σσ²) / ΣnD. σ0= Σσ² / Σn答案:A二、多项选择题1. 测量平差中,下列哪些因素会影响观测值的精度()。

A. 观测者的技能水平B. 观测仪器的精度C. 观测环境D. 观测时间答案:ABCD2. 在测量平差中,下列哪些方法可以提高观测精度()。

A. 增加观测次数B. 采用高精度仪器C. 改进观测方法D. 延长观测时间答案:ABC三、填空题1. 测量平差中,观测值的中误差是用来衡量观测值的______。

答案:精度2. 测量平差中,单位权中误差是用来衡量观测值的______。

答案:精度3. 在测量平差中,观测值的改正数是用来______观测值的系统误差。

答案:消除四、简答题1. 简述测量平差中,观测值的中误差与观测值的精度之间的关系。

答案:观测值的中误差是观测值精度的一种度量,中误差越小,说明观测值的精度越高。

2. 测量平差中,如何通过观测值的改正数来判断观测值的误差性质?答案:观测值的改正数与观测值的符号相反,说明该观测值是负误差;如果改正数与观测值的符号相同,则说明该观测值是正误差。

五、计算题1. 已知一组观测值的方差分别为2、3、4,计算该组观测值的单位权中误差。

答案:σ0 = √(2+3+4) / 3 = √9 / 3 = √32. 假设在一次测量中,观测者得到了一组观测值,其改正数分别为-0.1、0.2、-0.3,计算该组观测值的平均改正数。

测量平差复习题汇总

《测量平差》复习题第一章:绪论1、什么是观测量的真值?任何观测量,客观上总存在一个能反映其真正大小的数值,这个数值称为观测量的真值。

2、什么是观测误差?观测量的真值与观测值的差称为观测误差。

3、什么是观测条件?仪器误差、观测者和外界环境的综合影响称为观测条件。

4、根据误差对观测结果的影响,观测误差可分为哪几类?根据误差对观测结果的影响,观测误差可分为系统误差和偶然误差两类。

5、在测量中产生误差是不可避免的,即误差存在于整个观测过程,称为误差公理。

6、观测条件与观测质量之间的关系是什么?观测条件好,观测质量就高,观测条件差,观测质量就低。

7、怎样消除或削弱系统误差的影响?一是在观测过程中采取一定的措施;二是在观测结果中加入改正数。

8、测量平差的任务是什么?⑴求观测值的最或是值(平差值);⑵评定观测值及平差值的精度。

第二章:误差理论与平差原则1、描述偶然误差分布常用的三种方法是什么?⑴列表法;⑵绘图法;⑶密度函数法。

2、偶然误差具有哪些统计特性?(1) 有界性:在一定的观测条件下,误差的绝对值不会超过一定的限值。

(2) 聚中性:绝对值较小的误差比绝对值较大的误差出现的概率要大。

(3) 对称性:绝对值相等的正负误差出现的概率相等。

(4) 抵偿性:偶然误差的数学期望或偶然误差的算术平均值的极限值为0。

3、由偶然误差特性引出的两个测量依据是什么?⑴制定测量限差的依据;⑵判断系统误差(粗差)的依据。

4、什么叫精度?精度指的是误差分布的密集或离散的程度。

5、观测量的精度指标有哪些?(1) 方差与中误差;(2) 极限误差;(3) 相对误差。

6、极限误差是怎样定义的?在一定条件下,偶然误差不会超过一个界值,这个界值就是极限误差。

通常取三倍中误差为极限误差。

当观测要求较严时,也可取两倍中误差为极限误差。

7、误差传播律是用来解决什么问题的? 误差传播律是用来求观测值函数的中误差。

8、应用误差传播律的实际步骤是什么? (1) 根据具体测量问题,分析写出函数表达式),,,(21n x x x f z =;(2) 根据函数表达式写出真误差关系式n nx x f x x f x x f z ∆∂∂++∆∂∂+∆∂∂=∆ 2211; (3) 将真误差关系式转换成中误差关系式。

测量平差题目及答案

《误差理论与测量平差基础》课程试卷A2010-06-27 11:30:49 来源:《误差理论与测量平差基础》课程网站浏览:4次武汉大学测绘学院2007-2008学年度第二学期期末考试《误差理论与测量平差基础》课程试卷A出题者课程小组审核人班级学号姓名成绩一、填空题(本题共20个空格,每个空格1.5分,共30分)1、引起观测误差的主要原因有(1)、(2)、(3)三个方面的因素,我们称这些因素为(4)。

