二次根式乘除计算练习题
二次根式乘除法练习题

12.6二次根式的乘除法知识回忆::1、〔1〕94⨯= = ;94⨯= = ; 〔2〕169⨯= = ;169⨯= = ;〔3〕ba ⋅〔a ≥0,b ≥0〕.2、〔1〕=949=_________;〔2〕=814=_________;〔3〕=ba 〔a ≥0,b >0〕.目标解读::1.明白得并把握二次根式乘法和除法法那么,并会进展简单的二次根式的乘除法运算.2.明白得最简二次根式的意义及条件,把所给的二次根式化为最简二次根式.3.明白得分母有理化的意义,并会进展分母有理化.根底训练:一、选择题1. 以下二次根式中是最简二次根式的是〔 〕2. 化简时,甲的解法是:==,乙的解法是:== 〕A.甲的解法正确,乙的解法不正确B.甲的解法不正确,乙的解法正确 C.甲、乙的解法都正确D.甲、乙的解法都不正确3.a b ==的值为〔 〕 A.5B.6C.3D.44.=〕 A.1x <且0x ≠ B.0x >且1x ≠ C.01x <≤D.01x <<5.=x y,知足的条件为〔〕A.xy⎧⎨<⎩≥B.xy⎧⎨>⎩≤C.xy⎧⎨<⎩≤D.xy⎧⎨>⎩≥6.;结果为〔〕A.B.C.D.7. 给出以下四道算式:〔1〕4=-〔2〕114=〔3〕=〔4〕)a b=>其中正确的算式是〔〕A.〔1〕〔3〕B.〔2〕〔4〕C.〔1〕〔4〕D.〔2〕〔3〕8.〕A.-B.C.±D.309. 以下各组二次根式中,同类二次根式是〔〕,B.D.,10. 以下各式中不成立的是〔〕2x=32==54199=-=-D.4=11. 以下各式中化简正确的选项是〔〕ab==2132x y x⎫=⎪⎭b=12. 给出四个算式:〔1〕=2〕55x y =3〕36x y y x= 〔4〕=-其中正确的算式有〔 〕A.3个 B.2个 C.1个D.0个13. 以下计算正确的选项是〔 〕A.=B.5xy y =115335÷= 149=- 14. 以下根式中化简正确的选项是〔 〕6aa a = = =a b =+ 15.6a ab 等于〔 〕A.B.212a bC.aD.2二、填空题16. 直接填写计算结果:〔1=_________; 〔2〕=___________;〔3=_________; 〔4=__________.17. 计算:=_______;_________.18. 当00x y >>,=_________.19. 化简:=__________.20. 把根号外的因式移到根号内:(a -=__________.21. 与那么a =______,b =______.22. 直接填写化简结果:〔1〕152105⨯-=________;〔2〕22221251015+⨯-=________.23.00)x y ≥,≥= ;00)a b ≥,≥= .24.=_________;=________. 25._______.三、计算:26. 〔1〕⎛⎝; 〔2〕;〔3〕.246246-⨯+.27.〔1〕18322423⨯; 〔2〕⎪⎪⎭⎫⎝⎛-⨯y x 219491231. 28.〔1⎛ ⎝; 〔229. 〔1; 〔2; 〔3〔4〕.30. 22--×.能力拓展:31. 假设最简二次根式a a b ,的值.32. 5a b +=,6ab =的值.。
二次根式的乘除练习题

二次根式的乘除练习题二次根式是数学中的一个重要概念,它在代数中经常出现。
通过乘除练习题,我们可以更好地理解和掌握二次根式的运算规律和性质。
首先,让我们从简单的乘法练习题开始。
考虑以下两个二次根式的乘法:√2 × √3。
根据乘法的性质,我们可以将这个乘法写成√(2 × 3) = √6。
因此,√2 × √3等于√6。
接下来,我们来看一个稍复杂一些的乘法练习题:(2√5) × (3√7)。
这个乘法可以通过先将系数相乘,再将根号内的数相乘来进行。
所以,(2√5) × (3√7) =6√(5 × 7) = 6√35。
在乘法练习题中,有时候会出现分数形式的二次根式。
例如,考虑以下乘法练习题:(1/2√3) × (2/3√2)。
为了方便计算,我们可以先将分数进行化简。
将1/2和2/3分别化简为3/6和4/6,得到(3/6√3) × (4/6√2)。
然后,我们可以将系数相乘,将根号内的数相乘,得到(3/6√3) × (4/6√2) = (12/36)√(3 × 2) = (1/3)√6。
接下来,我们来看一些除法练习题。
在除法中,我们需要将被除数和除数都化简为最简形式,然后再进行运算。
例如,考虑以下除法练习题:√12 ÷ √3。
首先,我们可以将√12化简为√(4 × 3),再将√3化简为√3。
所以,√12 ÷ √3 = √(4 × 3) ÷ √3 = √4 = 2。
对于含有分数的除法练习题,我们同样需要先将分数进行化简,然后再进行运算。
例如,考虑以下除法练习题:(2/√5) ÷ (3/√2)。
为了方便计算,我们可以先将分数进行化简。
将2/√5和3/√2分别化简为(2√5)/(√5 × √5)和(3√2)/(√2 × √2),得到(2√5)/(√5 × √5) ÷ (3√2)/(√2 × √2)。
八年级下册数学同步练习题库:二次根式的乘除(计算题:一般)

二次根式的乘除(计算题:一般)1、计算:.2、先化简,再求值:(),其中x=﹣2.3、计算:(1)•2•(﹣);(2)•(÷2).4、(1)计算:(2)先化简,再求值:,其中.5、(﹣)×6、计算:;;7、化简:(1)(x>0,y>0);(2)(a>0,b>0);8、计算: = .9、计算(1)、 (2)、10、计算(1)(2)11、先化简,再求值:,其中x=.12、计算(1)(2)13、计算:(1);(2)。
14、化简:(1);(2).15、计算(+)(﹣)的结果等于.16、计算(1)()+()(2)()()17、计算:﹣+(+2).18、计算:(﹣2)+4.19、计算:(1)(2)(+)(3)|1﹣|+|﹣|20、化简:.21、(1)解方程:x2=3x(2)计算:﹣4+÷.22、计算下列各题(1)++3﹣(2)3+﹣4(3)﹣1(4)(2﹣1)2.23、计算:(1+)2+3(1+)(1﹣)24、计算:(1)(4﹣6)÷2(2)﹣(﹣2)0+.25、计算:(1)(2)26、计算题(1)(2).27、化简:(1)3-(+)(2)(-)÷28、计算:(1)、(2)、(3)、-49=0 (4)、(5)、=-8(5)、1-29、计算:(1)、(2)、30、计算(1)(2)31、计算:.32、计算:(1)、 (2)、(3)、 (4)、33、(1)﹣()2+(π+)0﹣+|﹣2| (2)(3﹣2+)÷2.34、(1)3+1;(2);(3);(4);(5);(6)(精确到0. 01);(7).35、(2015秋•江阴市校级月考)计算(1)﹣|﹣3|+(2)×﹣4××(1﹣)0.36、计算:37、先化简,再求值:÷(x-2+),其中x=-1.38、计算:(1);(2);(3);(4);(5);(6)(结果保留3个有效数字)39、(2015秋•太原期中)计算:(1)+(2)﹣(3)(+2)(﹣2)(4)(+)×+.40、(2015秋•深圳期末)计算题(1)+×(+)(2)﹣(﹣)2+|﹣|41、(2015秋•福田区期末)计算:(1)(2)(﹣)×﹣.42、(2015秋•怀柔区期末)计算:.43、计算:(1)(2)(3)(4)(1+)÷44、计算:45、计算:.46、(1)计算:(2)47、计算题(1)(-2)3×+(-1)2003-;(2)|-1|+(-2)2+(7-π)0-()-1.48、.49、化简(1)()()+.