新人教版七年级上册数学第4章 图形认识初步全章教案

合集下载

人教版数学七年级(上册)第四章几何图形初步:(教案)

人教版数学七年级(上册)第四章几何图形初步:(教案)
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如用尺子和量角器测量三角形的边长和角度。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“几何图形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-空间观念的培养:学生空间想象力不足,对几何图形的空间位置关系理解困难。
举例:在讲解几何证明时,教师可以通过举例说明,让学生理解如何运用已知性质定理进行推理。同时,针对面积计算的难点,教师可以设计一些实际问题,引导学生运用所学方法解决问题,提高学生解决问题的能力。
四、教学流程
(一)导入新课(用时5分钟)
最后,我觉得自己在教学难点和重点的把握上还有待提高。在今后的教学中,我要更加注重对学生难点的突破,通过丰富多样的教学手段和策略,帮助学生克服学习困难,提高他们的几何素养。同时,也要关注学生的反馈,不断调整教学节奏,确保每个学生都能跟上课程进度,真正实现因材施教。
举例:在讲解点、线、面时,教师要强调它们是构成几何图形的基础元素,并通过实际操作让学生理解它们之间的关系。
2.教学难点
-理解几何图形的抽象概念:学生对几何图形的理解往往停留在具体形象明的逻辑推理过程掌握不足,难以运用性质定理进行证明。
-面积计算方法的应用:学生在解决实际问题时,难以灵活运用所学面积计算方法。
人教版数学七年级(上册)第四章几何图形初步:(教案)
一、教学内容
人教版数学七年级(上册)第四章几何图形初步:
4.1点、线、面
4.1.1了解点的概念,掌握点的基本性质
4.1.2学习直线、射线、线段的定义及表示方法

最新人教版七年级上第四章几何图形初步教案

最新人教版七年级上第四章几何图形初步教案

4.1 立体图形与平面图形 ( 1)教课对象:七年级( 1)、( 6)班教课时间: 2017、 11、 17教课器具: PPT课件、教课设计、课本等教课目的 :1、知识与技术:能够从简单实物的外形中抽象出几何图形,并认识立体图形与平面图形的差别;2、过程与方法:会判断一个几何图形是立体图形仍是平面图形,能正确辨别棱柱与棱锥.3、感情态度与价值观:经过察看、对照,概括出立体图形和平面图形的看法,并进一步认识常有的棱柱和棱锥等立体图形.教课要点:立体图形和平面图形的看法.教课难点:从实物的外形中抽象出几何图形.教课过程:一、导入:察看这个纸盒, 从中能够看出哪些你熟习的图形?从整体上看,它的形状是__长方体 _ ;看不一样的侧面,获取的是_正方形 _或_长方形;看棱获取的是____ 线段 __;看极点获取的是__点 ____ .说一说下边这些几何图形有什么共同特色?有些几何图形的各部分不都在同一平面内,它们是立体图形.请再举出一些立体图形的例子.二、图形的初步认识认识一下棱柱和棱锥你能再举出一些棱柱、棱锥的实例吗?图 4.1- 4中实物的形状对应哪些立体图形?把相应的实物与图形用线连结起来.说一说下边这些几何图形又有什么共同特色?有些几何图形的各部分都在同一平面内, 它们是平面图形.下边各图中包括哪些简单的平面图形?请再举出一些平面图形的例子.三、练习提高:1. 如图,说出以下图中的一些物体的形状所对应的立体图形.2. 图中的各立体图形的表面包括哪些平面图形?试指出这些平面图形在立体图形中的地点.3. 如图 , 你能看到哪些立体图形?(第 3题) (第4题)4 . 如图 , 你能看到哪些平面图形?四、小结:本节课主要学习了立体图形和平面图形的看法,并初步经历了由详细实物的外形中抽象出几何图形的过程,体验到了现实生活与数学的亲密联系.五、作业:1.结称身旁的实质物体 ,看一看能够获取哪些几何图形 ,此中哪些是立体图形 ?哪些是平面图形 ?说出来与同学沟通一下 .2.着手画一画你所熟习的立体图形.3.采用适合的资料和工具,做一个三棱柱和一个四棱锥.4.1 立体图形与平面图形(2)教课对象:七年级( 1)、( 6)班教课时间: 2017、 11、 17教课器具: PPT课件、教课设计、课本等教课目的 :1、知识与技术:能够画出从不一样方向看一些常有的立体图形所获取的平面图形.2、过程与方法:能够依据从不一样方向看一个立体图形获取的平面图形, 想象并描绘它的形状 .3、感情态度与价值观:领会立体图形与平面图形的互相转变关系教课要点:从正面、左面、上边看一些简单几何体或它们的组合获取平面图形.教课难点:正确画出察看所得的平面图形.教课过程:四、导入:对于一些立体图形的问题,常把它们转变为平面图形来研究和办理 . 从不一样方向看立体图形 , 常常会获取不一样形状的平面图形 . 在建筑、工程等设计中 , 也经常用从不一样方向看到的平面图形来表示立体图形 .这是一个工件的立体图, 设计师们经常画出从不一样方向看它获取的平面图形来表示它.二、解说新课:例 1:分别从正面、左面、上边察看这个长方体,看一看各能获取什么平面图形?例 2:分别从正面、左面、上边看圆柱、圆锥、球,各能获取什么平面图形?例 3:分别从正面、左面、上边察看三棱柱和四棱锥,看一看各能获取什么平面图形?提示:可见棱应画为实线形线段;不行见棱应画为虚线形线段.三、稳固提高:练习:如图,右边三幅图分别是从哪个方向看这个棱柱获取的?练一练:分别从正面、左面、上边察看下边的立体图形,各能获取什么平面图形?四、小结:这节课我们主要学习了从不一样方向看立体图形获取平面图形,回首学习过程,谈一谈自己有哪些学习成就 .(据学生回答状况睁开讲)五、作业:教科书习题 4.1 第 4 题 .4.1 立体图形与平面图形(3)教课对象:七年级( 1)、( 6)班教课时间: 2017、 11、 18教课器具: PPT课件、教课设计、课本等教课目的 :1、知识与技术:能画出简单的几何体的睁开图;2、过程与方法:能依据睁开图判断几何体的形状,并能理解这样做的现实意义3、感情态度与价值观:对峙体图形进行定量研究的认知教课要点:经过“睁开”和“围成”两种门路认识常有几何体的睁开图.教课难点:剖析理解正方体的11 种睁开图的画法等教课过程:五、导入:这些精巧的包装盒是怎么制成的?好依据它来要设计、制作一个包装盒,除了美术设计以外,还要认识它睁开后的形状,准备资料,这就是我们今日学习的立体图形的睁开图.二、实践感知:自己着手把一个包装盒剪开摊平,看看它的睁开图由哪些平面图形构成?再把睁开的纸板复原为包装盒,领会包装盒与它的睁开图的关系.三、研究常有的立体图形的睁开图:将正方体的表面沿棱适合剪开,察看它的睁开图是如何的,而后画出表示图. (沿着不同的棱剪开,会获取不一样的睁开图,比一比,看谁获取的结果多!)正方体的睁开图有11 种基本状况:练习 : 以下图形中能够作为一个正方体的睁开图的是().下边是一些立体图形的睁开图,用它们能围成什么样的立体图形?把它们画在一张硬纸片上,剪下来,折叠、粘贴,看看获取的图形和你想象的能否相同.制作立体模型的步骤: 1 .画出睁开图; 2 .裁剪、折叠、粘贴; 3 .修饰、加工.练习 1.将正确答案的序号填在横线上:圆柱的睁开图是———;圆锥的睁开图是————;三棱柱的睁开图是____.练习 2.如图是一个小正方体的睁开图,把睁开图折叠成小正方体后, 与有“建”字的一面相对的那一面上的字是().五、小结:这节课我们学习了将立体图形睁开成平面图形,认识了多种立体图形的睁开图,而且从展开图的角度进一步认识了立体图形与平面图形的转变关系.回首本节课的学习,你掌握了什么本领 ?向大家报告一下!六、作业:习题 4.1 第 6、7 题.4.2 直线、射线、线段(1)教课对象:七年级( 1)、( 6)班教课时间: 2017、 11、 18教课器具: PPT课件、教课设计、课本等教课目的 :1、知识与技术:能联合几何模型或身旁环境,指出体、面、线、点,并能划分平面和曲面、直线和曲线;2、过程与方法:能从运动、会合的角度描绘点、线、面、体的关系,并能适合地举例来说明它们的关系;3、感情态度与价值观:初步领会“详细→抽象→详细”的认知方法.教课要点:点、线、面、体的看法.教课难点:从实物或模型中抽象出看法,并举出切实的实例描绘看法.教课过程:六、导入:问题 : 物体的构成常常包括多种元素,几何图形也是这样.察看长方体模型,它有几个面?面与面订交的地方形成了几条线?线与线订交成几个点,三棱柱呢?察看可知 :长方体有 ____个面,面与面订交的地方形成了___条线,线与线订交成____个点;三棱柱有 ____ 个面 ,面与面订交的地方形成了___条线,线与线订交成____个点.二、新课解说:我们先来认识“体” .察看一本书、圆罐、篮球,从它们外形中分别能够抽象出什么立体图形?请再举出一些你所熟习的立体图形.概括 : 长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体简称体.以以下图 : 四棱锥有 ____个面;圆柱有 ____个面;圆锥有 ___个面 . 再联想上一课“睁开图”的知识,能够得出结论:包围着体的是 ___.察看这些面,它们有差别吗?面是有区其余,能够分为平面和曲面;围成体的面不过平面或曲面的一部分 .练一练:围成下边这些几何体的各个面中,哪些面是平的?哪些面是曲的?察看几何体模型,回答以下问题:(1)面与面订交的地方形成了什么图形?它们有什么不一样?(2)线与线订交的地方形成了什么图形?它们有什么不一样?结论:面与面订交的地方形成线,线分为直线和曲线;线与线订交的地方是点,点只代表地点,没有大小,因此点都是相同的 .物体的运动会留下运动轨迹 , 这些运动轨迹常常也能抽象成几何图形 . 假如把笔尖当作一个点, 这个点在纸上运动时 , 形成的图形是什么 ?着手试一试 .概括结论:点动成线汽车的雨刷在挡风玻璃上画出一个扇面,从几何的角度察看这类现象,你能够得出什么结论?(线动成面)既然“点动成线,线动成面”,那么请同学们想想:当面运动时又会形成什么图形?如何考证你的猜想?(面动成体)练习 : 如图 , 上边的平面图形绕轴旋转一周 , 能够得出下边的立体图形 , 把有对应关系的平面图形与立体图形连结起来 .三、小结:1.谈一谈你认识到的点、线、面、体及它们之间的关系.2.说一说经过今日的学习你对四周环境有了哪些新的认识.3.想想在获取一个结论的过程中,我们都经历哪几个环节,这对你未来研究新知识有何帮助?四、作业:习题 4.1 第 5题.4.2 直线、射线、线段(2)教课对象:七年级( 1)、( 6)班教课时间: 2017、 11、 19教课器具: PPT课件、教课设计、课本等教课目的 :1、知识与技术:研究获取“两点确立一条直线”的事实,并能举例说明这一事实;2、过程与方法:理解直线、射线、线段的看法并掌握其表示法,认识他们之间的练习与差别;3、感情态度与价值观:能读懂简单的几何语言并据此作出图形.教课要点:直线、射线、线段的看法及其表示法.教课难点:直线、射线、线段的看法、性质、表示法、画法及计算教课过程:七、导入:问题 1:小学的时候我们已经学习过直线、射线和线段,请同学们回想一下他们的形状并分别画出一条直线、射线和线段.问题 2:如图,经过一点O画直线,能画几条?经过两点A、 B 呢?问题 3 :你还可以举出一些实质生活中应用“两点确立一条直线”的实例吗?(木工用的墨线、砌墙时的拉线)二、概括完美,丰富新知问题 4 :联合直线自己的特色,请同学们想想,我们该如何表示一条直线呢?这样表示有什么道理?直线 AB 或直线 l直线有两种表示方法:( 1)能够用一个小写字母表示直线;(2)由于“两点确立一条直线”,因此也能够用直线上的两点表示直线问题 5:当点与直线、直线与直线同时在一个图形中出现的时候,我们应如何描绘它们之间的关系呢?如图试着描绘图中点与直线、直线与直线的关系.概括:( 1)点与直线的地点关系:点在直线上(直线经过点);点不在直线上(直线不经过点).(2)当两条不一样的直线有一个公共点时,我们就称这两条直线订交,这个公共点叫做他们的交点.三、即时练习,稳固新知问题 6:( 1)用适合的语句描绘图中点与直线,直线与直线的关系.(2)按以下语句画出图形:①直线 EF经过点 C;②点 A 在直线 l 外;③直线 AB 与直线 CD 订交于点 A.问题 7 :射线和线段都是直线的一部分,类比直线的表示方法,你以为应如何适合的表示射线和线段呢?请你举出一些生活中能当作射线、线段的实例.问题 8 :(1 )已知线段 AB,你能由线段 AB 获取直线 AB 和射线 AB 吗?( 2)可否用几何语言简单描绘一下直线、射线、线段?问题 9 :填写表格,概括直线、射线、线段的联系与差别.问题 10:( 1)判断以下说法能否正确:①线段 AB 与射线 AB 都是直线AB 的一部分;②直线 AB 与直线 BA 是同一条直线;③射线 AB 和射线 BA 是同一条射线;④把线段向一个方向无穷延长可获取射线,把线段向两个方向无穷延长可获取直线.四、小结:经过本节课的学习,你知道了什么?学会了什么?意会了什么?(据学生回答状况睁开回首)五、作业:习题 4.2 第 1, 2,3,4 题.4.2 直线、射线、线段(3)教课对象:七年级( 1)、( 6)班教课时间: 2017、 11、 19教课器具: PPT课件、教课设计、课本等教课目的 :1、知识与技术:理解“两点确立一条直线”的基本领实,掌握直线、射线、线段的表示方法,理解直线、射线、线段的联系与差别.2、过程与方法:能够理解“经过” 、“确立”等几何语言的意义,并能依据几何语言画出简单的图形.3、感情态度与价值观:激发学习兴趣,培育应企图识.教课要点:直线、射线、线段的表示方法教课难点:“直线、射线、线段”有关的图形的画法及它们之间的差别.教课过程:八、导入:问题 1 :老师手里的纸上有一条线段,你能在你的本上作出一条相同大小的线段来吗?九、新课解说:问题 2 :黑板上有两条线段,你能判断一下它们的长短吗?你有什么方法来考证你的判断?1.胸怀法2.叠合法(叠合法要注意什么问题?)练习 1 :判断线段AB 和 CD的大小 .( 1)如图 1,线段 AB 和 CD的大小关系是AB CD;( 2)如图 2,线段 AB 和 CD的大小关系是AB CD;( 3)如图 3,线段 AB 和 CD的大小关系是AB CD.问题 3: 如图,线段 AB和 AC的大小关系是如何的?线段AC与线段 AB 的差是哪条线段?你还可以从图中察看出其余线段间的和、差关系吗?问题 4: 如图,已知线段 a 和线段 b,如何经过作图获取 a 与 b 的和、a 与 b 的差呢?问题 5 :如图,已知线段a,求作线段AB= 2a.点 B 把线段 AC 分红相等的两条线段 AB 与 BC,点 B 叫做线段 AC 的中点 ,可知 AB= BC =1/2 AB. 那么什么叫做三均分点?四均分点呢?三、稳固提高:练习 2:预计以下图形中AB、 AC 的大小关系,再用刻度尺或圆规查验你的预计.练习 3:如图,已知线段a、 b,画一条线段使它等于2a- b.四、拓展:问题 6: 如图,从 A 地到 B 地有四条道路,除它们以外可否再修一条从 A 地到 B 地的最短道路?假如能,请联系你从前所学的知识,在图上画出最短路线.1.两点的全部连线中,线段最短 . 简单地说 :两点之间,线段最短 .2.连结两点间的线段的长度,叫做这两点的距离.五、小结:六、作业:习题 4.2 第 5~8 题.4.3 角( 1)教课对象:七年级( 1)、( 6)班教课时间: 2017、 11、 24教课器具: PPT课件、教课设计、课本等教课目的 :1、知识与技术:理解角的定义和有关看法,用运动的看法理解角、平角、周角等看法,掌握角的表示方法.2、过程与方法:经过研究角的静态定义和角的表示方法,在学习知识的过程中领会研究几何图形的方法和步骤.3、感情态度与价值观:经过从较为复杂的几何图形中鉴别角,培育辨别图形的能力.教课要点:角的看法及其表示方法.教课难点:角的表示方法.教课过程:十、导入:我们知道,线段是一种基本的几何图形,角也是一种基本的几何图形.在小学我们已经对角有些浅显的认识,本节课在已有的知识基础上,我们将对角作进一步的研究.(PPT展现生活中有关角的图片)十一、新课解说:角 : 有公共端点的两条射线构成的图形叫做角 . 公共端点叫角的极点,两条射线叫角的边. ——角的静态定义 .角的表示如图,如何表示这个角?角用符号“∠”来表示.(1)用三个大写字母:∠AOB或∠BOA;或用一个大写字母:∠O.(2)用一个数字加弧线表示:(3)用一个小写希腊字母加弧线表示:三、稳固提高:四、小结:五、作业:1、课本中练习 1.2、 (1)过 25 min ,钟表的分针转过了多少度的角?时针呢?(2) 5 时 30 分,钟表的时针和分针构成多少度的角?8 时 20 分呢? 1 时 15分呢 ?4.3 角( 2)教课对象:七年级( 1)、( 6)班教课时间: 2017、 11、 24教课器具: PPT课件、教课设计、课本等教课目的 :1、知识与技术:认识角度制,经过与时间单位相类比,理解和掌握角的度分秒及其换算 .2、过程与方法:经过回想量角器的使用方法,获取用量角器作一个角等于已知角的方法,从而从数的角度认识角.3、感情态度与价值观:经过分组议论解决问题,培育合作沟通的意识.教课要点:角的胸怀单位及其换算.教课难点:角的胸怀单位换算.教课过程:十二、导入:1.如图,点O是直线 AB上随意一点, OC、 OD、 OE是三条射线,图中共有几个小于平角的角? (9 个)DCEA O B2.假如把钟表的时针在任一时辰所在的地点作为开端地点,那么时针旋转出一个平角及一个周角,起码各需要多长时间?(6小时,12小时)把一个周角360 均分,每一份就是 1 度的角,记做1° . 除了“度”以外,还有其余的胸怀单位吗?角的度、分、秒是60 进制的,这和计量时间的时、分、秒是相同的.1 °的 60 分之一为 1 分,记作1′,即 1°= 60′1′的 60 分之一为 1 秒,记作 1″,即 1′= 60″二、角的胸怀:已知∠ AOB,用量角度量出它的度数.用量角器胸怀角的方法:1. 对中——角的极点对量角器的中心;2. 重合——角的一边与量角器的零线重合;3. 读数——读出角的另一边所对的度数.如图,已知∠ AOB,画∠ EOF=∠AOB,你有什么方法?先量,再画 .三、小结:谈谈本节课你的收获. (据学生回答状况睁开回首)四、作业:习题 4.3 第 2,3, 14, 15 题4.3 角( 3)教课对象:七年级( 1)、( 6)班教课时间: 2017、 11、 25教课器具: PPT课件、教课设计、课本等教课目的 :1、知识与技术:理解角的大小、和差、角均分线的几何意义及数目关系,并会用文字语言、图形语言、符号语言进行综合描绘.2、过程与方法:经历类比线段的长短、和差、中点学习角的大小、和差、角均分线等过程,领会类比思想.3、感情态度与价值观:感觉学习过程中的类比思想.教课要点:角的大小、和差、角均分线的几何意义及数目关系.教课难点:角的比较,角的和差,角均分线.教课过程:十三、导入:1.角是如何形成的图形?2.请同学们回想一下,前方我们学习了线段的哪些内容?3.如图,已知线段 AB、 CD,你有哪些方法比较它们的大小?A B C D二、角的比较:类比线段大小的比较,你以为该如何比较两个角的大小?试着绘图来解决。