2、根据对观测结果的影响性质,观测误差分为(5)、(6)、(7)三类,观测误差通过由于(8)引起的闭合差反映出来。

3、观测值的精度是指观测误差分布的(9)。

若已知正态分布的观测误差落在区间的概率为95.5%,则误差的方差为(10),中误差为(11)。

4、观测值的权的定义式为(12)。

若两条水准路线的长度为、,对应的权为2、1,则单位权观测高差为(13)。

5、某平差问题的必要观测数为,多余观测数为,独立的参数个数为。

若,则平差的函数模型为(14)。

若(15),则平差的函数模型为附有参数的条件平差。

6、观测值的权阵为,的方差为3,则的方差为(16)、的权为(17)。

7、某点的方差阵为,则的点位方差为(18)、误差曲线的最大值为(19)、误差椭圆的短半轴的方位角为(20)。

二、简答题(本题共2小题,每题5分,共10分)1、简述观测值的精度与精确度含义及指标。

在什么情况下二者相同?2、如图1所示,A、B、C、D为已知点,由A、C分别观测位于直线AC上的点。

观测边长、及角度、。

问此问题的多余观测数等于几?若采用条件平差法计算,试列出条件方程式(非线性方程不必线性化)。

图1三、(10分)其它条件如上题(简答题中第2小题)。

设方位角,观测边长,中误差均为,角度、的观测中误差为。

求平差后点横坐标的方差(取)。

四、(10分)采用间接平差法对某水准网进行平差,得到误差方程及权阵(取)(1)试画出该水准网的图形。

(2)若已知误差方程常数项,求每公里观测高差的中误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测量平差复习题及答案 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】测量平差复习题及答案一、综合题1.已知两段距离的长度及中误差分别为cmm5.4465.300±及cmm5.4894.660±,试说明这两段距离的真误差是否相等他们的精度是否相等答:它们的真误差不一定相等;相对精度不相等,后者高于前者。

2.已知观测值向量⎪⎪⎭⎫⎝⎛=2121LLL的权阵为⎥⎥⎦⎤⎢⎢⎣⎡=32313132LLP,现有函数21LLX+=,13LY=,求观测值的权1LP,2LP,观测值的协因数阵XYQ。

答:12/3LP=;22/3LP=;3XYQ=3.在下图所示三角网中,A.B为已知点,41~PP为待定点,已知32PP边的边长和方位角分别为0S和0α,今测得角度1421,,,LLL 和边长21,SS,若按条件平差法对该网进行平差:(1)共有多少个条件方程各类条件方程各有多少个(2)试列出除图形条件和方位角条件外的其它条件方程(非线性条件方程不要求线性化)答:(1)14216,6,10n tr =+=== ,所以图形条件:4个;极条件:2个;边长条件:2个;基线条件:1个;方位角条件:1个 (2)四边形14ABPP 的极条件(以1P 为极):34131241314ˆˆˆˆsin()sin sin 1ˆˆˆˆsin sin sin()L L L L L L L L +⋅⋅=+ 四边形1234PP P P 的极条件(以4P 为极):10116891167ˆˆˆˆsin()sin sin 1ˆˆˆˆsin sin sin()L L L L L L L L +⋅⋅=+ 边长条件(1ˆAB S S - ):123434ˆˆˆˆˆˆsin()sin()AB S S L L L L L =+++ 边长条件(12ˆˆS S - ):1121314867ˆˆˆsin ˆˆˆˆˆsin()sin sin()S L S L L L L L ⋅=++ 基线条件(0AB S S - ):02101191011ˆˆˆˆˆsin()sin()S S L L L L L =+++4.A .B .C 三点在同一直线上,测出了AB .BC 及AC 的距离,得到4个独立观测值,m L 010.2001=,m L 050.3002=,m L 070.3003=,m L 090.5004=,若令100米量距的权为单位权,试按条件平差法确定A .C 之间各段距离的平差值Lˆ。

答:ˆ[200.0147,300.0635,300.0635,500.0782]T L=5.在某航测像片上,有一块矩形稻田。

为了确定该稻田的面积,现用卡规量测了该矩形的长为cm L 501=,方差为22136.0cm =σ,宽为cm L 302=,方差为22236.0cm =σ,又用求积仪量测了该矩形的面积231535cm L =,方差为42336cm =σ,若设该矩形的长为参数1ˆX ,宽为参数2ˆX ,按间接平差法平差:(1)试求出该长方形的面积平差值;(2)面积平差值的中误差。

答:(1)令0111ˆX X x =+,0222ˆX X x =+,011X L =,022X L =,误差方程式为:1122312ˆˆ305035v xv xv v v ===+-令:10013050B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,0035L ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,单位权方差为2036σ=,则法方程为:T T B PBX B PL =,可得:120.30.5x X x ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,则0111ˆ50.3X X x =+=,0222ˆ30.5X X x =+= 所以面积平差值为2312ˆˆˆ50.3*30.51534L X X cm ===(2)2200.35T V PVcm rσ== ()12112212ˆˆˆˆˆˆˆˆˆdXdS X dX X dX X X dX ⎛⎫=+= ⎪ ⎪⎝⎭,所以ˆˆ98.94SS Q =则2ˆ 3.4814S cm σσ==±6.如图水准网中,A 为已知点,高程为10.000A H m =,观测高差及路线长度为:m h 563.21=,km S 11=;m h 326.12-=,km S 12=;m h 885.33-=,km S 23=;m h 883.34-=,km S 24=;若设参数12334ˆˆˆˆˆˆˆTTBX X X X H h h ⎡⎤⎡⎤==⎣⎦⎣⎦,定权时C= 2 km ,试列出:(1)、误差方程和限制条件;(2)、法方程式。