(2).50、计算:(1);(2).51、计算:(1)(-3)0×6-+|π-2|-()-2(2)2+-(3)×-(4)(2+3)2011(2-3)2012-4-.52、(1)(2)++3-(3)(+)(-)53、计算题(每题5分,共20分)(1)2+3-(2)(3)(2—)(4)—4+4254、55、56、57、58、(本题满分8分)计算:(1);(2);59、计算:(1);(2).60、(本小题满分8分)计算:(1)(2)61、计算下列各题(每小题5分,共20分)(1)(2)(3)(4)62、计算:.63、计算:.64、计算(1);(2).65、计算:(1)(2).66、(-)(+)67、(8分)计算:(1)(2﹣3+6)÷2(2)68、计算:(1)(2)69、计算:(+1)(2-)70、计算:①②③④参考答案1、22、原式=,当x=﹣2时,原式=.3、(1)﹣4;(2).4、(1)(2)5、﹣26、(1);(2);(3)7、(1);(2)8、9、(1)、1;(2)、.10、(1) (2)11、化简结果:2x+1,值:.12、(1)、;(2)、.13、(1)、;(2)、14、(1)、156;(2)、3m15、216、3+;517、3+218、419、(1)原式==;(2)原式=3+2=5;(3)原式=﹣1++﹣=﹣1.20、﹣6.21、(1)x1=0,x2=3;(2).22、(1)﹣2+3(2)8;(3)2;(4)13﹣4.23、2.24、(1)2﹣3;(2)4﹣1.25、(1);(2)-5.26、(1)﹣;(2).27、(1);(2)-2.28、(1);(2);(3)x=5或x=-2;(4)-5.14;(5)、x=-;(6)、-129、(1)、1;(2)、2+1.30、(1)(2)10+2.31、.32、(1)、;(2)、;(3)、;(4)、33、(1)﹣3;(2).34、(1);(2)(3)13;(4)﹣16;(5)2;(6)1.95;(7)7﹣.35、(1);(2).36、1.37、,38、(1);(2)-17;(3)-9;(4)2;(5)-36;(6)37.9.39、(1)3;(2)2;(3)﹣1;(4)4+2.40、(1)2;(2)3.41、(1)1;(2).42、.43、(1);(2)17;(3);(4)144、3.45、646、(1);(2).47、(1)-48;(2)2.48、3.49、(1)0;(2).50、(1)-1;(2).51、(1)π-4;(2);(3)4;(4)4-4.52、(1);(2),-2+;(3)-1.53、(1)13(2)10—4 (3)11—4(4)—54、.55、1.56、.57、.58、(1)(2)59、(1)9;(2)9.60、(1)原式=;(2)原式=.61、(1)(2)(3)(4)62、.63、.64、(1) 6;(2) -.65、(1)7;(2).66、367、-+6;968、(1);(2)0.69、.70、-45;-;7+2;36-4.【解析】1、试题分析:先根据二次根式的乘法法则运算和去绝对值,然后把各二次根式化为最简二次根式后合并即可.解:原式=﹣++3=﹣3+2+3=2.考点:二次根式的混合运算.2、试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.试题解析:原式===,当x=﹣2时,原式=.考点:分式的化简求值.3、试题分析:(1)直接利用二次根式的乘法运算法则求出即可;(2)首先除法化成乘法,进而利用二次根式乘法运算法则求出即可.解:(1)•2•(﹣)=2×(﹣)=﹣=﹣4;(2)•(÷2)=×××=.点评:此题主要考查了二次根式的乘除运算,熟练掌握运算法则是解题关键.4、试题分析:(1)根据二次根式混合运算顺序先化简根式,再合并括号内的同类二次根式,最后相除可得;(2)先将各分式分子分母因式分解、除法转化为乘法,再约分后即为同分母分式相加,将a的值代入,分母有理化可得.解:(1)原式=(6﹣+4)==;(2)原式=×=+=,当a=1+时,原式===.考点:分式的化简求值;二次根式的混合运算.5、试题分析:先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的乘法运算.解:原式=(4﹣5)×=﹣×=﹣2.考点:二次根式的混合运算.6、;;7、 (1).(2).8、试题分析:根据二次根式的乘法,即可解得=.考点:二次根式的乘除法9、试题分析:(1)、利用平方差公式进行计算;(2)、首先根据二次根式的化简法则将二次根式的化简,然后利用二次根式的加法和除法计算法则进行计算.试题解析:(1)、原式==4-3=1(2)、原式=(2+)÷=÷=考点:二次根式的计算10、试题分析:根据二次根式的性质可求解.试题解析:(1)==(2)===考点:二次根式的性质11、试题分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.试题解析:原式括号中两项通分,并利用同分母分式的加法法则计算,同时把除法转化成乘法,约分得到最简结果,原式=x=x=2x+1,把x的值代入计算,当x=时,原式=.考点:分式的化简求值.12、试题分析:(1)、首先根据二次根式的化简法则将各二次根式进行化简,然后进行求和;(2)、根据二次根式的除法计算法则进行计算.试题解析:(1)、原式==(2)、原式=考点:二次根式的计算.13、试题分析:(1)、首先根据二次根式的化简法则将各二次根式进行化简,然后再进行加减法计算得出答案;(2)、根据二次根式的乘除法计算法则进行计算得出答案.试题解析:(1)、原式=(2)、原式==考点:二次根式的计算14、试题分析:(1)、首先根据=进而求出即可;(2)、利用没有说明的情况下,m,n都为非负值,进而化简即可.试题解析:(1)、===12×13=156;(2)、原式=3m考点:二次根式的性质与化简15、试题分析:先套用平方差公式,再根据二次根式的性质计算可得.原式=()2﹣()2=5﹣3=2,考点:二次根式的混合运算16、试题分析:(1)先把各二次根式化为最简二次根式,然后去括号后合并即可;(2)利用平方差公式计算.解:(1)原式=2+2+﹣=3+;(2)原式=()2﹣()2=7﹣25.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17、试题分析:先化简二次根式,再进行合并同类二次根式即可.解:原式=4﹣3+2+2=3+2.点评:本题考查了二次根式的混合运算,掌握化二次根式为最简二次根式是解题的关键.18、试题分析:根据二次根式的混合运算的计算方法可以解答本题.解:(﹣2)+4==4﹣+4=4.点评:本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.19、试题分析:(1)原式整理后,利用立方根定义计算即可得到结果;(2)原式利用二次根式乘法法则计算即可得到结果;(3)原式利用绝对值的代数意义化简,合并即可得到结果.解:(1)原式==;(2)原式=3+2=5;(3)原式=﹣1++﹣=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20、试题分析:先根据幂的运算公式及零指数幂、负整数指数幂、绝对值性质化简二次根式,再合并可得.解:原式=[()()]2015•()﹣1﹣+2﹣3=﹣﹣2﹣1﹣+2﹣3=﹣6.【点评】本题主要考查二次根式的混合运算及幂的运算公式、绝对值性质,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.21、试题分析:(1)根据提公因式法可以解答此方程;(2)根据二次根式的混合运算的方法可以解答本题.解:(1)x2=3xx2﹣3x=0,x(x﹣3)=0,∴x=0或x﹣3=0,解得,x1=0,x2=3;(2)﹣4+÷=3﹣2+=3﹣2+=.【点评】本题考查二次根式的混合运算、解一元二次方程﹣因式分解法,解题的关键的关键明确它们各自的解答方法.22、试题分析:(1)先根据数的开方法则把原式进行化简,再合并同类项即可;(2)先把各根式化为最简二次根式,再合并同类项即可;(3)先算乘法,再算减法即可;(4)根据完全平方公式进行计算即可.解:(1)原式=4﹣3+3﹣3=﹣2+3(2)原式=9+﹣2=8;(3)原式=﹣1=﹣1=2;(4)原式=12+1﹣4=13﹣4.【点评】本题考查的是实数的运算,熟知数的开放法则、二次根式的乘除法则是解答此题的关键.23、试题分析:先算乘方,再算乘法,最后算加减即可.解:原式=1+2+2+3(1﹣2)=3+2﹣3=2.【点评】本题考查的是二次根式的混合运算,熟知二次根式的混合运算与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的是解答此题的关键.24、解:(1)原式=2﹣3;(2)原式=3﹣1+=4﹣1.25、试题分析:(1)先进行二次根式的化简、绝对值的化简,然后合并;(2)先进行二次根式的乘法运算,然后化简合并.试题解析:(1)原式==;(2)原式==-5.