人教版七年级数学上册第四章《几何图形初步》教学设计

人教版七年级数学上册第四章《几何图形初步》教学设计

人教版七年级数学上册第四章《几何图形初步》教学设计一. 教材分析人教版七年级数学上册第四章《几何图形初步》是学生学习几何的入门章节,主要内容包括:平面图形的性质、相交线、平行线、垂直、角的度量等。

本章节的目的是让学生掌握一些基本的几何图形和概念,培养学生观察、思考、动手操作的能力。

二. 学情分析七年级的学生已经具备了一定的空间想象能力和逻辑思维能力,他们对平面图形有一定的认识。

但部分学生可能对一些几何概念和性质的理解还不够深入,因此在教学过程中需要注重引导学生从实际操作中理解和掌握知识。

三. 教学目标1.知识与技能:使学生掌握平面图形的性质,学会用直尺和圆规作图,理解相交线、平行线、垂直的概念。

2.过程与方法:培养学生观察、思考、动手操作的能力,提高空间想象能力。

3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的逻辑思维能力。

四. 教学重难点1.教学重点:平面图形的性质,相交线、平行线、垂直的概念及性质。

2.教学难点:相交线、平行线、垂直的判断和证明。

五. 教学方法1.情境教学法:通过实物、模型等引导学生直观地认识几何图形。

2.动手操作法:让学生通过实际操作,加深对几何概念和性质的理解。

3.讨论法:引导学生分组讨论,培养学生的合作精神和沟通能力。

4.讲解法:教师针对重难点进行讲解,帮助学生理解和掌握知识。

六. 教学准备1.教具:直尺、圆规、模型、实物等。

2.课件:制作与本章节内容相关的课件,以便进行直观教学。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的几何图形,如教室里的桌子、窗户等,引导学生关注平面图形,激发学生学习兴趣。

2.呈现(10分钟)教师通过课件展示平面图形的性质,如三角形、矩形的性质,引导学生直观地认识和理解。

3.操练(10分钟)教师布置一些实际操作题,如用直尺和圆规作图,让学生动手操作,加深对几何概念的理解。

4.巩固(10分钟)教师针对本节课的重点知识进行提问,检查学生对知识的理解和掌握程度。

人教版数学七年级上册《 第四章 几何图形初步 》教学设计

人教版数学七年级上册《 第四章 几何图形初步 》教学设计

人教版数学七年级上册《第四章几何图形初步》教学设计一. 教材分析《第四章几何图形初步》是人教版数学七年级上册的重要内容,主要包括平面几何图形的性质和判定,以及几何图形的画法。

本章内容为学生提供了丰富的图形信息,培养学生的空间想象能力、逻辑思维能力和创新能力。

本章内容在日常生活中和后续学习中都有广泛的应用,对于学生形成完整的数学知识体系具有重要意义。

二. 学情分析学生在进入七年级之前,已经学习了初步的数学知识,对数学有了一定的认识。

但七年级的学生刚刚接触几何图形,对几何图形的性质和判定可能感到抽象难懂。

因此,在教学过程中,教师需要关注学生的认知水平,采取适当的教学方法,激发学生的学习兴趣,帮助学生理解和掌握几何图形的初步知识。

三. 教学目标1.知识与技能:使学生了解平面几何图形的基本概念,掌握一些基本的几何性质和判定方法,学会用几何语言描述几何图形。

2.过程与方法:培养学生观察、分析、归纳和推理的能力,提高空间想象能力。

3.情感态度与价值观:激发学生学习几何图形的兴趣,培养学生的创新意识和团队协作精神。

四. 教学重难点1.重点:平面几何图形的基本性质和判定方法。

2.难点:几何图形的性质和判定在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例和实际问题,激发学生的学习兴趣,引导学生理解和掌握几何图形的性质和判定。