答:(1)误差方程为:112231243ˆˆˆˆ4ˆv x v x v x x v x=⎧⎪=⎪⎨=++⎪⎪=⎩ 限制条件为:13ˆˆ20xx --= (2)法方程为:1234ˆ31004ˆ130140ˆ00110ˆ01102x x xx-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ 7.设对某量进行了两组观测,得到观测值的真误差如下: 第一组:3,-3,2,4,-2,-1,0,-4,3,-2 第二组:0,-1,-7,2,1,-1,8,0,-3,1 试回答如下问题:(1)两组值的平均误差1ˆθ、2ˆθ和中误差1ˆσ、2ˆσ(2)这两组观测值的精度,哪一组精度高,为什么答:(1)1ˆθ=,2ˆθ=;1ˆσ=,2ˆσ=(2)两组观测值的平均误差相同,而中误差不同,由于中误差对大的误差反应敏感,故通常采用中误差作为衡量精度的指标,本题中1ˆσ<2ˆσ,故第一组观测值精度高。

8.设对丈量10km 的距离同精度丈量10次,令其平均值的权为5,现以同样等级的精度丈量的距离。

问丈量此距离一次的权是多少。

(问答题,10分)答:一次观测值的权倒数1025N C P === ,所以每次丈量10km 距离的权为:100.5P =长度为i S 距离的权为:1i i C P S = ,则112.510,2.510C C P P == ,所以15C = 故12.522.5C P == 9.下列各式中的()1,2,3i L i =均为等精度独立观测值,其中误差为σ,试求下列函数的中误差:(1)()12312X L L L =++;(2)321L L L Y =答:(1)3x σ= (2)3x σ=10.在图一所示测角网中,A 、B 、C 为待定点,同精度观测了1L 、2L 、3L 和4L 共四个角度观测值。

设平差后BAC ∠为参数Xˆ。

(1)试指出采用何种平差模型; (2)写出函数模型和法方程。

答:采用附有参数的条件平差模型;平差方程为:123ˆˆˆ1800L L L ++-= 34ˆˆ3600L L +-= 1ˆˆ0L X -= 则条件方程为:12313421300ˆ0v v v w v v w v x w +++=⎧⎪++=⎨⎪-+=⎩ ,其中闭合差方程为1123234031w L L L w L L w L X ⎧=++⎪=+⎨⎪=-⎩,建立法方程为: 1122333110120001011ˆ0100k w k w k w x⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎪+= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 11.有水准网如下图,网中A .B 为已知水准点,高程m H A 013.12+=.m H B 013.10+=可视为无误差,C .D 为待定点,共观测了四个高差,高差观测值及相应水准路线的距离为:km S 21=,m h 004.11-=,km S 12=,m h 516.12+=,km S 23=,m h 512.23+=,km S 5.14=,m h 520.14+=。

试用条件平差法求C和D 两点高程的平差值。

答:4,2n t == ,所以2r = ,条件方程如下:12324ˆˆˆ0ˆˆ0A Bh h h H H h h ⎧+-+-=⎪⎨-=⎪⎩ 以ˆi i ih h v =+ 代入上式,可得上述方程的最终形式为: 123411100001014v v v v ⎛⎫⎪-⎛⎫⎛⎫ ⎪-= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎪ ⎪⎝⎭,以1km 观测高差为单位权观测,则法方程为:1212502.540k k k k +=⎧⎨+-=⎩ ,解得120.35, 1.74k k =-= 进而求得()0.74 1.40.7 2.6TV mm =--观测值的平差值为:1234ˆˆˆˆ1.0047, 1.5174, 2.5127, 1.5174L m L m L m L m =-=== 则C 、D 两点的平差高程为:11.0083,12.5257C D H m H m ==12.设在三角形ABC 中,观测三内角321,,L L L ,将闭合差平均分配后得到的各角之值为014489ˆ,025050ˆ,030140ˆ321'''='''='''= L L L ,如下图。

它们的协方差阵为⎪⎪⎪⎭⎫⎝⎛------=633363336LLD ,已知边长m S 000.15000=(无误差),试求b a S S ,的长度和它们的协方差SS D 。

答:013023ˆˆˆˆsin /sin 967.679,sin /sin 1150.573a b S S L L m S S L L m ==== 对函数式取自然对数,并微分得:331213231323ˆˆˆˆcos cos cos cos ˆˆˆˆ,ˆˆˆˆsin sin sin sin a b a b dS L dS L L L dL dL dL dL S S L L L L ==== 即1132233ˆˆˆ0ˆˆˆ0ˆa a a b b b dLdS S ctgL S ctgL dS dL dS S ctgL S ctgL dL ⎛⎫ ⎪⎛⎫-⎛⎫== ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭ ⎪⎝⎭则23263311460114604 1.860.7713630962096250.77 1.32(20610)33645SS D cm --⎛⎫⎛⎫--⎛⎫⎛⎫ ⎪⎪=--⨯= ⎪ ⎪ ⎪⎪--⨯⎝⎭⎝⎭⎪⎪----⎝⎭⎝⎭。

相关文档
最新文档