考点:二次根式的混合运算.26、试题分析:(1)先把各个二次根式进行化简,再合并同类二次根式即可;(2)根据二次根式的乘除混合运算法则计算.解:(1)=3﹣2+﹣3=﹣;(2)=4××=.27、试题分析:(1)首先根据二次根式的化简法则将原式进行化简,然后进行求和;(2)根据二次根式的除法计算法则进行计算.试题解析:(1)3-(+)=3-2-=(2)(-)÷=-=-2考点:二次根式的计算28、试题分析:(1)、首先根据算术平方根、立方根以及绝对值的计算法则求出各式的值,然后进行求和;(2)、首先根据算术平方根和立方根的计算法则求出各式的值,然后进行求和;(3)、根据立方根的性质进行解方程;(4)、根据平方根的性质将根号去掉,然后进行计算;(5)、根据立方根的性质进行解方程;(6)、首先根据乘法法则将括号去掉,然后进行计算,得出答案.试题解析:(1)、原式=2-2-3+-1=-4;(2)、原式=6++(-3)=4;(3)、根据题意得:2x-3=±7解得:x=5或x=-2;(4)、原式=π-3.14-2-π=-5.14;(5)、根据题意跌:2x-1=-2解得:x=-;(6)、原式=1-3+1=-1.考点:(1)、实数的计算;(2)、解方程.29、试题分析:(1)、首先根据0次幂、负指数次幂、二次根式、绝对值的计算法则求出各式的值,然后进行计算;(2)、首先根据二次根式的除法计算法则求出各式的值,然后进行求和.试题解析:(1)、原式=-1+2+1-4+3=1;(2)、原式=2-2+3=2+1考点:实数的计算.30、试题分析:(1)先把所给的二次根式化简为最简二次根式,然后合并同类二次根式即可;(2)第一项利用平方差公式计算,第二项利用完全平方公式计算,然后合并同类二次根式即可.试题解析:(1)原式==(2)原式=9﹣2+1+2+2=10+2.考点:二次根式的计算.31、试题分析:根据零指数的定义以及二次根式化简的法则进行化简即可.试题解析:原式===.考点:1.二次根式的混合运算;2.零指数幂.32、试题分析:(1)、首先将各二次根式进行化简,然后进行二次根式的加减法计算;(2)、利用完全平方公式和平方差公式将括号去掉,然后再进行加减法计算;(3)、利用平方差公式进行计算;(4)、将系数进行乘除作为结果的系数,将被开方数进行乘除作为结果的被开方数.试题解析:(1)、原式=4-+2=4+;、原式=14+6-9=5+6;、原式=3-3+3-=2;(4)、原式=-×=- a.考点:二次根式的计算33、试题分析:(1)根据零指数幂的意义和绝对值的意义得到原式=﹣3+1﹣3+2﹣,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.解:(1)原式=﹣3+1﹣3+2﹣=﹣3;(2)原式=(6﹣+4)÷2=÷2=.考点:二次根式的混合运算;零指数幂.34、试题分析:(1)原式合并同类二次根式即可得到结果;(2)原式利用二次根式乘除法则计算即可得到结果;(3)原式利用算术平方根,负整数指数幂法则以及二次根式性质计算即可得到结果;(4)原式利用完全平方公式计算即可得到结果;(5)原式逆用积的乘方运算法则变形,再利用平方差公式及完全平方公式计算即可得到结果;(6)原式取其近似值即可得到结果;(7)原式利用零指数幂、负整数指数幂法则,以及算术平方根定义计算即可得到结果.解:(1)原式=;(2)原式=×=;(3)原式=3+8+2=13;(4)原式=16+5﹣8﹣16﹣8﹣5=﹣16;(5)原式=[(﹣)(+)]==2;(6)原式=2+﹣2≈1.95;(7)2﹣+1+3+=7﹣.考点:实数的运算.35、试题分析:(1)原式利用二次根式性质,绝对值的代数意义,以及立方根定义计算即可得到结果;(2)原式利用二次根式乘法,以及零指数幂法则计算即可得到结果.解:(1)原式=6﹣3+﹣3=;(2)原式=﹣4××1=2﹣=.考点:实数的运算.36、根据二次根式的乘除运算法则计算即可,原式=.37、试题分析:先把所给的分式化简为最简分式,然后把x=-1代入计算即可.试题解析:÷(x-2+)=÷=·=当x=-1时,原式==考点:分式的化简求值.38、试题分析:(1)因为的平方等于0.09,据此求值;(2)先计算根号下的运算,然后根据平方根的定义求值;(3)因为-9的立方等于-729,据此求值;(4),根据去绝对值的法则化去代数式中的绝对值符号,然后进行合并;(5)首先计算乘方和开方部分,然后按照有理数的运算法则进行计算;(6)先应用乘法分配律去掉小括号,再化去中括号,进行合并,然后取的近似值,得出结果.试题解析:(1);(2);(3);(4)=2;(5)==-32-1-3=-36;(6)==37.9.考点:实数的运算.39、试题分析:(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先进行二次根式的除法运算,然后合并即可;(3)利用平方差公式计算;(4)先把各二次根式化为最简二次根式,再进行二次根式的乘法运算,然后合并即可.解:(1)原式=2+=3;(2)原式=+﹣=2+﹣=2;(3)原式=()2﹣(2)2=11﹣12=﹣1;(4)原式=×2+×2+=+2+=4+2.考点:二次根式的混合运算.40、试题分析:(1)原式利用立方根定义,二次根式乘法法则计算即可得到结果;(2)原式利用二次根式乘除法则,完全平方公式,以及绝对值的代数意义化简,计算即可得到结果.解:(1)原式═﹣2++=﹣2+2+2=2;(2)原式=+﹣(3﹣2+2)+=2+3﹣5+3=3.考点:实数的运算.41、试题分析:(1)首先化简二次根式,进而得出答案;(2)利用二次根式乘法运算法则化简求出答案.解:(1)===1;(2)(﹣)×﹣=﹣﹣=3﹣2=.考点:二次根式的混合运算.42、试题分析:先利用二次根式的乘除法则运算,然后化简后合并即可.解:原式=﹣=﹣=.考点:二次根式的混合运算.43、试题分析:(1)先将所给的各式的值化简,然后合并同类二次根式即可;(2)先去括号然后合并同类二次根式即可;(3)先将分式的分子相减,然后分解因式,约分即可;(4)先算括号里的,除法变成乘法,然后约分即可.试题解析:(1)=(2)=(3);(4)(1+)÷=.考点:1.二次根式的计算2.分式的计算.44、试题分析:注意运算顺序,先算乘方,再算乘除,最后算加减,同时注意符号.试题解析:原式=2+1-2+2=3.考点:实数混合计算.45、试题分析:根据二次根式的性质,绝对值,负整指数幂,0指数幂的性质可求解.试题解析:=6+4-3-1="6"考点:实数的运算46、试题分析:(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式计算.试题解析:(1)原式==;(2)原式==.考点:二次根式的混合运算.47、试题分析: (1)原式利用乘方的意义,二次根式性质,以及立方根定义计算即可得到结果;(2)原式利用绝对值的代数意义,乘方的意义,以及零指数幂、负整数指数幂法则计算即可得到结果.试题解析:(1)原式=-8×-1-3=-44-1-3=-48;(2)原式=1+4+1-3=2.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.48、试题分析:根据二次根式的乘法运算法则,,以及除法运算法则,,完成计算.试题解析:解:原式= .考点:二次根式的乘除运算.49、试题分析:(1)根据平方差公式和二次根式的除法法则运算;(2)先把各二次根式化为最简二次根式,然后合并即可.试题解析:(1)原式=2-3+=2-3+3-2=0;(2)原式==.考点:二次根式的混合运算.50、试题分析:本题考查了平方差公式、二次函数的性质与化简、0指数幂,理解平方根的意义是解题的关键.试题解析:解:(1)=(2)2-32=8-9=-1;(2)=-+1+-1=2-.考点:1.平方差的公式;2.二次根式的性质与化简;3.零指数幂.51、试题分析:(1)先进行零指数幂、绝对值的化简、负整数指数幂的运算,然后合并;(2)先进行二次根式的化简,然后合并;(3)先进行二次根式的乘法运算和除法运算,然后合并;(4)分别进行幂的乘方和积的乘方、二次根式的化简等运算,然后合并.试题解析:(1)原式=6-4+π-2-4=π-4;(2)原式=2+3-=;(3)原式=9-3-2=4;(4)原式=(2+3)2011(2-3)2011(2-3)--+1=3-2-2+1=4-4.