2.互动教学法:教师与学生、学生与学生之间的讨论和交流,提高学生的参与度和积极性。

3.实践教学法:让学生动手操作,培养学生的实践能力和创新能力。

4.归纳教学法:引导学生通过观察、分析、归纳和推理,发现几何图形的性质和判定方法。

六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习状况,设计教学活动和教学评价。

2.学生准备:预习教材,了解基本的几何图形概念。

3.教学资源:多媒体课件、几何模型、练习题等。

七. 教学过程1.导入(5分钟)教师通过生活实例或实际问题,引入几何图形的概念,激发学生的学习兴趣。

最新人教版七年级数学上册教案:第四章 几何图形初步

最新人教版七年级数学上册教案:第四章 几何图形初步

第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时认识几何图形【知识与技能】通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.【过程与方法】能由实物形状想象出几何图形,由几何图形想象出实物形状,进一步丰富学生对几何图形的感性认识.【情感态度】从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发学生对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成参与数学活动、主动与他人合作交流的意识.【教学重点】识别简单几何体.【教学难点】从具体事物中抽象出几何图形.一、情境导入,初步认识播放北京奥运会的比赛场馆宣传片.导语:2008年奥运会在我国首都北京举行,尽管已成为历史的记忆,但它永远铭刻在每一个中国人的心中,让我们一起来看看北京奥运会国家体育场(鸟巢)图.(出示章前图)你能从中找到一些熟悉的图形吗?学生看书小组讨论交流.引导学生从周围的事物(如建筑物、地板、围墙、公园等)找到一些美丽图形的图片或实物,互相交流,并思考在这些图片或实物中有我们熟悉的图形吗?【教学说明】奥运会的成功举办向全世界展现了我们祖国的综合国力,选用2008年北京奥运会国家体育场(鸟巢)图作为引例能调动学生的学习兴趣,同时对学生进行爱国主义教育,增强他们的民族自信心和自豪感.通过多媒体向学生展示丰富的图形世界,给学生带来直观感受,让学生体会图形世界的多姿多彩;在此基础上,要求学生从中找出一些熟悉或不熟悉的几何图形,并结合生活中具体例子(如建筑设计、艺术设计等),说明研究几何图形的应用价值,从而调动学生学习的积极性,激发学习的兴趣.二、思考探究,获取新知找一找探索教材第115页思考题并出示实物(如地球仪、字典及魔方等)及多媒体演示(如谷堆、铅笔、帐篷、卢浮宫、金字塔等),它们与我们学过的哪些图形相类似?【教学说明】长方体、正方体、圆柱、圆锥、球都是学生已经学习过的图形,棱柱、棱锥也是学生很熟悉的图形,通过找一找,结合具体实例引入.从熟悉的生活中识别立体图形,不仅帮助学生理解,而且让他们感受生活中处处有数学.议一议出示已准备好的教具棱柱、圆柱、棱锥、圆锥模型,让学生看一看,比较观察后说说它们的异同.(教师巡视指导,提倡学生尽量用自己的语言描述,互相补充.)看一看再动手摸一摸,观察、感觉几何体之间的联系与区别,是为了更好地识别几何体.想一想生活中还有哪些物体的形状类似于这些立体图形呢?小组讨论后回答.教师提醒学生体会几何图形与生活的密切联系.赛一赛小组长组织组员完成教材第116页思考题,并进行学习汇报.让学生主动参与学习活动,自主完成平面图形学习,交流各自的学习成果,培养学生的自主学习能力.三、典例精析,掌握新知例1 如图,将下列两个图形沿AB剪开,再展开,实际动手做一做,再对照实物画出展开后的图形.【解析】圆锥的侧面展开图是一个扇形,底面是一个圆.圆柱的侧面展开图是一个矩形,两底面是两个等圆.由此我们可以了解组成圆锥和圆柱的基本图形.解:圆锥、圆柱的展开图如下:【教学说明】认识一个图形的组成,实际动手操作是最有效的途径.解完这道题,你应得到这样的启示:实践是认识生活、认识世界的必经之路.例2 请说出下列几何体的名称,再根据你的感受简要说说它们的一些特征.【分析】(1)—(6)的名称比较容易识别,要善于发现其中所体现的独特特征.解:(1)圆柱.特征:两个底面是圆的几何体;(2)圆锥.特征:像锥体,且底面是圆;(3)正方体(也叫立方体).特征:所有面都是正方形;(4)长方体.特征:其侧面均为长方形(特殊情况有两个面为正方形);(5)棱柱.特征:底面为多边形,侧面为长方形;(6)球.特征:圆圆的实体.【教学说明】几何体的识别以直观为主,其几何特征也以形象感觉说明即可.当然,你还可以尽可能地从其他角度去感受这些几何体的特征,因为观察角度的变化,发现的特征就可能不一样.试试看.例3 先观察下列图形,再动手填写下表.【分析】从上图可以看出四边形被一条对角线分成两个三角形,从五边形的一个顶点可以引2条对角线,六边形被对角线分成4个三角形,从n边形的一个顶点可以引出的对角线条数恰为其边数与3之差即(n-3)条.所以构成的三角形为边数与2之差,即(n-2)个.解:2,4,n-3;2,4,n-2.四、运用新知,深化理解1~2.教材第116页练习.【教学说明】这两道题较为简单,教师可让学生口答,如学生回答不全教师可补充.【答案】略五、师生互动,课堂小结请学生谈:我知道了什么?我学会了什么?我发现了什么?1.布置作业:从教材习题4.1中选取.2.完成练习册中本课时的练习.3.选做题:(1)收集一些常见的几何体的实物;(2)设计一张由简单的平面图形(如圆、三角形、直线等)组合成的优美图案,并写上一两句贴切、诙谐的解说词.本节教学应通过实际问题启发、做、想、试等方式让学生主动探索来认识知识,在学生自己动手实践、小组合作的基础上,发现并认识立体图形与平面图形,这样的教学,可使学生得到探索发现的成功感,自然获取知识并形成应用能力.第2课时从不同方向看立体图形和立体图形的展开图【知识与技能】1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看.2.通过实际操作,能认识和判断立体图形的平面展开图.【过程与方法】在立体图形与平面图形相互转换的过程中,初步建立空间观念,培养几何意识.【情感态度】激发学生学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识.【教学重点】识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形.【教学难点】画出从正面、左面、上面看正方体及简单组合体的平面图.一、情境导入,初步认识多媒体演示庐山景观,请学生背诵苏东坡《题西林壁》并说说诗中意境.跨越学科界限,以苏东坡的诗《题西林壁》“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”营造一个崭新的数学学习氛围,并从中挖掘蕴含的数学道理.比一比讲台上依次放置粉笔盒、乒乓球、热水瓶.请四位学生上来后按照不同的方位站好,然后向同学们汇报各自看到的情形.从身边的事物入手,采用游戏的形式,有助于学生积极主动地参与,激发学生的学习潜能,感受新知.自己从中发现从不同的方向看,确实看到的可能不一样.如何进行楼房的图纸设计?出示楼房模型.多媒体展示神舟八号无人飞船.问:如何进行飞船的图纸设计?(出示三张设计平面图),并问每张图分别从什么方向看?看起来,楼房、航天飞船等均是立体图形,但是设计图都是平面图形,建筑单位、工厂均按照平面设计图加工,其中一个小零件如课本第117页图4.1-6,先需要看的图是图(2),所以,我们要研究立体图形从不同方向看它得到的平面图.进一步培养学生的空间想象能力以及与他人合作交流的能力.二、思考探究,获取新知探究 1 分别从正面、左面、上面观察乒乓球、粉笔盒、茶叶盒,各能得到什么平面图形?(出示实物)让学生从不同方向观察立体图形,体验立体图形转化为平面图形的过程.长方体、圆锥分别从正面、左面、上面观察,各能得到什么图形?试着画一画.(出示实物)这样,我们将立体图形转化成了平面图形,以四人小组为学习单位进行小组创作,培养学生的观察力和创新能力.教科书第117页图4.1-7,从正面、左面、上面观察得到的平面图形你能画出来吗?适当变动正方体的摆放位置,你还能解决吗?【教学说明】小组合作学习,你摆我答,动手画一画,展示此活动设计既能引发学生动脑思考、动手实践,在你摆我答的小组合作学习中,又给学生创造了交流的机会,引导学生学会合作,突破创新,达到共同提高的目的.探究2 (1)出示教材第118页图4.1-9的平面展开图,让学生说一说这是什么立体图形?【教学说明】教师让学生回答,若学生对此有困难,可让学生自己动手画一画,剪一剪,仔细体会.(2)让学生拿出自己的墨水盒或其他正方体方盒,动手剪一剪,看能得到几种正方体的展开图.【教学说明】正方体的展开图是教学重点,教师必须对此重视,让学生以小组为单位展开讨论和剪切,争取尽可能地多剪出几种展开图,教师根据学生回答情况予以板书和归纳.三、典例精析,掌握新知例1 你能画出如图所示的正方体和圆柱体的从不同方向看到的平面图形吗?试试看!【分析】正方体的从不同方向看到的平面图形都是正方形,圆柱体从正面、左面看到的平面图形都是长方形,从上往下看是圆.解:正方体看到的结果分别如图所示:圆柱体看到的结果如下所示:例2 (1)前面所讲的苏东坡的《题西林壁》中有一句传诵千古的名句:“横看成岭侧成峰,远近高低各不同”,请用简单的几何图形画出这句话所表达的意境.(2)同伴交流一下这句话给我们的启示,特别谈谈对我们学习数学知识的启迪.【分析】从诗句的意思中应看出这句话是以群山为背景的.诗句中所蕴含的哲理会是仁者见仁,智者见智,所以,互相交流十分必要.解:(1)如图(2)以下启示供参考:“变换思考角度,获得的结论就不同”.“从不同角度看同一问题,可能获得不同的解决途径”等.例 3 如图,需要再补画一个面,折叠后才能围成一个正方体,下面是四位同学补画另一个面的情况(图中阴影部分),其中正确的是().【分析】A、C、D三项中的展开图都不能围成正方体,只有B项符合要求.【答案】B四、运用新知,深化理解1~3.教材第118~119页练习.【教学说明】这几道题是考查立体图形的视图和展开图的.题目较为简单,教师可让学生举手回答.【答案】1.(1)是从上面看到的;(2)是从正面看到的;(3)是从左面看到的.2.圆柱体—(4),圆锥体—(6),三棱柱—(3).3.C五、师生互动,课堂小结请学生谈:我知道了什么?我学会了什么?我发现了什么?提醒学生注意:多看,多动手,多想象,是学好几何知识的基本途径之一.1.布置作业:从教材习题4.1中选取.2.完成练习册中本课时的练习.本节教学应通过引导观察和实际动手操作,让学生主动探索来认识知识,在学生自己动手实践、小组合作的基础上,发现从不同角度看物体可以得到不同的结果,在实践中体验认识生活与客观世界,并逐步养成勤于动手,善于观察,勇于思考的学习习惯.4.1.2 点、线、面、体【知识与技能】通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系.【过程与方法】培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想.【情感态度】学生养成积极主动的学习态度和自主学习的方式.【教学重点】认识点、线、面、体的几何特征,感受它们之间的关系.【教学难点】在实际背景中体会点的含义.一、情境导入,初步认识多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体.【教学说明】从西湖风光引入新课,引导学生观察生活中的美妙画面,不仅能激发学生的学习兴趣,而且让学生对点、线、面、体有了初步的形象认识,感知知识来源于生活.如“点”是没有大小的,学生难以真正理解,可以借助湖中的小船、地图上用点表示这些生活实例在城市的位置,让学生体会到“点”的含义.二、思考探究,获取新知课件演示:灿烂的星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的印象?观察、讨论,让学生共同体会“点动成线、线动成面、面动成体”.让学生举出更多的“点动成线、线动成面、面动成体”的例子.小组合作学习,学生利用学具完成教材第120页练习第2题.(动手转一转)【教学说明】教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力.学生自己动手实践操作,加深学生印象,化解难度.教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等.让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子.1.教材119页思考,并回答它的问题.【教学说明】引导学生观察后得出结论:面与面相交得到线,线与线相交得到点.2.教材120页练习第1题(提供实物,议一议,动手摸一摸),对于第1题,思考以下问题:这些立体图形是由几个面围成的,它们都是平的吗?圆锥的侧面与底面相交成几条线,是直线还是曲线?正方体有几个顶点?经过每个顶点有几条边?【教学说明】让学生自己体会并小组讨论得出点、线、面、体之间的关系.三、典例精析,掌握新知例 1 直观地认识形形色色的平面图形,特别是对简单的多边形——三角形有更多的感觉,认识多边形可由三角形组合而成.如:有边长为1的等边三角形卡片若干张,使用这些三角形卡片拼出边长分别是2,3,4,……的等边三角形,这些等边三角形的边长为n,所用卡片总数为S:试求当n=12时,S=_______.【分析】据图可以看出,当n=2时,S=4;当n=3时,S=9;当n=4时S=16,由此可推出:卡片总数S与边长n之间的关系式S=n2,故所求答案为144.例 2 利用点、线、面、体的几何特征和它们之间的关系,可以进行图形分割与变化.如:苏学美同学为班级“学生专栏”设计了报头图案,并用文字说明图案的含义,如图(1).请你用最基本的几何图形(如直线、射线、线段、角、三角形、四边形、多边形、圆、圆弧等)中若干个,为“环保专栏”在图(2)方框中设计一个报头图案,并简要说明图案的含义.【教学说明】本题由学生自主完成,互相交流.四、运用新知,深化理解1.下列说法中,正确的有()(1)柱体的两个底面一样大;(2)圆柱的面与面的交线都是圆;(3)棱柱的底面是四边形;(4)棱柱的侧面一定是长方形;(5)长方体一定是柱体;(6)长方体的面不可能是正方形.A.(1)(2)(4)B.(1)(2)(5)C.(2)(3)(5)D.(2)(4)(5)2.一个几何体只有一个顶点、一个侧面、一个底面,则这个几何体是()A.棱柱B.棱锥C.圆锥D.圆柱3.飞机飞行表演在空中留下漂亮的“彩带”用数学知识解释为_______;在朱自清的《春》中有描写春雨“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了_______,这说明_______;把一张纸对折,形成一条折痕,用数学知识解释为_______;用铁丝围成一个长方形,绕它的一边旋转,形成一个_______,这说明_______.4.如图是在一个正方体的一个角挖去一个小正方体后得到的几何体,这个几何体的顶点个数是_______.5.请你从数学的角度描述下列现象.(1)国庆之夜,炸响的礼花在天空中(瞬间)留下美丽的弧线;(2)用一条拉直的细线切一块豆腐;(3)将2012张十六开的白纸摞成长方体.【教学说明】教师先让学生自主完成上述几题,然后让学生回答并予以点评.【答案】1.B 2.C 3.点动成线线线动成面面与面相交成线圆柱体面动成体4.145.(1)点动成线(2)线动成面(3)面动成体五、师生互动,课堂小结请学生谈:我知道了什么?我学会了什么?我发现了什么?要求学生留心观察身边的事物,从实际生活中感受理解几何知识.1.布置作业:从教材习题4.1中选取.2.完成练习册中本课时的练习.3.“当你远远地去观察霓虹灯组成的图案时,图案中的每个霓虹灯就是一个点;在交通图上,点用来表示每个地方;电视屏幕上的画面也是由一个个小点组成;运用点可以组成数字和字母,这正是点阵式打印机的原理.”说说你对上述这段叙述的理解和体会.本节教学重在指导学生通过观察生活中的实物,抽象出几何图形的形成过程,把培养学生的观察、思考、提炼的素质放在首位.学生之间可以以小组为单位,在合作中交流,使知识的认识变为学生主动参与的过程.4.2 直线、射线、线段第1课时直线、射线、线段【知识与技能】1.进一步认识直线、射线、线段的联系和区别,逐步掌握它们的表示方法.2.结合实例,了解两点确定一条直线的性质,并能初步应用.3.会画一条线段等于已知线段.【过程与方法】能根据语句画出相应的图形,会用语句描述简单的图形.在图形的基础上发展数学语言.【情感态度】初步体验图形是有效描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.【教学重点】认识直线、射线、线段的区别与联系.学会正确表示直线、射线、线段,逐步使学生懂得几何语句的意义并能建立几何语句与图形之间的联系.【教学难点】能够把几何图形与语句表示、符号书写很好地联系起来.一、情境导入,初步认识1.观察教材第125页图4.2-1.2.学校总务处为解决下雨天学生雨伞的存放问题,决定在每个班级教室外钉一根2米长的装有挂钩的木条.本校三个年级,每个年级八个班,问至少需要买几颗钉子?你能帮总务处的师傅算一算吗?【教学说明】创设实际问题情景,引导学生思考,激发学习兴趣.二、思考探究,获取新知学生按照学习小组,利用打好的小洞,10cm长,1cm宽的硬纸条和撒扣进行实践活动,小组之间交流实践成果,相互补充完善,并解决问题1和2得到直线性质:两点确定一条直线.画一画要求学生分别画一条直线、射线、线段,教师给出规范表示方法.【教学说明】学生通过动手实践,观察分析,猜想,合作交流,体验并感悟到直线的性质.让学生自己归纳性质,在小组交流中完善表述.(教学中学生用自己的语言描述性质,语言可能不够准确简练、完整细致,面对这种情况,不必操之过急,要允许学生有一个发展的时间与空间.)结合自己所画图形寻找直线、射线、线段的特征,说说它们之间的区别与联系并交流.思考:怎样由一条线段得到一条射线或一条直线?举出生活中一些可以看成直线、射线、线段的例子.设计意图:在自己动手画好直线、射线和线段的基础上,要求学生说出它们的区别与联系,目的是使学生进一步认识线段、射线、直线.完成教科书126页练习,使学生逐步懂得几何语句的意义并能建立几何语句与图形之间的联系.数学活动独立探究:画一条线段等于已知线段a,说说你的想法.小组交流补充.教师边说边示范尺规作图并要求学生写好结论.【教学说明】慢慢让学生读清楚题意并学会按照要求正确画出图形.并让学生自己说出想法,培养学生独立操作、自主探索的数学实验学习能力.三、典例精析,掌握新知例1 动手画一画,邀同伴讨论下列问题:(1)过一个已知点可以画多少条直线?(2)过两个已知点可以画多少条直线?(3)过三个已知点一定可以画出直线吗?(4)经过平面上三点A,B,C中的每两点可以画多少条直线?(5)借鉴(4)的结论,猜想经过平面上四点A,B,C,D中的任意两点画直线会有什么样的结果?如果不能画,请简要说明理由,如能画,画出图来.【分析】解答本题时,要仔细读题,注意体会不同问题间的细微区别,以便求得正确的答案.解:(1)过一点可以画无数条直线.(2)过两个点可以画唯一的一条直线.(3)过三个已知点不一定能画出直线,当三点不共线时,不能作出直线;当三点共线时,能画一条直线.(4)当A,B,C三点不共线时,过其中的每两点可以画一条直线,所以共有三条直线;当A,B,C三点共线时,上面画的三条直线重合了,只能画一条直线,如图(一):(5)经过平面内四点中的任意两点画直线有三种结果,如图(二):①当A,B,C,D四个点在同一条直线上时,只可以画出一条直线.②当A,B,C,D四个点有三个点在同一条直线上时,可画出4条直线.③当A,B,C,D四个点中任意三个点都不在同一条直线上时,可画出6条直线.【教学说明】题(3)和题(4)中分别没有明确平面上三点,四点是否在同一条直线上,解答时要分各种可能情况解答,这种解答方法叫分类讨论.运用分类方法时,要考虑到可能出现的所有情形,不能丢掉任何一种,否则就不完整,不全面.例 2 如图(1)(2)(3)中给出的直线,射线,线段,根据它们各自性质,判断其能否相交?【分析】这是用几何图形语言给出的已知条件的例题,读懂图形语言是学习几何知识的基础.结合直线、射线、线段的几何性质作出判断.解:图(1)中直线AB与直线CD相交;图(2)中射线CD与直线AB不相交,因为射线CD是以C为端点C向D所在方向延伸的;图(3)中射线CD与线段AB不相交,因为线段AB不能延伸,而射线CD延伸方向为C向D所在方向,故它们不相交;图(4)中线段AB与线段CD不相交,因为线段AB与线段CD都不能延伸.【教学说明】本题解答关键在理解三种基本图形的延伸性质.四、师生互动,课堂小结请学生互相交流我知道了哪些概念?我学会了什么解题方法?我发现了什么新知识?1.布置作业:从教材习题4.2中选取.2.完成练习册中本课时的练习.本课时主要介绍直线、射线、线段的概念、表示方法,以及它们的区别与联系,是典型的概念教学课.教学中,教师应给学生充分探寻直线的基本知识,直线、射线、线段的表示方法的素材和动手动脑、合作交流的时间与空间,鼓励学生在活动观察时感受概念的形成过程,获得数学体验.提醒学生结合生活经验、留心周围事物,借助实物来认识图形.。

新人教版七年级上册数学第4章-图形认识初步全章教案

新人教版七年级上册数学第4章-图形认识初步全章教案

第四章图形认识初步多姿多彩的图形§几何图形一、教学目标1、知识与技能(1)初步了解立体图形和平面图形的概念.(2)能从具体物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出类似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体. 2、过程与方法!(1)过程:在探索实物与立体图形关系的活动过程中,对具体图形进行概括,发展几何直觉.(2)方法:能从具体事物中抽象出几何图形,并用几何图形描述一些现实中的物体.3、情感、态度、价值观(1).形成主动探究的意识,丰富学生数学活动的成功体验,激发学生对几何图形的好奇心,发展学生的审美情趣.二、教学重点、难点:教学重点:常见几何体的识别教学难点:从实物中抽象几何图形.三、教学过程)1.创设情境,导入新课.(1)同学们,不知你们有没有仔细地观察过我们生活的周围,如果你认真观察的话,你会发现我们生活在一个多姿多彩的图形世界里.引导学生观察08年奥运村模型图,你能从中找到一些你熟悉的图形吗(2)用幻灯片展示一些实物图片并引导学生观察.从城市宏伟的建筑到江南水乡的小桥流水,从高科技产品到日常小玩意,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代的雕塑,从自然界形态各异的动物到北京的申奥标志……图形的世界是丰富多彩的.2直观感知,识别图形(1)对于各种各样的物体,数学中关注是它们的形状、大小和位置.(2)展示一个长方体教具,让学生分别从整体和局部抽象出几何图形.观察长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,得到的是正方形或长方形,只看棱、顶点等局部,得到的是线段、点.<(3)观察其他的实物教具(或图片)让学生从中抽象出圆柱,球,圆等图形.(4)引导学生得出几何图形、立体图形、平面图形的概念.我们把从实物中抽象出的各种图形统称为几何图形.比如长方体,长方形,圆柱,线段,点,三角形,四边形等.几何图形是数学研究的主要对象之一.有些几何体的各部分不都在同一平面内,它们是立体图形.如长方体,立方体等.有些几何图形和各部分都在同一平面内,它们是平面图形.如线段,角,长方形,圆等.}3. 实践探究.(1) 引导学生观察帐篷,,金字塔的图片,从面抽象出棱柱,棱锥.(2)你能说说圆柱与棱柱,圆锥与棱锥的区别吗(3)你能再举一些圆柱、棱柱、圆锥、棱锥的实例吗(4)下图中实物的形状对应哪些立体图形把相应的实物与图形用线连起来#4.小结这节课你有什么收获5.作业设计课本第123页习题第1、2题;第125页习题第7、8题。

人教版七年级数学上册第四章《几何图形初步》教案

三、出示自学提纲
(二)直线、射线、线段
1、基本概念
直线射线线 段
图形
端点个数无一个两个
表示法直线a
直线AB(BA)射线AB线段a
线段AB(BA)
作法叙述作直线AB;
作直线a作射线AB作线段a;
作线段AB;
连接AB
延长叙述不能延长反向延 长射线AB延长线段AB;
你能再举出一些常见的图形吗?
明确目标,开展自主学习
(2)所有的锐角:________________
(3)与∠CDA互补的角:_______________
4、如图:AOC= + __
BOC= BOD-
= AOC-
5、如图, BC=4cm,BD=7cm,且D是AC的中点,则AC=________
6.已知点A、B、C三个点在同一条直线上,若线段AB=8,BC=5,则线段AC=_________
36°56′+18°14′=____;108°- 56°23′=________;
27°17′×5 =____;15°20′÷6 =____(精确到分)
2、60°=____平角;直角=______度;周角=______度。
3、如图,∠ACB = 90°,∠CDA = 90°,写出图中
(1)所有的线段:_______________;
(三)角
1、角:由公共端点的两条射线所组成的图形叫做角。
2、角的表示法(四种):
3、角的度量单位及换算
4、角的分类
∠β锐角直角钝角平角周角
范围0<∠β<90°∠β=90°90°<∠β<180°∠β=180°∠β=360°
5、角的比较方法
(1)度量法
(2)叠合法