考点:1.二次根式的混合运算;2.零指数幂;3.负整数指数幂.52、试题分析:(1)化简后合并即可;(2)化简后合并即可;(3)根据平方差公式计算即可.试题解析:解:(1)原式=;原式=4+(-3)+3-3=-2+3;原式=2-3=-1.考点:二次根式的化简.53、试题分析:根据二次根式的性质(a≥0,b≥0)和(a≥0,b>0)可化简计算.试题解析:解:(1)2+3-=4+12-3=13(2)=-4=10-4(3)(2—)=8-4+3=11-4(4)—4+42=-4×+42×=—考点:二次根式的性质54、试题分析:根据二次根式的乘除运算法则计算即可.试题解析:解:原式=6.考点:二次根式的运算.55、试题分析:根据二次根式的乘除运算法则计算即可.试题解析:解:原式=.考点:二次根式的运算.56、试题分析:根据二次根式的乘法运算法则计算即可.试题解析:解:原式=1=.考点:二次根式的运算.57、试题分析:根据二次根式的除法运算法则计算即可.试题解析:解:原式=.考点:二次根式的运算.58、试题分析:(1)先去括号,然后化成最简二次根式,再合并同类二次根式即可;(2)先把除法变成乘法,然后去括号,然后化成最简二次根式,再合并同类二次根式即可.试题解析:(1)=(2)==.考点:二次根式的计算59、试题分析:(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的乘法运算.试题解析:(1)原式=10﹣3+2=9;(2)原式=(4﹣)×=3×=9.考点:二次根式的混合运算.60、试题分析:(1)先化简后再合并即可;(2)利用完全平方公式计算即可.试题解析:(1)解:原式==(2)解:原式==考点:二次根式的计算.61、试题分析:(1)根据二次根式运算顺序直接运算得出即可.(2)根据完全平方公式进行计算即可。
二次根式的乘除练习题(含答案)

第十六章 二次根式16.2 二次根式的乘除1.下列二次根式中,最简二次根式是 A 23aB 13C 153D 1432.如果mn >0,n <0,下列等式中成立的有。 mn m n =1n m m n =m m n n=1m m n mn =-.A .均不成立B .1个C .2个D .3个3.下列各组二次根式化成最简二次根式后,被开方数完全相同的是 A ab 2abB mn 11m n+ C 22m n +22m n - D 3289a b 3489a b 4.下列等式不成立的是 A .2×36B 8÷2=4C 1333D 8×2=453x x-3x x -,则x 的取值范围是A .x <3B .x ≤3C .0≤x <3D .x ≥06结果为A .B .C .D .7=x 的取值范围是__________.8.计算:=__________.9=__________.10.下列二次根式:. 其中是最简二次根式的是__________.(只填序号)11.计算:-=__________.12.200020012)2)+⋅-=__________. 13.计算:(1;(2)- 14.计算:(123)4).15.计算(1)1223452533÷⨯;(2)21123(15)3825⨯-÷; (3)282(0)aa b ab a b÷⨯>;(4)27506⨯÷.16.当x <03x y -等于A .xyB .xC .-xy -D .-xy 179520的结果是 A .32B 32C 532D .5218.计算8(223)÷-⨯的结果是A .26B .33C .32D .6219.下列运算正确的是A 222253535315⨯==⨯=B 22224343431-=-=-=C.2510 5=D.(4)(16)416(2)(4)8-⨯-=-+-=-⨯-=20.若22m n+-和3223m n-+都是最简二次根式,则m=__________,n=__________.21.一个圆锥的底面积是26cm2,高是43cm,那么这个圆锥的体积是__________.22.计算:263⨯+(3-2)2-2(2-6).23.方老师想设计一个长方形纸片,已知长方形的长是140πcm,宽是35πcm,他又想设计一个面积与其相等的圆,请你帮助方老师求出圆的半径.24.(2018·甘肃兰州)下列二次根式中,是最简二次根式的是A.18B.13C.27D.1225.(2018·湖南益阳)123=⨯__________.26.(2018·江苏镇江)计算:182⨯=__________.1.【答案】D【解析】A a |,可化简;B ==C ==,可化简;因此只有D : =,不能开方,符合最简二次根式的条件.故选D .2.【答案】C【解析】根据题意,可知mn >0,n <0,所以可得m <0,根据二次根式的乘法的性质,可知m ≥0,n ≥0,=1,故②正确;根据二次根式除法的性质,可知m ≥0,n >0=-m ,故④正确.故选C . 3.【答案】D【解析】选项A 的被开方数不相同;选项B 的被开方数不相同;选项C ,不能够化简,被开方数不相同;选项D ,=23,23ab D .4.【答案】B【解析】选项A 、C 、D 正确;选项B 2=,选项B 错误,故选B . 5.【答案】C【解析】根据题意得:030x x ≥⎧⎨->⎩,解得:03x ≤<.故选C .6.【答案】B【解析】原式==,故选B .9.【答案】7120.091960.091960.31470.361440.361440.61212⨯==⨯=⨯.故答案为:712.10.【答案】①⑥【解析】最简二次根式是满足下列条件的二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含有能开的尽方的因式或因数.由此可得①⑥是二次根式,故答案为:①⑥. 11.【答案】-5【解析】原式48332731639495=÷-÷==-=-.故答案为:5-.123+2【解析】原式200020002000(32)(32)(32)[(332)]=-++⋅=⋅2000(1)32)=-⋅+⋅32)+32=32+.13.【解析】(1)25144⨯25144=512=⨯ 60=.(2)13xyz xy⋅- 13xyz xy=-⋅=-14.【解析】(1==(2==(3)====-.(4)====15.【解析】(1)原式233=⨯23=45==(2)(13()8=⨯-⨯354=-⨯ 154=-.(3)原式===(4)原式15==. 16.【答案】C【解析】∵x <0=|x -C . 17.【答案】A【解析】原式32,故选A . 18.【答案】BB . 19.【答案】A5315==⨯=,故正确;,故不正确;248==⨯=,故不正确.故选A . 20.【答案】1、2【解析】由题意,知213221m n m n +-=⎧⎨-+=⎩,解得12m n =⎧⎨=⎩,因此m 的值为1,n 的值为2.故答案为:1,2.21【解析】根据圆锥的体积公式可得,这个圆锥的体积是13⨯==故答案为24.【答案】B【解析】A1832=B13是最简二次根式,正确;C2733=不是最简二次根式,错误;D1223=B.25.【答案】6【解析】原式3×3=6.故答案为:6.26.【答案】218 2182⨯,故答案为:2.。
九年级数学二次根式的乘除练习题及参考答案

九年级数学二次根式的乘除练习题及参考答案姓名_____________班级____________学号____________分数_____________一、选择题1 .的结果是( )A 、10 B、 C 、54 D 、202 .下列二次根式中,属于最简二次根式的是 ( ) A.21 B.4 C.8 D.5 3 .下列运算中,结果正确的是(A) 0(0= (B) 133-=-= (D 6)3(2-=- 4 .在下列二次根式中,( )5 .下列结论正确的是 (A)6)6(2-=--(B) 9)3(2=- (C)16)16(2±=-(D)251625162=⎪⎪⎭⎫ ⎝⎛-- 6 .若b<0,化简3ab -的正确结果是( ) (A)ab (B)b ab - (C)-b ab (D)-b ab - 7 .如果mn>0, n<0,下列等式中成立的有( )。 ①n m mn ⋅= ②1=⋅n m m n ③n m n m = ④m mnn m -=÷1 A.均不成立B.1个C.2个D.3个 二、填空题8 .49的平方根是____________,()32-=π____________。9 .计算:=⋅62__________.10.。