七年级上册第4章图形的初步认识全章教案

课题:4.1.1几何图形(第1课时)一、教学目标1.知道图形分为立体图形和平面图形,能辨认常见的立体图形和平面图形.2.知道立体图形的某些面是平面图形,会在立体图形中指出平面图形,培养空间观念.二、教学重点和难点1.重点:辨认常见的立体图形.2.难点:辨认棱柱、棱锥.三、教学过程(教学说明:本节课用到的教具较多,课前需要作认真的准备)(一)创设情境,导入新课师:从今天开始,我们将学习第四章图形认识初步.(板书:第四章图形认识初步)本节课我们首先学习什么是图形.(板书:图形)(二)尝试指导,讲授新课师:什么是图形?在小学里,在日常生活中,我们已经接触过很多图形.师:(出示正方体模型)这是什么图形?生:正方体.(没有学生知道,教师直接告诉)师:(将画有正方体的纸贴到黑板上)这张纸上画的是什么图形?生:正方体.(师板书:正方体)(以下师依次出示长方体、圆柱、圆锥、球的模型,教学过程同上)师:(出示三棱柱模型)这是什么图形?生:……(学生很可能回答不出)师:这个图形叫棱柱.师:(将画有三棱柱的纸贴到黑板上)这张纸上画的是什么图形?生:棱柱.(师板书:棱柱)师:(出示六棱柱模型)这又是什么图形?生:……(学生很可能回答不出)师:这个图形也是棱柱.师:(将画有六棱柱的纸贴到黑板上)这张纸上画的是什么图形?生:棱柱.(师板书:棱柱)师:(三棱柱、六棱柱的棱垂直桌面放置)这两个图形都是棱柱,但它们的形状还是有不一样的地方,有什么不一样的地方?生:……(多让几位同学说)师:(演示三棱柱)这个棱柱相对的这两个面都是三角形,(演示六棱柱)这个棱柱相对的这两个面都是六边形,所以我们把这个棱柱叫做三棱柱,(板书:三)把这个棱柱叫做六棱柱.(板书:六)师:(三棱柱的棱平行桌面放置)三棱柱像我们生活中见过的什么东西?生:……(多让几位同学说)师:三棱柱挺像是一个帐篷.师:(六棱柱的棱垂直桌面放置)六棱柱像我们生活中的什么东西?生:……(多让几位同学说)师:六棱柱挺像是一个茶叶盒.(也可说其它东西)(以下师依次出示四棱锥、五棱锥,教学过程与棱柱教学基本相同)师:(指模型)刚才我们看了正方体、长方体、圆柱、圆锥、球、棱柱、棱锥,这些图形有什么共同的特点呢?(稍停)它们都是立体图形.(板书:立体图形)师:(指板书)这些立体图形在我们生活中都是常见的,请大家把课本翻到118页,(稍停)上面一排印了一些实物,这些实物是什么东西?生:地球仪、魔方、现代汉语词典、沙堆、铅笔、建筑物.师:这些实物是什么立体图形呢?请大家把实物与下面一排的图形用线连起来.(生连线,师巡视)师:说说你是怎么连线的?生:……师:这位同学连得对不对?(有不对的,其他同学纠正)(三)试探练习,回授调节1.师出示一些大图片,让学生找立体图形.(四)尝试指导,讲授新课师:(指板书)正方体、长方体、圆柱、圆锥、球、棱柱、棱锥都是立体图形,除了这些立体图形,还有其它的立体图形吗?生:……(多让几位同学发表看法)师:(出示两个模型的组合图形,譬如将正方体与圆锥组合在一起)这个图形是立体图形吗?师:(出示三个模型的组合图形)这个图形是立体图形吗?师:(出示四个模型的组合图形)这个图形是立体图形吗?师:这些图形都是立体图形,将一些立体图形组合在一起,我们可以得到各种各样的立体图形.师:实际上,只要图形的各部分不都在同一个平面内,也就是说图形不是平平的,这样的图形都是立体图形.一棵树可以看成是一个立体图形,一朵花可以看成是一个立体图形,一只藏羚羊可以看成是一个立体图形,雄伟的布达拉宫可以看成是一个立体图形,甚至整座城市也可以看成是一个立体图形.师:与立体图形相对的是平面图形.(板书:平面图形)平面图形是各部分都在同一个平面内的图形,也就是说是平平的那种图形.(师在黑板上贴出画有正方形、长方形、三角形、平行四边形、梯形、五边形、六边形、圆、扇形的纸)师:这些图形是常见的平面图形,你能说出它们的名称吗?生:……(生说师板书)师:除了这些常见的平面图形,平面图形还有很多,实际上只要各部分都在同一平面内的图形都是平面图形.五星红旗图案是平面图形,剪纸图案是平面图形,奥运五环是平面图形.师:好了,现在我们可以对“图形”作一个总结了,谁能说说对图形的认识?生:……师:(指准板书)图形分为立体图形和平面图形.(板书:)常见的立体图形有正方体、长方体、圆柱、圆锥、球、棱柱、棱锥等,立体图形还有很多很多,无穷无尽,(板书:……)只要各部分不都在同一个平面内的图形都是立体图形.常见的平面图形有正方形、长方形、三角形、平行四边形、梯形、五边形、六边形、圆、扇形等,平面图形还有很多很多,也是无穷无尽,(板书:……)只要各部分都在同一个平面内的图形都是平面图形.师:(指板书)我们知道,立体图形和平面图形是两种不相同的图形,但这两种图形相互之间是有联系的,立体图形与平面图形有什么联系呢?生:……(多让几位同学说,要积极肯定学生回答中的合理部分)师:立体图形和平面图形的联系是,立体图形的某些面是平面图形.(画,并板书:立体图形的某些面)师:(演示长方体模型)这个长方体的这一面是什么图形?生:……(多演示长方体的几个面)师:(演示圆锥模型)这个圆锥的底面是什么图形?生:圆.师:(演示棱柱模型)这个棱柱的这一面是什么图形?生:……(多演示棱柱的几个面)师:(演示棱锥模型)这个棱锥的这一面是什么图形?生:……(多演示棱锥的几个面)(五)试探练习,回授调节2.课本P练习.119(只要求学生回答:各立体图形的表面中包含哪些平面图形?如第一个立体图形的表面中有2个圆,又如第三个立体图形的表面中有2个五边形、5个长方形.如果学生对第五个立体图形的感知有困难,师可以告诉这个立体图形的构成,即上面是一个棱锥,下面是一个长方体.答题用口答形式)(六)归纳小结,布置作业师:本节课我们学习了什么是图形,图形分为立体图形和平面图形.虽然立体图形和平面图形是两种不同的图形,但它们之间是有联系的,什么联系呢?生:立体图形的某些面是平面图形.习题1.2.3.做在课本上)(作业:P123课题:4.1.2点、线、面、体(第1课时)一、教学目标1.认识体、面、线、点的概念,从静态角度认识体、面、线、点之间的关系,即“体由面围成,面面相交成线,线线相交成点”.2.从动态角度认识点、线、面、体之间的关系,即“点动成线,线动成面,面动成体”.3.通过观察图形,了解图形是由点、线、面、体组成的.二、教学重点和难点1.重点:点、线、面、体的概念及其关系.2.难点:点动成线,线动成面,面动成体.三、教学过程(一)创设情境,导入新课师:上节课我们学习了什么是图形,通过学习我们知道,图形分为立体图形和平面图形.(边讲边出示模型)正方体、长方体、圆柱、圆锥、球、棱柱、棱锥都是立体图形,而正方形、长方形、三角形、平行四边行、梯形、五边形、六边形、圆、扇形都是平面图形.立体图形与平面图形相互之间是有联系的,立体图形的某些面是平面图形.无论立体图形还是平面图形都是图形,无论我们走到哪里,我们所看到的无处不是图形,我们生活在图形的世界里!小到一粒沙子是图形,大到整座城市也是图形.大家可以欣赏欣赏课本115页上的那个图形,(稍等)这个图形画的是什么?生:北京奥林匹克公园.师:你能把北京奥林匹克公园的情况向大家介绍一下吗?生:北京奥林匹克公园的中心是可容纳8万人的国家体育场,周围分布着田径、体操、游泳等14个场馆,整个公园占地1215公顷,总建筑面积约200万平方米.师:这么大的北京奥林匹克公园也可以看成是一个图形,这个图形真是够大的.大家仔细看看这个图形,里面到底有一些什么东西?生:……(学生列举出来的可能是实物,如建筑物、树等等,要多让几位同学说)师:在这个图形中同学们找出了不少东西,但恐怕还没有找全.老师不用看图形,就敢说,北京奥林匹克公园这个图形中只有四样东西.这么大的图形中怎么只有四样东西?是的,只有四样东西.这就神了,这四样东西是什么东西呢?这四样东西就是点、线、面、体.(板书课题:4.1.2点、线、面、体)本节课我们就来学习点、线、面、体.(二)尝试指导,讲授新课师:任何复杂的图形都是由点、线、面、体组成.(板书:图形由点、线、面、体组成)师:什么是体?(板书:体)有体积的东西都是体.长方体、正方体、圆柱、圆锥、球、棱柱、棱锥都是体.师:你能举出生活中是体的东西?生:……(多让几位同学说)师:生活中的体有很多很多,一个土豆是体,一头牛是体,一个人的身体是体,一幢房子也是体.一样东西只要有体积,不管是什么形状,都是体.师:什么是面?(板书:面,并演示长方体模型)包围着体的是面.这个长方体共有几个面?生:6个.师:(演示长方体模型)这6个面都是平平的.师:(出示圆柱模型)包围着圆柱的是面,这个圆柱有几个面?生:……师:(演示圆柱模型)这个圆柱有3个面,这个面和这个面是平平的,这个面是弯曲的.师:(出示圆锥模型)包围着圆锥的也是面,这个圆锥有2个面,哪一个是平平的?哪一个是弯曲的?(生上台指出来)师:从上面的讨论,我们可以知道,面有两种,一种是平面,一种是曲面.(板书:(平面、曲面))在生活中,我们也能找到平面和曲面的例子,譬如,平静的水面给我们留下平面的印象,而有浪的水面给我们留下曲面的印象.师:什么是线?(板书:线)这就是线.(边讲边画一条直线、一条曲线)线也有两种,笔直的是直线,弯曲的是曲线.(板书:(直线、曲线))师:(指模型)你能在这些立体图形中找出直线和曲线吗?(多让一些学生找)师:在生活中,我们同样能找到很多线的例子,譬如,课桌的边沿、织卡垫的线、寺庙壁画优美的线条、夜晚流星划过天空时的那一道光线,这些都给我们留下线的印象.师:什么是点?(板书:点)这就是点.(边讲边画点)师:知道了点、线、面、体是什么,就不难想像,任何图形都是由点、线、面、体组成的,北京奥林匹克公园这个图形当然也是由点、线、面、体组成的.(三)试探练习,回授调节练习1.1.课本P122(四)尝试指导,讲授新课师:知道了什么是点、线、面、体,下面我们讨论点、线、面、体之间的关系. 师:(出示长方体模型)体与面有什么关系呢?生:……(多让学生发表看法,要肯定学生回答中的合理部分)师:(演示长方体模型)体是由面围成的.(连线并板书:体由面围成)师:面与线有什么关系呢?(连线)师:(演示长方体模型)请大家注意观察,这两个面相交的地方是什么?生:线.师:(演示长方体模型)这两个面相交的地方是什么?生:线.(再演示其它模型,让学生真真切切地看清楚线面关系)师:哪位同学来概括面与线的关系?生:……师:面与面相交的地方是线,简单地说就是,面面相交成线.(板书:面面相交成线)师:线与点又有什么关系呢?(连线)师:(演示长方体模型)请大家注意观察,这两条线相交的地方是什么?生:点.师:(画相交线)这两条线相交的地方是什么?生:点.师:可见,线与线相交的地方是点,简单地说就是,线线相交成点.(板书:线线相交成点)师:哪位同学把点、线、面、体的关系完整地说一遍?生:体由面围成,面面相交成线,线线相交成点.师:这位同学所说的只是点、线、面、体的一种关系,点、线、面、体还有另一种关系,什么关系呢?下面我们就来讨论这种关系?师:请大家拿起笔,笔尖可以看作是一个点,这个点在纸上运动时,形成了什么?生:形成了线.师:从画线这样一个简单的现象中,你看出了点与线之间有什么关系?生:……(多让几位同学说)师:点动成线.(板书:点动成线)师:画线是点动成线的例子,老师还可以举一个点动成线的例子.在一望无际的沙漠上,一个孤独的旅行者留下的一排长长的足迹.在这个例子,点是什么?线是什么?线是怎么形成的?生:……师:点动成线,那么线动成什么?(用一根细棒比划线动)师:把你的观点在小组里交流,为了让其他同学听明白你的意思,最好把你的观点用实物演示出来.(生小组交流,师巡视倾听)师:线动成什么?生:线动成面.(师板书:线动成面)师:(出示湿布条)这是布条,这根布条可以看作是一条线,这条线在黑板上运动时,就形成了面.(边讲边演示)这就是线动成面的意思.师:谁能举出生活中线动成面的例子.生:……(如汽车雨刷在挡风玻璃上运动、用扫帚扫地、用刷子刷油等)师:点动成线,线动成面,那么面动成什么呢?(边讲边演示长方形硬纸板绕它一边旋转)生:……(多让几位同学说)师:长方形绕它的一边旋转,形成了圆柱.师:(边讲边演示)直角三角形绕它的一边旋转,形成了什么图形?生:圆锥.师:通过这两个实际演示的例子,我们可以得出,面动成什么?生:面动成体.(师板书:面动成体)(五)试探练习,回授调节2.课本P122练习2.(六)归纳小结,布置作业师:本节课我们学习了点、线、面、体.图形是由点、线、面、体组成的,点、线、面、体之间有两种联系,第一种关系是什么?生:……师:第二种关系是什么?生:……(作业:阅读4.1多姿多彩的图形P116-P123)课题:4.2直线、射线、线段(第1课时)一、教学目标1.知道直线的两个基本特征,会用两种方法表示一条直线.2.知道点和直线的两种位置关系,会按照语句画出点和直线位置关系的图形.3.知道两条直线相交及交点的意义,会按照语句画出直线相交的图形.4.经历画图过程得出:经过两点有一条直线并且只有一条直线.二、教学重点和难点1.重点:按照语句画出图形.2.难点:几何语言.三、教学过程(一)创设情境,导入新课师:前面我们看了各种各样的立体图形和平面图形,这些图形都有些什么性质?这是数学要研究的.怎么来研究呢?聪明的做法是,先研究简单图形,再研究复杂图形.那我们应该从什么样的简单图形开始研究?请看黑板.(二)尝试指导,讲授新课师:(在黑板上画一条水平直线)这是一个什么图形?生:直线.师:(在黑板上画一条斜向直线)这是一个什么图形?生:直线.师:你是怎么知道它们都是直线?生:它们都是笔直的.师:从样子上看,直线都是笔直的,这是直线的第一个特点.(板书:直线特点:笔直的)直线还有第二个特点,直线是向两方无限延伸的.(分别指第一条直线和第二条直线,说明直线向两方无限延伸,然后板书:向两方无限延伸的)师:知道了直线的特点,接下来我们要学习直线的表示.(板书:直线的表示)有些同学可能有疑问,直线的表示是什么意思?为什么要学习直线的表示?回答这些问题,我们可以换一个问题来考虑.人都有自己的名字,你说说人为什么要有自己的名字?生:……师:人都有自己的名字,这样可以把不同的人区别开来.直线也是一样,每条直线也都需要有自己的名字,这样可以把直线与直线区别开来.给直线取名字就是直线的表示.师:怎么给直线取名字?或者说,怎么表示直线呢?师:(指水平直线)我们可以用一条直线上的两点来表示这条直线.譬如,(边讲边画)直线上一点是点A,(边讲边画)直线上另一点是点B,这条直线可以记作直线AB.(板书:直线AB)需要强调的是,点必须用大写字母表示,所以这里的A、B都是大写字母.师:表示直线还有第二种方法.(指斜直线)在这条直线的旁边写上小写字母l(边讲边写),这条直线可以记作直线l.(板书:直线l)(三)试探练习,回授调节1.判断下面表示直线的方法是否正确,如果错误,指出错在哪里:记作直线P.P(6)(5)A记作直线A ;记作直线AB ;BA记作直线m ;m (4)(3)(2)a b记作直线ab ;记作直线EF ;F E (1)2.读下列语句,并按照这些语句画出图形: (1)画直线CD ; (2)画直线a.(四)尝试指导,讲授新课(师出示右图) 师:(指图)在这个图形中,直线l 与点O 有什么关系? 生:……(多让几位同学说)师:准确地说,应该这样说:点O 在直线上(板书:点O 在直线上).也可以说,直线经过点O (板书:(直线经过点O )).(指准图)点O 在直线上,与直线经过点O 是一个意思.师:同桌之间把这两句话说一说.(同桌互相说) (师出示右图) 师:(指图)在这个图形中,直线l 与点P 有什么关系? 生:……(多让几位同学说)师:准确地说,应该这么说:点P 在直线l 外(板书:点P 在直线l 外).“点P 在直线l 外”,还有另一种说法,还可以怎么说呢? 生:直线l 不经过点P (师板书:(直线l 不经过点P )). (师出示右图)OllbaO师:(指图)在这个图形中,直线a和直线b有什么关系呢?生:……(多让几位同学说)师:(指准图)直线a和直线b相交,详细一点说可以这样说,直线a和直线b相交于点O.(板书:直线a和直线b相交于点O).点O就叫做它们的交点.交点O有什么特点?师:(指准图)交点O 既在直线a 上,又在直线b 上,交点O 是直线a 和直线b 的公共点. (五)试探练习,回授调节3.辨析题:扎西认为点A 在直线l 上,卓玛认为点B 在直线l 上,你认为谁的看法正确?BAll4.按照图形填空:(1)点A 在直线m ,也可以说,直线m 点A(2)点B 在直线m , 也可以说,直线m 点5.读下列语句,并按照这些语句画出图形: (1)点P 在直线l 上; (2)直线l 不经过点O ; (3)点O 在直线AB 上;(4)直线AB 和直线CD 相交于点P. (六)尝试指导,讲授新课6.探究题:(1)画出经过点A 的直线,你认为经过一点A 可以画几条直线?(2)画出经过点A 、点B 的直线,你认为经过两点A 、B 可以画几条直线?(3)从上面画图,你得出了什么结论? (生做探究题,师巡视引导)师:你认为经过一点A 可以画几条直线? 生:无数条.(师画若干条经过A 的直线) 师:你认为经过两点A 、B 可以画几条直线? 生:一条.(师画经过A 、B 的直线) 师:从画图,你得出了什么结论? 生:……(多让几位同学说) 师:从画图,我们可以得出,(指准图)经过一点有无数条直线;经过两点有一条直线,并且只有一条直线.(板书:经过两点有一条直线,并且只有一条直线)请大家把这个结论读一遍.(生读)师:这个结论可以简单地说成:两点确定一条直线(板书:(两点确定一条直线)). 师:两点确定一条直线是什么意思?生:经过两点有一条直线,并且只有一条直线.师:两点确定一条直线是一个有用的结论.譬如,如果你想把一根细木条固定在墙上,你需要钉几个钉子?mA师:为什么2个够了?生:因为两点确定一条直线.师:又譬如,我们为什么可以用一条直线上的两点来表示这条直线?这也是因为两点确定一条直线.(七)归纳小结,布置作业师:本节课我们学习了直线,谁来把直线的知识归纳一下?生:……(师给以补充)(作业:P练习(1)(2))129课题:4.2直线、射线、线段(第2课时)一、教学目标1.知道射线、线段的意义,会表示射线和线段,会按语句画出射线和线段.2.知道直线、射线、线段的区别和联系.二、教学重点和难点1.重点:射线、线段的意义和表示.2.难点:按语句画图形.三、教学过程(一)基本训练,巩固旧知1.按下列语句画出图形:(1)点B在直线EF上;(2)直线CD不经过点A;(3)经过点O的三条直线a、b、c;(4)直线AB、CD相交于点B.(二)创设情境,导入新课l(师出示右图)师:(指图)上节课我们学习了直线,(板书:4.2直线)本节课我们将学习射线和线段.(板书:射线、线段)(三)尝试指导,讲授新课师:什么样的图形是射线呢?射线是直线的一部分.是哪一部分呢?(指图)请看这个图,这是一条直线,我们把点A左边部分擦掉(边说边擦),剩下的部分就是一条射线.也就是说,(指准图)直线上的一点和它一旁的部分叫做射线.点A 这一点叫做这条射线的端点.(板书:端点)端点就是最边边上的点.师:(指图)从射线的样子看,射线很像手电筒照射出去的光线,射线又像枪射出的子弹的线路,“射线”这个名称也正是因为它的样子而得到的.师:射线的表示与直线的表示基本上是一样的.(指图)这条射线怎么表示? 生:射线AB.(师板书:射线AB )师:这条射线还有另外一种表示,怎么表示? 生:射线l.(板书:或射线l )师:不知道同学们听出来了没有,刚才老师说,射线的表示与直线基本上是一样的,这说明射线的表示与直线的表示还是有点不一样.什么地方有点不一样呢?在表示射线时,(指准图)表示端点的字母A 必须写在前面,所以这条射线表示成射线AB ,不可以表示成射线BA.而对直线来说,用直线AB 表示,用直线BA 表示都是一样的.(师出示右图)师:学习了射线我们再来看线段.什么样的图形是线段呢?线段也是直线的一部分.是哪一部分呢?(指刚出示的直线)请看这个图,这是一条直线,我们把点A 左边部分擦掉(边说边擦),再把点B 右边部分擦掉(边说边擦),剩下的部分就是一条线段.也就是说,(指准图)直线上两点和它们之间的部分叫做线段.(指准图)线段最边边上的两点A 、B 叫做这条线段的端点.(板书:端点、端点) 师:这条线段怎么表示? 生:线段AB.(板书:线段AB )师:在这条线段的上面写上小写字母a (边讲边写a ),这条线段还可以表示为线段a.(板书:或线段a ) (四)试探练习,回授调节2.指出下列各图是直线、射线还是线段,并按要求填空:Q 是 ,记作 ,端点是 .是 ,记作 ,端点是 ; 是 ,记作 ,端点是 ; P QP 是 ,记作 ;(4)(3)(2)(1)3.口答:射线有几个端点?线段有几个端点?直线有没有端点?4.按照下列语句画图形:CDD C C D 画线段CD : 画射线DC : 画射线CD : 画直线CD : D C (1)(2)(3)(4)5.填空:图中以O 为端点的射线是 .O 图中以O 为端点的射线是 ;OP(1)(2)6.按下列语句画出图形:(1)经过点O 的三条线段a 、b 、c ; (2)线段AB 、CD 相交于点O ; (3)线段AB 、CD 相交于点B ;(4)P 是直线a 外一点,过点P 有一条直线b 与直线a 相交于点Q. (五)归纳小结,布置作业师:这两节课我们学习了三种基本图形,这三种基本图形是哪三种? 生:直线、射线、线段.师:我们一起来回顾有关直线、射线、线段的知识.(作业:P 132习题2.3.4.)课题:4.2直线、射线、线段(第3课时)一、教学目标1.会用尺子测量和圆规截取两种方法,画一条线段使它等于已知线段.2.会用尺子或圆规比较两条线段的长短.二、教学重点和难点1.重点:画一条线段使它等于已知线段,比较两条线段的长短.2.难点:用圆规.三、教学过程(一)尝试指导,讲授新课a(师出示右图)师:(指图)这是线段a,现在要你画一条线段AB,要求线段AB与线段a一样长,(板书:画一条线段AB,使AB=a)怎么画呢?请大家独立完成下面的探究题.1.探究题:(1)画一条与线段a一样长的线段AB;a(2)你还能用其它方法画吗?(生画图,师巡视)师:你是怎么画的?把你画图的方法在小组里交流交流.(生小组交流,师巡视倾听)师:(指图)画与线段a一样长的线段,你是怎么画的?生:……(多让几位同学说,让学生中不同的画法都说出来,肯定正确的画法,指出错误画法错误的地方)师:画与线段a一样长的线段AB,一般有两种方法.第一种方法是用尺子量(板书:用尺子量),先用尺子量出线段a的长度(边说边量),线段a的长度是30厘米,然后画出30厘米长的线段AB(边说边画).线段AB就是我们要画的与线段a一。