计算:=-⨯328 11.=-2)135(______;12.2)12(--______;13.=43943bc a ________; 14.)27()15(-⨯-=_______; 15.2)45.2(⨯-=________;16.944=______。 17.2)2(-的平方根是____________,327102- = _________ .18.比较大小:4-;19.计算:2=__________.20.m =,=_________。21.计算:=-+20072007)322()322(______________________ 22.10a (a <0)=________;23.若a 、b 、c 均为实数,且a 、b 、c 均不为0化简=23425b c a __________________。 三、解答题24 25.3121614714512⨯-⎛⎝ ⎫⎭⎪÷⎛⎝ ⎫⎭⎪ 26.化简 (1)31227 (2)(2 +3)2 (5 - 26)3.2二次根式的乘除参考答案一、选择题1 .B2 .D3 .C4 .C5 .A6 .D7 .C二、填空题8 .±-73,π9 .10.111.8;12.12-;13.2ac ;14.15.10-;1617.±4 ,-4318.<,=19.320.0.1m;21.-1;22.5a -;23.⎪⎪⎩⎪⎪⎨⎧<->时当时当0210021022b b cc a b b c c a三、解答题24.解:原式=225.-2326.(1) 1,(2)13-56。。
二次根式的乘除运算

1二次根式的乘除运算 姓 名一 基本概念:1.二次根式的乘法:二次根式相乘,把被开方数相乘,根指数 . 强调:乘法交换律在二次根式中同样适用。
公式:(1)(0,0)a b ab a b ∙=≥≥ (2)()a 0,b 0a b c abc ∙∙=≥≥ 例题1:如果()11x y x y ∙-=-,那么x ,y 例题2:计算23∙=__ 255∙= 3225∙=2.二次根式乘法公式的逆用:例题1: 计算2002100=⨯= (210,102⨯) ,45=⨯=3.二次根式的除法:二次根式相除,把被开方数相除,根指数 . 公式:(1)(0,0)a a a b bb=≥>, (2)公式的逆用:ab=a b(0,0)a b ≥>(3)形式改变:m n ÷=m n ÷(m 0,n 0)例题1.如果33-=-x x x x,则x 的取值范围为 .例题2. 计算7212= ,34= ,21132÷= 。
二.二次根式的化简1.化去分母中的根号:将分子分母同乘这个根式,利用乘法化去分母中的根号。
例题1.化去分母中的根号: 11333⨯==⨯63 322b aa==2.最简二次根式的判定:(1)被开方数不含____(2)被开方数的因数或因式的次数小于____. 例题1.下列式子哪些是最简二次根式:6x22a b + 32ab3a 0.5ab6424x2.利用二次根式乘除法公式化成最简二次根式:要点:分别开方。
三.二次根式乘除混合运算 例题1.化简:122720350.5a b 224836-·二次根式乘除法的混合运算,先定符号,再乘除绝对值。
系数乘除系数,根号乘除根号。
例题321332()322b ab a b a ⨯÷÷⨯-。
二次根式的乘除专项练习60题(有答案过程)ok
1. ( 2. 3. (2 +4 )× +3) (3﹣ ) .
4. 5. .
6. 7. 8. .
9. (1)
; (2)
10.
11. (1)x(2x﹣1)﹣x (2﹣x) ; 2 3 2 3 (2) (2ab ﹣b ) ÷2b ; (3) (4) (5) (6) ; ; ; .
(2)
.
58.计算:2
×
.
59.
.
60.
.
二次根式的乘除法---
4
参考答案:
1. ( +3) (3﹣ )=3 ﹣( ) =9﹣6=3. 2 2 2. 原式=(3 ) ﹣(4 ) =54﹣32=22. 3.原式= 4.原式=( 5.原式= 6. 原式=(2 7.原式= ) ﹣3 =20﹣9=11. =2﹣9+2 = .
2
=﹣ =﹣
=﹣ ×10=﹣
.
÷ × × × ×4×
43.原式=﹣(9÷3× ) 44. 45. 46.原式=(2 47.原式=3 48.原式=27 49.原式=4 50.原式= 51.原式= ÷ ×3 = ) +2×2 ÷12= ÷ ×3 . × × =27
2
×3
×
×
=45
﹣2=24﹣2=22. = × ×3 = ×2a= . =9 . )] =[( ) ﹣( ) ] =(5﹣3) =4 +3)=(8﹣2 ) (8+2 )=64﹣60=4.
=2 . ×4
÷6
=
÷
2 2
= ÷3
×4 =
×
= ×4× × .
=1
)=a b
二次根式加减乘除计算200道(含答案)
二次根式计算200道一.解答题1.计算或化简:(1);(2);(3);(4);(5)3(﹣π)0﹣+(﹣1)2013;(6)(﹣3)0﹣++;(7);(8).2.计算:(1);(2);(3);(4).3.计算题:(1);(2).4.计算.(1)(+)();(2)()×+2.5.计算(1)()÷(2)(3)2﹣()()6.计算:(1)+﹣×;(2)(﹣3)÷.7.计算:(1);(2);(3);(4).8.计算:(1);(2).9.计算:(1)2﹣6+3;(2)÷﹣+()﹣1.10.计算:•(﹣)÷(a>0).11.计算题(1)|﹣2|+()﹣1×(π﹣)0﹣++(﹣12);(2)(++)(﹣)+2.12.计算:()﹣2﹣()2.13.计算:(1)+﹣﹣;(2)﹣22+()﹣2+(π﹣)0+;(3)6÷(﹣3)×(﹣);(4)﹣+.14.计算:(1)2﹣+;(2)(+)(﹣)﹣(﹣1)2.15.计算(1)+2﹣(﹣);(2)÷×;(3)﹣()(﹣).16.计算题(1)(1﹣+)(1﹣﹣);(2)3+2﹣;(3)(π﹣3)0+()﹣1﹣|1﹣|﹣+;(4)3﹣﹣2.17.计算:(1)﹣12020+3(π﹣3.14)0﹣()﹣2+|﹣3|;(2)×﹣2÷+(1﹣)2﹣;(3)﹣+;(4)(4)÷(2)(2﹣).18.计算.(1)﹣+.(2)×﹣+(﹣1)0.(3)÷﹣4+.(4)(﹣2)2+()﹣1﹣()2.19.计算:(1).(2).(3)(1+)(1﹣)+(1+)2.(4)+|﹣2|+(π﹣3.14)0﹣.20.计算(1)﹣3+;(2)3×÷2;(3)(﹣1)(﹣1)+(﹣2)2;(4)(﹣)﹣1+|2﹣|+×(﹣).21.计算:+×(﹣)++(3﹣π)022.计算:(1);(2);(3);(4);(5);(6).23.计算题:(1)•(﹣)﹣2﹣(2﹣)0+|﹣|+;(2)﹣﹣+(﹣2)0+;(3)(+1)(﹣1)+(﹣2)2+(2﹣)÷.24.计算:(1);+++(2);+++(3);(4).25.计算:3÷(﹣2)•.(a>0)26.计算:(1)++•;(2)(2++)×﹣12;(3)﹣(1﹣)2.27.计算:(1)+﹣8;(2)()﹣1﹣﹣﹣(﹣2)2.28.计算(1)4+﹣;++(2)﹣4+÷;(3)(﹣1)2﹣(2﹣)(2+).29.计算:(1)+||+;(2)×.30.计算:(1)5+﹣(+2);(2)÷﹣2×﹣(﹣)2;(3)(2﹣)2019(2+)2020﹣2|﹣1|﹣()﹣1.31.计算:(1);(2)﹣;(3).32.计算:(1)﹣+(﹣1)2;(2)(+2)×﹣.33.计算题:(1)+3﹣;(2)﹣4;(3)(﹣3)2+(+3)(﹣3);(4)(2+)×﹣12.34.计算:(1)﹣+×;(2)|1﹣|﹣2+7+×.35.计算及化简:(1)()2﹣()2(2)﹣(3)﹣(4)﹣()÷.36.计算或化简:(1)×﹣6﹣3÷2;(2)(3+2)(3﹣2)﹣(﹣)2;(3)(+)2﹣(﹣)2;(4).37.已知a=,b=.(1)求a2﹣b2的值;(2)求a2﹣ab+b2.38.已知:a=+2,b=﹣2,求代数式(a﹣3)(b﹣3)﹣(a2+b2)的值.39.已知a=﹣,b=+,求值:(1)+;(2)a2b+ab2.40.化简计算:(1)已知:,求代数式的值.(2)已知,试求下列各式的值①x2+y2+xy②.二次根式计算200道参考答案与试题解析一.解答题(共40小题)1.【解】(1)原式=×4=8;(2)原式=2+1﹣2=3﹣2;(3)原式=+﹣=;(4)原式=(4﹣)×=3×=9;(5)原式=3﹣(2﹣)﹣1=;(6)原式=1﹣3+﹣1+﹣=﹣2;(7)原式=4﹣+2=4+;(8)原式=2b×(﹣)×=﹣a2b.2.【解】(1)原式=3﹣2+=;(2)原式=﹣+2=4﹣+2=4+;(3)原式=1﹣12﹣(3﹣2+1)=﹣11﹣4+2=﹣15+2;(4)原式=×4﹣1+4++1=2﹣1+4++1=7.3.【解】(1)原式=3﹣+2=;(2)原式=﹣=1﹣.4.【解】(1)原式=2﹣3=﹣1.(2)原式=3﹣6﹣3+6=6﹣6.5.【解】(1)原式=(5+4﹣3)÷2=6÷2=3;(2)原式=19﹣6﹣3+4=20﹣6.6.【解】(1)原式=2+3﹣4=;(2)原式=(﹣3)×=﹣3=﹣6.7.【解】(1)原式=﹣+3﹣2=2;(2)原式=3﹣2﹣×1+1=1;(3)原式=﹣﹣2=4﹣3+2=1+2;(4)原式=9+6+2﹣(4﹣3)=11+6﹣1=10+6.8.:【解】(1)原式=+=+2=3;(2)原式=4﹣4+3+4﹣3=8﹣4.9.:【解】(1)原式=4﹣2+12=14;(2)原式=﹣(+1)+=4﹣﹣1+=3.10.:•(﹣)÷(a>0).【解】原式====.11.【解】(1)原式=2+2×1﹣2﹣1=2+2﹣2﹣1=1;(2)原式=2﹣3+4=4﹣1.12.【解】原式=4+2﹣3+﹣3=1.13.【解】(1)+﹣﹣=+2﹣﹣2=;(2)﹣22+()﹣2+(π﹣)0+=﹣4+9+1+(﹣5)=5+1﹣5=1;(3)6÷(﹣3)×(﹣)=[6÷(﹣3)×()]=3;(4)﹣+==4﹣2.14.:【解】(1)原式=6﹣5+2=3.(2)原式=5﹣6﹣(5﹣2+1)=﹣1﹣(6﹣2)=﹣1﹣6+2=﹣7+2.15.【解】(1)原式=2+2﹣3+=3﹣.(2)原式===.(3)原式=+﹣(3﹣2)=2+3﹣3+2=4.16.【解】(1)原式=[(1﹣)+][(1﹣)﹣]=﹣2.(2)原式=6+8﹣5=9.(3)原式=1+2﹣(﹣1)﹣+2=3﹣+1﹣+2=4.(4)原式=6﹣﹣=.17.【解】(1)原式=﹣1+3×1﹣9+3=﹣1+3﹣9+3=﹣4;(2)原式=﹣2+1﹣2+3﹣4=2﹣4+1﹣2+3﹣4=﹣4;(3)原式=﹣+20﹣3=20﹣;(4)原式=4+3+8﹣3=12.18.【解】(1)原式=﹣2+3=2;(2)原式=﹣+1=2﹣+1=+1;(3)原式=﹣2+2=2﹣2+2=2;(4)原式=5﹣4+4+5﹣5=9﹣4.19.【解】(1)原式==6;(2)原式=﹣+2=4﹣+2=4+;(3)原式=1﹣5+1+2+5=2+2;(4)原式=2+2﹣+1﹣(+1)=2+2﹣+1﹣﹣1=2.20.【解】(1)原式=2﹣+=;(2)原式=3×××=;(3)原式=2+1﹣2+3﹣4+4=10﹣2﹣4;(4)原式=﹣2+﹣2﹣=﹣2+﹣2﹣4=﹣8.21.:+×(﹣)++(3﹣π)0【解】原式=﹣+|1﹣|+1=2﹣3+﹣1+1=0.22.:【解】(1)原式=1+2+2﹣=3+;(2)原式=﹣+2﹣﹣2=﹣2+2﹣﹣2=﹣3;(3)原式=+2﹣6=﹣3;(4)原式=2+﹣=;(5)原式=3+2+1﹣(﹣3+﹣2)=4+3+2;(6)原式=2﹣1+3=2+2.23.【解】(1)原式=×4﹣1+4++1=2﹣1+4++1=7;(2)原式=3﹣﹣1﹣+1+﹣1=﹣1;(3)原式=2﹣1+3﹣4+4+2﹣=10﹣5.24.【解】(1)=﹣3=2﹣3=﹣;(2)=﹣4=5﹣4=1;(3)=()2﹣()2=8﹣=7;(4)=3﹣.25.【解】原式=﹣(3×)×()=﹣×=﹣.26.【解】(1)+•=+3×3=+9=;(2)(2+)×﹣12=2×+×﹣12×=6+6﹣6=6;(3)﹣(1﹣)2=﹣(4﹣2)=5﹣4+2=1+2.27.【解】(1)+﹣8=3﹣;(2)()﹣1﹣﹣﹣(﹣2)2=﹣3+.28.【解】(1)原式=4+3﹣2=5;(2)原式=3﹣2+=3﹣2+2=3;(3)原式=2﹣2+1﹣2(4﹣5)=3﹣2+2=3.29.【解】(1)+||+=0.2﹣2+0.5+2﹣+=0.7;(2)×=4﹣+2=4+.30.【解】(1)原式=5×+×2﹣5﹣2=+﹣5﹣2=﹣5;(2)原式=4﹣2﹣(2+3﹣2)=4﹣2﹣5+2=﹣1;(3)原式=[(2﹣)(2+)]2019(2+)﹣2(1﹣)﹣=2+﹣2+﹣=.31.【解】(1)原式=2+﹣1+2﹣1=3;(2)原式=﹣(2﹣)÷=5﹣÷=5﹣;(3)原式=6﹣12+12﹣(20﹣2)=18﹣12﹣18=﹣12.32.【解】(1)原式=2﹣+3﹣2+1=4﹣;(2)原式=5+2﹣(+)=5+10﹣﹣=6+5.33.【解】(1)原式=4+﹣=;(2)原式=﹣4=10﹣4=6;(3)原式=5﹣6+9+11﹣9=16﹣6;(4)原式=2+﹣6=6+6﹣6=6.34.【解】(1)﹣+×;=+1﹣+2=1+2;(2)|1﹣|﹣2+7+×=﹣1﹣4++2=﹣2+1.35.【解】(1)原式=a++2﹣(a+﹣2)=a++2﹣a﹣+2=4;(2)原式=﹣=2;(3)原式=﹣=;(4)原式=﹣(﹣[﹣]•==1.36.【解】(1)原式=﹣2﹣=4﹣2﹣=;(2)原式=18﹣12﹣(3﹣2+2)=6﹣5+2=1+2;(3)原式=a+2+﹣(a﹣2+)=4;(4)原式=﹣=+﹣(﹣)=2.37.已知a=,b=.(1)求a2﹣b2的值;(2)求a2﹣ab+b2.【解】(1)∵a==+,b==,∴a+b=2,a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=2×=4;(2))∵a==+,b==,∴a﹣b=2,ab=1,∴a2﹣ab+b2=(a﹣b)2+ab=(2)2+1=8+1=9.38.已知:a=+2,b=﹣2,求代数式(a﹣3)(b﹣3)﹣(a2+b2)的值.【解】∵a=+2,b=﹣2,∴a+b=+2+﹣2=2,ab=(+2)(﹣2)=3﹣4=﹣1,则(a﹣3)(b﹣3)﹣(a2+b2)=ab﹣3a﹣3b+9﹣[(a+b)2﹣2ab]=ab﹣3(a+b)+9﹣[(a+b)2﹣2ab]=﹣1﹣6+9﹣(12+2)=﹣1﹣6+9﹣14=﹣6﹣6.39.已知a=﹣,b=+,求值:(1)+;(2)a2b+ab2.【解】∵a=﹣,b=+,∴a+b=(﹣)+(+)=2,ab=(﹣)(+)=2,(1)+=====12;(2)a2b+ab2=ab(a+b)=2×2=4.40.化简:(1)已知:,求代数式的值.(2)已知,试求下列各式的值①x2+y2+xy②.【解】(1)∵要使有意义,必须1﹣8x≥0,8x﹣1≥0,∴x=∴把x=代入得:y=0+0+=,∴=﹣====1.(2)∵,∴x=(+),y=(﹣),∴x+y=,xy=,∴①x2+y2+xy=(x+y)2﹣xy=()2﹣=4;②===8。
人教版八年级数学下册同步练习《16.2 二次根式的乘除》 含答案
人教版八年级数学下册同步练习《16.2 二次根式的乘除》◆基础知识作业1.计算: =2.长方形的宽为,面积为,则长方形的长约为(精确到0.01).3.能使等式成立的x的取值范围是()A.x≠2 B.x≥0 C.x>2 D.x≥24.下列二次根式中,最简二次根式是()A.B.C.D.5.化简的结果是()A.B.C.D.6.已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣7.二次根式,,的大小关系是()A.B.<<C.<<D.<<8.化简:(1)(2)(3)(4)(5)(7)÷.◆能力方法作业9.若和都是最简二次根式,则m= ,n= .10.化简﹣÷= .11.比较大小:﹣﹣.12.下列二次根式中,是最简二次根式的是()A. B. C.D.13.下列根式中,是最简二次根式的是()A.B.C.D.14.计算:等于()A.B.C.D.15.把根号外的因式移入根号内,其结果是()A.B.﹣C.D.﹣16.化简:(1)(2)(x>0)17.计算(1)4÷(﹣5)(2)÷()(a>0,b>0,c>0)18.把根号外的因式移到根号内:(2).◆能力拓展与探究19.下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.20.