人教版七年级数学上册《 第四章 几何图形初步 》教学设计

人教版七年级数学上册《第四章几何图形初步》教学设计一. 教材分析《第四章几何图形初步》是初中数学人教版七年级上册的重要内容,主要包括平面图形的认识、线段的性质、角的概念、相交线和平行线等知识。

本章内容为学生提供了丰富的图形模型,有助于培养学生的空间想象能力和抽象思维能力。

通过本章的学习,学生能够掌握几何图形的基本概念和性质,为后续几何学习打下坚实的基础。

二. 学情分析七年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对平面图形有一定的了解。

但部分学生可能对几何图形的性质和概念理解不深,容易混淆。

因此,在教学过程中,教师需要关注学生的认知水平,善于引导学生在实践中发现规律,提升学生的几何素养。

三. 教学目标1.知识与技能:使学生掌握平面图形的基本概念和性质,学会用几何语言描述图形,提高空间想象能力。

2.过程与方法:培养学生通过观察、操作、思考、交流等方法解决问题的能力。

3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的团队协作精神,使学生感受到数学与生活息息相关。

四. 教学重难点1.重点:平面图形的基本概念、性质和几何语言的表达。

2.难点:对几何图形的理解和运用,以及相交线和平行线的判断。

五. 教学方法1.情境教学法:通过生活实例和实物模型,引发学生的兴趣,提高学生的参与度。

2.启发式教学法:引导学生主动思考、发现问题、解决问题。

3.合作学习法:学生进行小组讨论,培养学生的团队协作能力。

4.反馈评价法:及时了解学生的学习情况,调整教学策略。

六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示图形。

2.实物模型:准备一些几何模型,如三角形、四边形等,方便学生直观理解。

3.练习题:准备适量的基础练习题和拓展题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例引入平面图形的概念,如教室的黑板、窗户等,引导学生关注身边的几何图形。