化简:a(a>b>0)21.体积为18的长方体的宽为1cm,高为=2cm,求这个长方体的长.人教版八年级数学下册同步练习《16.2 二次根式的乘除》解析◆基础知识作业1.计算: =【考点】二次根式的乘除法.【分析】根据二次根式的除法法则对二次根式化简即可.【解答】解:原式==.【点评】主要考查了二次根式的乘除法运算.二次根式的运算法则:乘法法则=(a≥0,b≥0).除法法则=(a>0,b≥0).2.长方形的宽为,面积为,则长方形的长约为 2.83 (精确到0.01).【考点】二次根式的应用.【分析】根据二次根式的相关概念解答.【解答】解:设长方形的长为a,则2=a,a==2≈2.83.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:•=(a≥0,b≥0);=(a≥0,b>0).3.能使等式成立的x的取值范围是()A.x≠2 B.x≥0 C.x>2 D.x≥2【考点】二次根式的乘除法;二次根式有意义的条件.【分析】本题需注意的是,被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围.【解答】解:由题意可得,,解之得x>2.故本题选C.【点评】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.4.下列二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、=|a|,可化简;B、==,可化简;C、==3,可化简;因此只有D: =,不能开方,符合最简二次根式的条件.故选D.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.5.化简的结果是()A.B.C.D.【考点】二次根式的性质与化简.【专题】计算题.【分析】原式被开方数利用平方差公式化简,约分后化简即可得到结果.【解答】解:原式====.故选D【点评】此题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.6.已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣【考点】二次根式的性质与化简.【分析】二次根式有意义,y<0,结合已知条件得y<0,化简即可得出最简形式.【解答】解:根据题意,xy>0,得x和y同号,又x中,≥0,得y<0,故x<0,y<0,所以原式====﹣.故答案选D.【点评】主要考查了二次根式的化简,注意开平方的结果为非负数.7.二次根式,,的大小关系是()A.B.<<C.<<D.<<【考点】分母有理化.【分析】本题可先将各式分母有理化,然后再比较它们的大小.【解答】解:将三个二次根式化成同分母分数比较:∵=, ==,;∴<<.故本题选C.【点评】解答本题的关键是将各分式分母有理化,然后再比较它们的大小.在分母有理化的过程中,找出分母的有理化因式是解题的关键.8.化简:(1)(2)(3)(4)(5)(6)(7)÷.【考点】二次根式的乘除法.【分析】(1)直接进行化简即可;(2)直接进行化简即可;(3)先进行加法运算,然后进行化简即可;(4)先计算根号下的数值,然后进行化简即可;(5)先计算根号下的数值,然后进行化简即可;(6)先进行除法运算,然后进行化简;(7)先进行除法运算,然后进行化简.【解答】解:(1)原式=;(2)原式=;(3)原式==;(4)原式==;(5)原=;(6)原式==2;(7)原式==3.【点评】本题考查了二次根式的乘除法,解答本题的关键是掌握运算法则以及二次根式的化简.◆能力方法作业9.若和都是最简二次根式,则m= 1 ,n= 2 .【考点】最简二次根式.【分析】由于两二次根式都是最简二次根式,因此被开方数的幂指数均为1,由此可得出关于m、n 的方程组,可求出m、n的值.【解答】解:由题意,知:,解得:;因此m的值为1,n的值为2.故答案为:1,2.【点评】本题考查的最简二次根式的定义.当已知一个二次根式是最简二次根式时,那么被开方数(或因式)的幂指数必为1.10.化简﹣÷= .【考点】二次根式的乘除法.【分析】运用二次根式的运算性质,结合最简二次根式的概念,对二次根式进行化简.注意约分的运用.【解答】解:原式=﹣•=﹣•=﹣••=﹣2a.【点评】在二次根式的化简中,准确运用二次根式的性质,二次根式的除法法则和最简二次根式的概念,把结果化成最简的形式.11.比较大小:﹣<﹣.【考点】实数大小比较.【分析】首先把两个数平方,再根据分母大的反而小即可比较两数的大小.【解答】解:∵(﹣)2=,(﹣)2=,又∵>,∴﹣<﹣,即﹣<﹣.故填空答案:<【点评】此题主要考查了实数的大小比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.12.下列二次根式中,是最简二次根式的是()A. B. C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件(①被开方数不含分母;②被开方数不含能开得尽方的因数或因式)是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数里含有能开得尽方的因数8,故本选项错误;B、符合最简二次根式的条件;故本选项正确;B、,被开方数里含有能开得尽方的因式x2;故本选项错误;C、被开方数里含有分母;故本选项错误.D、被开方数里含有能开得尽方的因式a2;故本选项错误;故选;B.【点评】本题主要考查了最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.13.(2013秋•阆中市期末)下列根式中,是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】A选项的被开方数中含有分母;B、D选项的被开方数中含有能开得尽方的因数或因式;因此这三个选项都不是最简二次根式.所以只有C选项符合最简二次根式的要求.【解答】解:因为:A、=;B、=2;D、=|b|;所以这三项都可化简,不是最简二次根式.故选:C.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.14.计算:等于()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的乘除法法则计算.【解答】解: ==.故选A.【点评】二次根式的乘除法法则:(a≥0,b≥0);(a≥0,b>0).15.把根号外的因式移入根号内,其结果是()A.B.﹣C.D.﹣【考点】二次根式的乘除法.【分析】由于被开方数为非负数,可确定1﹣a的取值范围,然后再按二次根式的乘除法法则计算即可.【解答】解:由已知可得,1﹣a>0,即a﹣1<0,所以, =﹣=﹣.故本题选B.【点评】由已知得出1﹣a的取值范围是解答此题的关键.16.化简:(1)(2)(x>0)【考点】二次根式的乘除法.【分析】(1)先进行二次根式的化简,然后求解;(2)直接进行二次根式的化简即可.【解答】解:(1)原式==;(2)原式=.【点评】本题考查了二次根式的乘除法,掌握二次根式的乘法法则和除法法则以及二次根式的化简是解题的关键.17.计算(1)4÷(﹣5)(2)÷()(a>0,b>0,c>0)【考点】二次根式的乘除法.【分析】(1)先进行二次根式的化简,然后求解即可;(2)先进行二次根式的除法运算,然后化简求解.【解答】解:(1)原式=﹣4×=﹣;(2)原式==.【点评】本题考查了二次根式的乘除法,掌握二次根式的乘法法则和除法法则以及二次根式的化简是解题的关键.18.把根号外的因式移到根号内:(1)(2).【考点】二次根式的性质与化简.【专题】计算题.【分析】(1)先变形得到原式=﹣5×,然后利用二次根式的性质化简后约分即可;(2)先变形得到原式=(1﹣x)•,然后利用二次根式的性质化简后约分即可.【解答】解:(1)原式=﹣5×=﹣5×=﹣;(2)原式=(1﹣x)•=(1﹣x)•=﹣.【点评】本题考查了二次根式的性质与化简: =|a|.◆能力拓展与探究19.下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.【考点】二次根式的乘除法;同底数幂的除法;完全平方公式;分式的基本性质.