2.呈现(10分钟)展示课件,介绍平面图形的基本概念和性质,如线段、角、相交线和平行线等。

七年级数学上册_第四章图形认识初步教案_人教新课标版.doc

第四章图形认识初步单元要点分析教学内容本章主要内容有多姿多彩的图形,直线、射线、线段,角的度量,角的比较与运算.教材从生活中常见的立体与平面图形入手,通过实例,在丰富的现实情境中,使学生经历对几何体的研究的数学活动过程,认识一些常见的几何体及点、线、面的一些特征和性质;通过裁剪、展开、制作及从不同方向看等活动,在几何体与平面图形的转换过程中发展学生的空间观念; 通过实例,在丰富的现实情境中,使学纶经历对简单的平而图形总线、射线、线段与角的研究的数学活动过程,通过动手画图、线段的人小比较及角的度量、比较与运算等活动过程,理解并掌握这些图形的一些简单性质,感受丰富多彩的图形世界,并为今后进一步学习平面几何知识奠定基础.三维目标1.知识与技能(1)经历探究物体的形状与几何体的关系过程,能从现实物体屮抽象得出立体图形.(2)经历立体图形与平面图形的转换过程,掌握一些简单的立体图形与平面图形的互相转化的技能.(3)经历对点、线、而、体关系的研究的数学活动过程,建立平而图形与立体图形的联系.(4)经历画图等数学活动过程,掌握直线和角的一些简单性质;掌握直线、射线、线段和角的表示方法:掌握角的度量方法.(5)在现实情境中,探索两条线段、两个角的比较方法及比较的结果,探索线段与线段Z 间、角与角Z间的数量关系.(6)认识线段的等分点,角的平分线、角角和补角的概念.2.过程与方法(1)会用掌握的几何体知识描述现实物体的形状,在探索立体图形与平面图形的关系中,发展空间观念.(2)通过对木章的学习,学会在具体的现实情境中,抽象概括出数学原理.(3)学会在解决问题的过程小,进行合理的想象,进行简单的、有条理的思考.(4)能在现实物体中,发现立体图形和平面图形.(5)能在具体的现实情境中,发现并提出一些数学问题.(6)通过小组合作、动手操作、实验验证的方法解决数学问题.3.情感态度与价值观.(1)积极参与数学活动的过程,敢于面对数学活动屮的困难,并能独立地或通过小组合作的方法,运用数学知识克服I木I难,解决问题.(2)通过对本章的学习,培养和提高抽彖概括能力和空间想彖能力,体验数学活动中探索性和创造性,感受丰富多彩的图形世界.重、难点与关键1.重点:(1)掌握立体图形与平而图形的关系,学会它们之间的相互转化;初步建立空间观念.(2)掌握两点确定一条直线的性质,掌握两点Z间线段最短的性质,会用符号表示直线、射线和线段,会比较线段的人小,会画一条线段等于已知线段,了解两点距离的定义.(3)会用符号表示一个角,学会度量一个角,掌握余角和补角的性质,理解角的平分线的定义,会比较两个角的大小,确定几个角的运算关系.2.难点:(1)立体图形与平而图形之间的互相转化.(2)从现实情境屮,抽象概括出图形的性质,用数学语言对这些性质进行描述.3.关键:(1)从实际岀发,用直观的形式,让学生感受图形的丰富多彩,激发学生学习的兴趣.(2)结合具体问题,让学生感受到学习空间与图形知识的重要性和必要性.课时划分4.1多姿多彩的图形2课时4.2直线、射线、线段2课时4.3角4课吋数学活动1课时I叫顾与思考2课时4. 1. 1几何图形教学目标:1.知识与技能(1)能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;(2)能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形Z间的关系.2.过程与方法(1)经历探索平面图形与立体图形ZI'可的关系,发展空I'可观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力.(2)经历问题解决的过程,提高解决问题的能力.3.情感态度与价值观(1)积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于而对学习I木I难的梢神, 感受几何图形的美感:(2)倡导自主学习和小组合作精神,在独立思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的垂要性.重、难点与关键1.重点:从现实物体中抽象出儿何图形,把立体图形转化为平而图形是重点.2.难点:立体图形与平面图形之间的转化是难点.3.关键:从现实情境出发,通过动手操作进行实验,结合小组交流学习是关键.教具准备长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个),及多媒体教学设备和课本图4. 1-5的教学幻灯片.教学过程一、引入新课1.打开多媒体,播放一个城市的现代化建筑,学生认真观看.2.提出问题:在同学们所观看的电视片中,有哪些是我们熟悉的儿何图形?二、新授1.学生在回顾刚才所看的电视片后,充分发表白己的意见,并通过小组交流,补充H己的意见,积累小组活动经验.2.指定一名学生回答问题,并能正确说出这些几何图形的名称.学生回答:有圆柱、长方体、正方体等等.教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征.3.立体图形的概念.(1)长方体、正方体、球、圆柱、圆锥等都是立体图形.(2)学生活动:看课木图4. 1-3后学生思、考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)(3)用幻灯机放映课木4. 1-4的幻灯片(或用教学挂图).(4)捉岀问题:在这个幻灯片屮,包含哪些简单的平面图形?(5)探索解决问题的方法.①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案.②学生冋答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.4.平面图形的概念.长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形.注:对立体图形和平而图形的概念,不耍求给出完整的定义,只耍求学生能够匸确区分立体图形和平而图形.5.立体图形和平面图形的转化.(1)从不同方向看:出示课木图4. 1-7 (1)屮所示工件模型,让学生从不同方向看.(2)提出问题.从正而看,从左面看,从上面看,你们会得岀什么样的平而图形?能把看到的平面图形画出来吗?(3)探索解决问题的方法.①学生活动:让学生从不同方向看工件模型,独立画出得到的各种平面图形.②进行小组交流,评价各自获得的结论,得岀止确结论.③指定三名学生,板书画出的图形.6.思考并动手操作.(1)学牛活动:在小组小独立完成课本第119页的探究课题,然后进行小组交流,评价.(2)教师活动:教师对学生完成的探究课题给出适当、正确的评价,并对学生给予鼓励,激发学生的探索热情.7.操作试验.(1)学生活动:让学生把准备好的墨水瓶包装盒裁剪并展开,并在小组中进行交流,得出一•个长方体它的平面展开图具有的一个特征:多样性.许多立体图形都能展开成平而图形.(2)学牛•活动:观察展开图,看看它的展开图山哪些平面图形组成?再把展开的纸板复原为包装,体会立体图形与平面图形的关系.三、课堂小结1.本节课认识了一些常见的立体图形和平面图形.2.一个立体图形从不同方向看,可以是一个平面图形;可以把立体图形进行适当的裁剪,把它展开成平面图形,或者把一个平面图形复原成立体图形,即立体图形与平面图形町以互相转换.注:小结可采収师生互动的方式进行,山学生归纳,教师进行评价、补充.四、作业布置1.课本第123页至第124页习题4. 1第1〜6题.五、板书设计:4.1. 1几何图形一、问题导入二、例题三、课堂练习六、课后反思:4.1.2点、线、面、体教学目标1.知识与技能(1)了解几何体、平面和曲面的意义,能正确判定围成几何体的面是平面还是曲面;(2)了解几何图形构成的基木元素是点、线、面、体及其关系,能正确判定由点、线、面、体经过运动变化形成的简单的几何图形.2.过程与方法经历探索点、线、面、体的关系的数学活动过程,提高空间想像能力和抽象思维能力,发展运动变化的观念.3 .情感态度与价值观经历本节课的数学活动过程,养成主动探索、求知的学习态度,激发学生对数学的好奇心和求知欲,体验数学活动中小组合作的重要性.重、难点与关键1.重点:正确判定围成立体图形的面是平而述是曲而,探索点、线、面、体Z间的关系是重点.2.难点:探索点、线、面、体运动变化后形成的图形是难点.3.关键:让学生在现实情境中,进行探究学习是本节课的关键.教具准备长方体、圆柱体模型,投彫机和幻灯片.教学过程一、引入新课1.出示一个长方体模型,请同学们认真观察.2.提出问题:这个长方体有几个而?面和面相交成了几条线?线和线相交成几个点?二、新授1.经过学生的独立思考,然后在小组屮进行交流,在小组讨论屮,评价并修正白己的结论.2.各小组学牛公布自己小组讨论后的结论.教师活动:在探索问题解决方法和小组讨论过程中,教师进行巡视,及时给予指导,教师对学生分和的答案作鼓励性评价.3.儿何体的概念.(1)长方体是一个几何体,我们学过的正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体.(2)提出问题:观察长方体和圆柱体,说出围成这两个几何体的而有哪些?这些面有什么区别?4.给出面的分类.通过对上面问题的解决,给出面的分类:平面和111!血.教师活动:板书:平面和曲面.提出问题:(1)用幻灯机放映图片,让学牛观察.(2)提出问题:通过观察,你得出什么结论?(3)进行小组讨论中,综合小组中每个同学意见,得出观察图片发现的结论.(4)在小组活动中,教师指导学生看课木笫121〜122页内容,得出观察图片能发现的结论.师生互动:请学生给出观察结论:点动成线,线动成而,而动成体.教师对学牛的回答给出正面评价,并把学生观察结论板书.注:在探索问题解决的方法活动过程屮,教师应充分调动学生的想像能力,鼓励学生进行深入探究.思考课后思考题,让学生进行小组讨论,教师给以必要的指导,然后得出合理的解释.5.点、线、面、体与儿何图形关系.指导学生阅读课本第122页内容,总结出点、线、面、体与儿何图形的关系.三、课堂小结1.本节课我们主耍探究了几何体的形成:由平而和曲成围成一个几何体.2.点、线、而、体之间的关系.3.体验了在数学活动过程小小组合作的重要性.四、作业布置1.课本第125〜126页习题4. 1第7〜12、13、14题.2.选用课时作业设计.五、板书设计:4.2直线、射线、线段(1)教学目标1.知识与技能(1)能在现实情境中,经历画图的数学活动过程,理解并掌握肓线的性质,能用几何语言描述直线性质.(2)会用字母表示肓线、射线、线段,会根据语言描述画出图形.2.过程少方法(1)能在现实情境屮,进行抽象的数学思考,提高抽象概括能力.(2)经历画图的数学活动过程,提高学生的动手操作与实践能力.3.情感态度与价值观体验通过实验获得数学猜想,得到直线性质的过程.重、难点与关键1.重点:理解并学握直线性质,会用字母表示图形和根据语言描述画出图形.2.难点:根据语言描述画出图形.3.关键:理解画图语言,建立图形与语言Z间的联系.教具准备一把直尺、木工墨盒.教学过程一、引入新课1.出示墨盒,请一个同学演示使用墨盒弹出一条直线的过程.2.提出问题:为什么这样拉出线是直的?其关键是什么?二、新授学生活动:学生经过小组交流后,总结出结论:两点确定一条在线.其关键在于先固定墨盒屮墨线上两个点.教师活动:参与学生活动,并请学生思考:这个现彖符合数学上的什么原理?1.探究直线性质.学生活动:完成课本第128页探究课题,学生动手按要求画图,并进行小组交流,总结出课题结论.教师活动:巡视小组活动情况,并给出课题:板书直线、射线、线段,直线的性质.2.寻找生活中直线性质应用的例子.想一•想:FI常生活中有哪些现象是应用的岂线的性质?学生冋答(只要答案合理,教师都给以肯定的评价).3.氏线、射线、线段的表示方法.学生活动:阅读课木第129页有关内容.教师活动:讲解直线、射线、线段的表示方法.三、巩固练习1.提出问题:下图屮,有几条在线?几条射线?几条线段?说出它们的名称.AC D B注:此题在学生完成后,教师再行讲评,并对学牛的完成情况作出适当、肯定的评价.2.根据语句画出图形.例:读下列语句,并按照语句画岀图形:(1)直线L经过A、B两点,点B在点A的左边.(2)直线AB、CD都经过点0,点E不在直线AB上,但在直线CD上.注:此例让学牛独立完成后在小组屮交流和白我评价,然后教师进行讲评.3.完成课木第129页练习.注:此练习请四个同学进行板书,教师巡视学牛完成的情况给予评价,并请学牛作出白我评价.四、课堂小结1.提问:直线的性质是什么?如何表示直线、射线、线段?2.本节课还学习了根据语句画图,知道了每一个语句都对应着一个几何图形.五、作业布置1.课本第132页至第134页习题3. 2第1、2、3、4、10题.2.选用课时作业设计.六、板书设计:4.2直线、射线、线段(2)教学目标1.知识与技能(1)会用尺规画一条线段等于已知线段,会比较两条线段的长短.(2)理解线段等分点的意义,理解两点间距离的意义,借助现实的情境,了解“两点之间, 线段最短”的线段性质.2.过程与方法培养学生的动手操作能力,提高学生的抽彖概括能力,能从实际问题中抽彖出数学问题,初步学会数学的建模方法.3.情感态度与价值观积极参与实验数学活动中,体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.重、难点与关键1.重点:画一条线段等于已知线段,比较两条线段的长短是一个重点,在现实情境中,了解线段的性质“两点之间,线段最短”是另一个垂点.2.难点:画一条线段等于已知线段的尺规作图方法,正确比较两条线段长短是难点.3.关键:学牛积极参与画图等动于•操作的数学活动中,通过小组交流,获取数学信息是学好本节课知识的关键.教具准备直尺、圆规、刻度尺、三根木棒(两根等长)、多媒体设备.教学过程一、引入新课1.捉出问题:有一根长木棒,如何从它上面截卜•一段,使截卜•的木棒等于另一根木棒的长?教师活动:出示长短不同的两根木棒.学生活动:小组讨论,探索方法,总结出问题的解决方法.注:教师对学生给出的解决方法,应进行可操作性评价,对好的方法给了鼓励和肯定,以激发学生的学习兴趣.2. 提出数学问题:上面的问题,可以转化为如下一个数学问题: 已知线段a,画一•条线段等于已知线段a.二、新授学生活动:独立思考,动手画图,小组讨论交流,总结出问题的解决方法.教师活动:参与学生小组讨论,指导学生探索问题的解决方法.1. 用刻度尺量出已知线段长,在画出的射线(或直线)上量出相同长度的一条线段.2. 用尺规截取.(按课本第130页所讲方法)教师活动:打开电脑,演示尺规作图过程.板书:画一条线段等于已知线段.3. 思考课木第130页的问题,从屮得岀数学问题:如何比较两条线段的长短?4. 探索比较两条线段长短的方法:学生活动:小组交流,总结出比较方法.教师活动:评价学生总结出的比较方法,并用教具请一个学生进行演示,板书:比较线段的 长短.(1) 用刻度尺分别测量出它们的长度进行比较.(2) 用把一•条线段移到另一条线段上,端点对齐的方法进行比较.5. 线段长短的比较结果.学生活动:通过上面的讨论,总结出线段比较结果.教师活动:用教具(三根木棒)演示线段比较方法,评价学生得出的比较结果,再用多媒体 演示两条线段的比较方法和比较结果.板书:(1) AB<CD (2) AB>CD (3) AB 二CD6. 线段的等分点.(1) 线段的中点:教师活动:用多媒体演示,取线段AB 上一点M,移动线段AM 到线段冊上,当AM 与MB 完 全重合时,线段AM 二MB,此时点M 就叫做线段AB 的中点.板书: AM 二MB 二丄AB 2(2) 线段的等分点:通过类比线段的屮点,可得出线段的三等分点、四等分点.1 1 (C)(D) • • • A B (C) (D) • • (C) (D) ABAM 二MN 二NB 二-AB AM=MN=NP=PB= 一AB3 47.探索线段的性质.(1)完成课木第132页思考题.(2)提出问题:由这个思考题,你能得出线段的性质?学生活动:联想以前所学知识及生活常识,经过小组讨论,得出直线的性质:两点Z间,线段最短.教师活动:板书:线段的性质,并用儿何语言完整归纳出线段性质.(3)举例说明线段的性质在生活中的应用.(4)在直线L上顺次取三点A、B、C,使得AB=4cm, BC=3cm,如果0是线段AC的中点,求线段0B的长度.注:这两个问题先请学生在小组中独立完成后进行交流,教师再作评价.8.两点的距离.教师活动:讲解两点的距离定义.三、课堂小结1.本节课学会了画一条线段等于已知线段,学会了比较线段的长短.2.本节课学习了线段的性质和两点间距离的定义.3.懂得了知识来源于生活并用于生活的道理.四、作业布置1.课本第133页至第114页习题4. 2第5、6、7、8、9、11题.2.选用课时作业设计.五、板书设计:4.3.1角的度量(1)教学目标1.知识与技能(1)在现实情境中,认识角是一种基木的几何图形,理解角的概念,学会角的表示方法.(2)认识角的度量单位度、分、秒,会进行简单的换算和角度计算.2.过程与方法提高学生的识图能力,学会用运动变化的观点看问题.3.情感态度与价值观经历在现实情境中认识角的数学活动过程,感受图形世界的丰富多彩,增强审美意识,激发学生的求知欲.重、难点与关键1.重点:会用不同的方法表示一个角,会进行角度的换算是重点.2.难点:角的表示、角度的换算是难点.3.关键:学会观察图形是止确表示一个角的关键.教具准备多媒体设备、量角器、时钟、四棱锥.教学过程一、引入新课1.观察时钟、四棱锥.2.提出问题:时钟的吋针与分针,棱锥相交的两条棱,都给我们什么样的平而图形的形象?请把它画出來.学生活动:进行独立思考、画图,然后观看教师的演示过程.教师活动:用多媒体演示角的形成过程:一条射线0A绕端点0旋转到0B的位置,得到的平面图形——角.板书:角.一曲城一.新役1.角的概念.(1) 提出问题:从上面活动过程中,你能知道角是由什么图形组成的吗?学生回答:两条射线.(2) 角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这 两条射线是角的两条边.(如下图)2. 角的表示.学生活动:阅读课本第137页有关内容,了解角的表示方法.教师活动:讲解角的不同表示方法,着重讲解一个顶点冇多个角的表示方法.请用适当的方法表示下图屮的每个角・学生活动:谙一个学生板书练习,其余学生独立练习.教师活动:巡视学生练习情况,给了评价,对多数同学作出肯定评价.学生活动:阅读课本第138页思考题,进行小组交流,获得问题结论.教师活动:参与学生交流,并用多媒体演示平和、周和的形成过程,启发引导学生对问题进 行探索,并对学生讨论结果进行评价.答案:分别形成平角、周角.3. 角的度量.教师活动:指导学生阅读课本P138页内容,讲解角的度量方法及度、分、秒的换算.板书:1 周角二 ____ ° , 1 平角二 ___ ° , 1° =—' ,1’ =—〃 .学生活动:思考并完成上面的填空.例:把一个周角7等分,每一份是多少度的角(精确到分)?三、 巩固练习1. 课本第139页练习.2. 计算:(1) 48° 39' +67° 41’ ;(2) 90° -78° 19’ 40";(3) 22° 30’ X& (4) 176° 52' 4-3.此:此练习由学生独立完成,在练习过程中充分地进行小组交流以解决练习过程中的疑难, 教师巡视过程中对个別学习困难的学生及时给以答疑解惑,并请学生板书后再讲评.3. 想一想:时钟在5点15分时,时钟的时针与分针所成的角是多少度?师生互动:观察时钟在5点15分时,时针与分针所处位置,教师引导、启发学主先从时针在分A针转动到15分时,分针转过的角度与时针转过的角度的关系,并请学生在小组中进行交流, 得出答案…四、课堂小结师生互动,完成本节课的小结:1.什么是角?组成角的图形是什么?如何表示一个角?2.本节课还复习了平而、周角?怎样得到这两种角?3.角的度量单位是什么?它们是如何换算的?五、作业布置1.课木第144页习题4. 3第1、2、3、4题.六、板书设计:4.3.1角的度量(2)教学目标1.知识与技能会用量角器测一个角的人小,能借助—角板画出30。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章图形认识初步4.1 多姿多彩的图形§ 4.1.1 几何图形一、教学目标1、知识与技能(1)初步了解立体图形和平面图形的概念.(2)能从具体物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出类似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体. 2、过程与方法(1)过程:在探索实物与立体图形关系的活动过程中,对具体图形进行概括,发展几何直觉.(2)方法:能从具体事物中抽象出几何图形,并用几何图形描述一些现实中的物体.3、情感、态度、价值观(1).形成主动探究的意识,丰富学生数学活动的成功体验,激发学生对几何图形的好奇心,发展学生的审美情趣.二、教学重点、难点:教学重点:常见几何体的识别教学难点:从实物中抽象几何图形.三、教学过程1.创设情境,导入新课.(1)同学们,不知你们有没有仔细地观察过我们生活的周围,如果你认真观察的话,你会发现我们生活在一个多姿多彩的图形世界里.引导学生观察08年奥运村模型图,你能从中找到一些你熟悉的图形吗?(2)用幻灯片展示一些实物图片并引导学生观察.从城市宏伟的建筑到江南水乡的小桥流水,从高科技产品到日常小玩意,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代的雕塑,从自然界形态各异的动物到北京的申奥标志……图形的世界是丰富多彩的.2直观感知,识别图形(1)对于各种各样的物体,数学中关注是它们的形状、大小和位置.(2)展示一个长方体教具,让学生分别从整体和局部抽象出几何图形.观察长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,得到的是正方形或长方形,只看棱、顶点等局部,得到的是线段、点.(3)观察其他的实物教具(或图片)让学生从中抽象出圆柱,球,圆等图形.(4)引导学生得出几何图形、立体图形、平面图形的概念.我们把从实物中抽象出的各种图形统称为几何图形.比如长方体,长方形,圆柱,线段,点,三角形,四边形等.几何图形是数学研究的主要对象之一.有些几何体的各部分不都在同一平面内,它们是立体图形.如长方体,立方体等.有些几何图形和各部分都在同一平面内,它们是平面图形.如线段,角,长方形,圆等.3.实践探究.(1) 引导学生观察帐篷,,金字塔的图片,从面抽象出棱柱,棱锥.(2)你能说说圆柱与棱柱,圆锥与棱锥的区别吗?(3)你能再举一些圆柱、棱柱、圆锥、棱锥的实例吗?(4)下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来4.小结这节课你有什么收获?5.作业设计课本第123页习题4.1第1、2题;第125页习题4.1第7、8题。

§ 4.1.1 几何图形(二)一、教学目标知识与技能1.能识别简单几何体的三种视图.2.会画简单立体图形及其它们的简单组合的三种视图.3.进一步认识立体图形与平面图形之间的关系.4.引导学生把所学的数学知识应用到生活中去,解决身边的数学问题.过程与方法在从不同方向看立体图形的活动过程中,体验立体图形与平面图形之间的相互转化,从而建立空间观念,发展几何直觉.情感、态度、价值观1.通过活动,形成学生主动探究的意识,丰富学生数学活动的成功经验,激发学生对几何图形的好奇心和对学习的自信心.2.从实物出发,让学生感受到图形世界的无处不在,提高学生学习数学的热情.二、重点与难点重点:1.在观察的过程中初步体会从不同方向观察同一物体可能看到不同的结果.2.能识别简单物体的三视图,会画简单立体图形及其它们组合的三种视图.难点:1.在面和体的转换中丰富几何直觉和数学活动经验,发展空间观念2. 能识别简单物体的三视图,会画简单立体图形及其它们组合的三种视图.三、教学过程1.创设情景,引入新课(1)请欣赏漫画并思考:为什么会出现争执?(2)“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).你能说出“横看成岭侧成峰”中蕴含的数学道理吗?2.新课学习(1)不同角度看直棱柱、圆柱、圆锥、球让学生分别从正面、左面、右面,上面等各个角度观察:正方体木块,长方体木块,三棱镜,六角扳手,易拉罐,排球,圆锥,由浅入深,体会从不同方向看直棱柱、圆柱、圆锥、球等立体图形得到的平面图形,难点是在体会曲面的透视图,让学生交流、体验,集体作出小结.(可以给出三个视图的名称)(2)猜一猜,看一看Ⅰ.左看右看上看下看一个物体都是圆?(猜一物体)Ⅱ.什么物体左看右看上看下看都是正方形?若是长方形呢?(各猜一物体) Ⅲ.桌上放着一个圆锥和圆柱,请说出下面三幅图是分别从哪个方向看到的.(3) 分别从不同方向观察以下实物(茶叶盒、魔方、书、乒乓球等),你看到了什么图形?你能一一画下来吗7(画出示意图即可)(4)(从不同角度看简单的组合图形,由少数组合逐步加多)如下图,画出下列几何体分别从正面、左面,上面看,得到的平面图形.(学生独立思考、合作交流,最后从模型上得到验证)从上面看从左面看从正面看正视图左视图俯视图3.实践与探究(1)上图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能得到什么图形?(2)再试一试,画出它的三视图.(3)怎样画得又快又准?(4)用6个相同的小方块搭成一个几何体,它的俯视图如图所示.则一共有几种不同形状的搭法(你可以用实物模型动手试一试)?4.参考练习(⒈)图,桌上放着一个球和一个圆柱,下面a、b、c、d、e这五幅图分别是从什么方向看到的?(⒉)一个正方体中,截去一个小正方体的立体图如图所示,从左面观察这个图形,得到的平面图形是()(3)一个由8个正方体组成的立体图形,从正面和上面观察这个图形时,得到的平面图形如图所示,那么从左面观察这个图形时,得到的平面图形可能是()(4)如图分别是某立体图形三视图,请根据图说出立体图形的名称⑴正视图俯视图左视图⑵正视图俯视图右视图5.小结(1)你对本节内容有哪些认识?(2)你有什么收获?有什么感想?有什么困惑?6.作业设计课本第120页练习1 ,课本第124页习题4.1第3、4题● 蚊子壁虎 ●蚊子 壁虎 § 4.1.1 几何图形(三)一、教学目标知识与技能⒈了解直棱柱、圆锥等简单立体图形的侧面展开图。

⒉能根据展开图初步判断和制作立体模型。

⒊进一步认识立体图形与平面图形之间的关系。

⒋通过描述展开图,发展学生运用几何语言表述问题的能力。

过程与方法⒈在平面图形和立体图形互相转化的过程中,初步建立空间观念,发展几何直觉。

⒉通过动手观察、操作、类比、推断等数学活动,积累数学活动经验,感受数学思考过程的条理性,发展形象思维。

⒊通过展开与折叠的活动,体会数学的应用价值。

情感、态度、价值观⒈通过学生之间的交流活动,培养主动与他人合作交流的意识。

⒉通过探讨现实生活中的实物制作,提高学生学习热情。

二、重点与难点重点:直棱柱的展开图。

难点:根据展开图判断和制作立体模型。

三、教学过程1.创设情境,导入课题小壁虎的难题:如图:一只圆桶的下方有一只壁虎,上方有一只蚊子,壁虎要想尽快吃到蚊子,应该走哪条路径?学生各抒己见,提出路线方案。

教师总结:若在平面上,壁虎只要沿直线爬过去就可以了。

而在圆桶上,直线不太好找,那么把圆柱侧面展开,就可找出答案。

如图所示:圆柱侧面展开后是矩形,壁虎只要沿图中直线爬向蚊子即可。

若蚊子和壁虎在其他几何体上,如棱锥,正方体…… 它们展开后是什么图形呢?今天我们就来讨论它们的展开图。

2、新课探究:(1)正方体的表面展开图教师先演示正方体的展开过程,提醒沿着棱展开,且展开图必须是一个完整的图形。

然后让学生拿出学具正方体纸盒(或是课前准备好的正方体纸盒,或现成的正方体包装盒)进行动手操作,得到正方体展开图。

.教师再拿出如下图所示的两个纸片,提问:能否经过折叠围成一个正方体?若不能,如何改变其形状就能围成一个正方体?(要求学生仔细观察,思考,讨论,并动手操作验证猜想)(2)其他直棱柱的表面展开图学生从其他直棱柱中任选一种,得到它的展开图,相互交流。

教师指导总结。

(特别是圆柱体展开时,体会怎样展开会得到侧面是一个长方形)(3)让学生分组研究观察三棱锥的展开图。

归纳:从刚才的实践过程中,大家可能已经感受到,同一个几何体,按不同的方式展开,得到的展开图也不同。

(4)你能想象出下面的平面图形可以折叠成什么多面体?动手做做看。

提问:通过实践,说说以上平面图形叠成什么多面体?上面的图〈1〉及图〈3〉可以折叠成正三棱锥,所以它们都是正三棱锥的表面展开图。

图〈2〉不可以折叠成正三棱锥,所以它不是正三棱锥的表面展开图。

归纳:一些平面图形也可以围成立体图形。

(5)提问:是所有的立体图形都能展开成平面图形吗?老师引导得出:是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

3.小结(1)一些立体图形是由平面图形围成的立体图形,沿着它们的一些棱将它剪开,可以把多面体展开成一个平面图形.体现了立体图形与平面图形之间的相互联系。

(2)对于一些立体图形的问题,常把它们转化为平面图形来研究和处理。

4.作业设计(1)课本第124页习题4.1第5题(2)课本第125-126页习题4.1第11、12、14题§ 4.1.2 点、线、面、体一、教学目标:知识技能:1、进一步认识点、线、面、体的概念.2、理解点、线、面、体之间的关系.过程与方法通过学习点、线、面、体之间的关系,进一步发展学生抽象概括能力和形象思维的能力.情感、态度、价值观通过联系现实世界中各种常见的几何体及情景,让学生认识数学与现实生活的密切联系.二、教学重、难点重点:点、线、面、体之间的关系.难点:体会点动成线、线动成面、面动成体三、教学过程:1.问题情境[问题1](1)举出一些你所熟悉的立体图形.(2)①你知道这些体是由什么围成的吗?它们有什么不同吗?②面与面相交的地方形成了什么?它们有什么不同呢?③线与线相交之处又得到了什么?(3)举出生活实际中分别给体、面、线、点的形象的例子学生先独立观察、思考,然后再讨论、交流得出以下结论:(1)体是由面围成的.面有两种,平面和曲面.(2)面与面相交的地方形成了线,线有直的也有曲的.(3)线与线相交的地方是点.教师对以上结论加以总结、完善.得出点、线、面、体之间的关系.即“体由面组成,面与面相交成线,线与线相交成点”.教师鼓励学生联想身边熟悉的情景,尽可能多的举出例子,并把课前准备的挂图和物品等展示出来和学生交流.[问题2](学生动手操作、思考并回答问题)(1)①笔尖可以看作是一个点,这个点在纸上运动时,形成了什么?②通过上述运动你得出了什么结论?③你能举出生活中的一些实例进一步说明这一结论吗?教师在学生回答问题的基础上总结得到“点动成线”的结论.学生在组内讨论、交流的基础上,举出更多实例.如:蚂蚁搬家;在一望无际的沙滩上;一个孤独的旅行者留下的一排长长的足迹……(2)①汽车雨刷可以看作是一条线,它在档风玻璃上运动时有什么现象?②通过对上面现象的分析你得出了什么结论?③你能举出生活中的一些实例进一步说明这一结论吗?①教师让学生拿笔或直尺当雨刷在纸上演示,启发学生类比上一个问题.并鼓励学生用自己的语言说出发现的结论.②学生通过仔细观察图片,动手实践,回答问题.得出“线动成面”的结论.③学生经讨论、交流后举例.如:夜晚街头闪烁的霓虹灯、利用竹条编织的凉席,用扫帚扫地、用刷子刷油、钟表盘上分针时针的运动……(3)①长方形纸片绕它的一边旋转,形成了什么图形?②通过对上面现象的分析你得出了什么结论?③你能再举出一些例子进一步说明这一结论吗?④你能找出它们之间的对应关系吗?教师演示旋转过程,让学生通过观察,大胆猜测,想象.学生在观察、猜测、想象之后独立思考得出结论,再通过动手实践加以验证;最后进行小组讨论、交流,回答问题.得出“面动成体”的结论.学生经小组交流,举出例子.如把三角尺绕其一边旋转形成几何体、一摞壹元硬币……[问题3](1)为什么在中国地图上,北京只是一个点,而在北京市地图上北京几乎占了整个版面?学生先独立思考后讨论、交流.回答问题,同学们之间可以相互补充、纠正.(2)观察下面的图片,你有什么发现?构成几何图形的基本元素是什么?学生观察图片.表述观点.教师参与学生的交流活动,总结出几何图形都是由点、线、面、体组成的,点是构成图形的基本元素.2.小结.本节是从实际物体中抽象出几何图形、立体图形、平面图形,又进一步抽象出体、面、线、点等基本元素,研究了它们之间的关系之后,又由这些基本元素得到丰富多彩的图形世界.3.布置作业.课后收集能反映点、线、面、体之间关系的资料、图片及实物模型.§ 4.2 直线、射线、线段(一)教学目标知识与技能1、在现实情境中理解线段、直线、射线等简单的平面图形。

相关文档
最新文档