【分析】此类题目难度不大,可用验算法解答.【解答】解:A、a12÷a6是同底数幂的除法,指数相减而不是相除,所以a12÷a6=a6,错误;B、(x+y)2为完全平方公式,应该等于x2+y2+2xy,错误;C、===﹣,错误;D、正确.故选D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:①a m÷a n=a m﹣n,②÷=(a≥0,b>0).20.化简:a(a>b>0)【考点】二次根式的性质与化简.【专题】计算题.【分析】先利用完全平方公式变形得到原式=a,再利用二次根式的性质得到原式=a•|﹣|,然后利用a>b>0去绝对值后进行分式的运算.【解答】解:原式=a=a•|﹣|,∵a>b>0,∴原式=a•[﹣(﹣)]=.【点评】本题考查了二次根式的性质和化简: =|a|.也考查了完全平方公式和绝对值的意义.21.体积为18的长方体的宽为1cm,高为=2cm,求这个长方体的长.【考点】二次根式的乘除法.【分析】已知长方体的宽与高,根据二次根式的乘法,即可求得这个长方体的长.【解答】解:长方体的高为=2cm,宽为1cm,则长方体的长为: =9cm,答:长方体的长是9cm.【点评】此题考查了二次根式的乘法.此题比较简单,注意÷=(a>0,b>0)。
专题 二次根式的乘除(巩固篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练
专题12.6 二次根式的乘除(巩固篇)(专项练习)一、单选题1. 下列二次根式中,属于最简二次根式的是( )A. B. C. D. 2. 下列实数中是无理数是( )A. B. C. D. ()03π-3. A. 5到6之间 B. 6到7之间 C. 7到8之间 D. 8到9之间4. 若0,0mn m n >+<=( )A. m B. -m C. n D. -n5. ( )A.B. C. D.6. 已知1a b ==+,则,a b 的关系是( )A. a b = B. 1ab =- C. 1a b = D. a b=-7. 设a ,b ,用含a ,b ( )A. 0.3abB. 0.6abC. 2abD. 22a b 8. 已知226a b ab +=,且0a b >>,则a b a b +-的值为( )A. C. 2D. 2±9. 下列说法中正确的是( )A. 有意义的是x >﹣3B. 是正整数的最小整数n 是3C. 若正方形的边长为cm ,则面积为30cm 2D. 计算的结果是310. 在古希腊时期,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听,他发现铁匠打铁节奏很有规律,这个声音的比例称为黄金分割数.设a =b =11111S a b =+++,2221111S a b =+++,3331111S a b=+++,…,1001001001111S a b =+++,则123100S S S S +++⋅⋅⋅+的值为( )A. B. C. 100 D. 5050二、填空题11. 的倒数是______.12. 已知实数1a =,则a 的倒数为________.13. 都是最简二次根式,则m +n =_____.14. 已知最简二次根式与0b ≠,则=a ________.15. 不等式0< 的解集是_________.16. 已知m ___________.17.米为单位长度建立数轴,线段AB =17米,点A 在原点,点B 在数轴的正半轴,估计点B 位于两个相邻整数之间,这两个整数分别是______.18. 将1按右侧方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(9,4)表示的两数之积是______.三、解答题19. (1)计算:()2023 1-+(220. 比较下列各数的大小(1)(2)3π-21. 计算:(1))2+-;(22 --;(3)((1 20212022221-+--22. 先化简,再求值:2222a b ab baa a⎛⎫--÷-⎪⎝⎭,其中3,3a b=+=.23. ===,….(1)类比上述式子,再写出几个同类型的式子(至少写3个);(2)请你将发现的规律用含自然数()1n n ≥的等式表示出来,并给出证明.24. 的大小过程:因为211=,224=,所以12<<;因为21.4 1.96=,21.5 2.25=,所以1.4 1.5<<;因为21.41 1.9881=,21.42 2.0164=,所以1.41 1.42<<;因为21.414 1.999396=,21.415 2.002225=,所以1.414 1.415<<;……的更加精确的近似值.(1的大致范围?(精确到0.01)(2)填空:①比较大小:“>、<或=”)②若a 、b 均为正整数,a >b <a b +的最小值是______.(3)现有一块长4.1dm ,宽为3dm 的长方形木板,要想在这块木板上截出两个面积分别为22dm 和25dm 的正方形木板,张师傅准备采用如图的方式进行,请你帮助分析一下,他的方法可行吗?专题12.6 二次根式的乘除(巩固篇)(专项练习)一、单选题【1题答案】【答案】C【解析】【分析】根据最简二次根式的概念判断即可.【详解】A ==合题意;B =,被开方数含分母,不是最简二次根式,本选项不符合题意;C 是最简二次根式,本选项符合题意;D 、==选项不符合题意;故选:C .【点睛】本题考查的是最简二次根式的概念,被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.【2题答案】【答案】B【解析】32===4=,()031π-=,是无理数,其余的都是有理数,是无理数.故选:B .【点睛】本题主要考查了无理数的定义,最简二次根式、立方根、零指数幂,理解相关运算法则是解答关键.【3题答案】【解析】=4+∵3<4,∴7<2+8+7和8之间.故选:C.【点睛】此题考查了估算无理数的大小,解题的关键是用有理数逼近无理数,求无理数的近似值.【4题答案】【答案】B【解析】【分析】先由已知条件得到m、n的符号,再根据二次根式的乘除法则化简计算即可.【详解】解:由已知条件可得:m<0,n<0,∴原式=|m|=-m,故选:B.【点睛】本题考查二次根式的应用,熟练掌握二次根式的乘除法是解题关键. 【答案】C【解析】【分析】三角形面积计算既可以用直角边计算,又可以用斜边和斜边上的高计算,根据这个等量关系即可求斜边上的高.【详解】直角三角形中,两直角边长的乘积等于斜边长与斜边上的高(h )的乘=,∴h ==.故选:C .【点睛】本题考查了二次根式的运算,根据面积相等的方法巧妙地计算斜边上的高是解本题的关键.【6题答案】【答案】D【解析】【分析】根据a 和b 的值去计算各式是否正确即可.【详解】A. 1a b -=-==B. 1ab =≠-,错误;C. 1ab =≠,错误;D. 10a b +=++==,正确;故答案为:D .【点睛】本题考查了实数的运算问题,掌握实数运算法则是解题的关键.【7题答案】【答案】B【解析】【分析】根据已知求出ab 的值,即可求出答案.【详解】∵a =b =∴ab ,==2×0.13⨯==0.6ab .故选B .【点睛】本题考查了二次根式的乘除法,键,是一道基础题.【8题答案】【答案】A【解析】【分析】已知226a b ab +=,变形可得28a b ab +=(),24a b ab -=(),可以得出a b +()和a b -()的值,即可得出答案.【详解】解:∵226a b ab +=,∴28a b ab +=(),24a b ab -=(),∵0a b >>,∴a b +=a b -=,∴a b a b +==-,故选:A .【点睛】本题考查了分式的化简求值问题,完全平方公式的变形求值,二次根式的除法,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.【9题答案】【答案】B【解析】【分析】直接利用二次根式有意义的条件以及二次根式的乘除运算法则分别计算得出答案.【详解】A 有意义的是x≥﹣3,故此选项错误;B 是正整数的最小整数n 是3,故此选项正确;C 、若正方形的边长为cm ,则面积为90cm 2,故此选项错误;D 、的结果是1,故此选项错误;故选:B .【点睛】本题考查了二次根式有意义的条件以及二次根式的乘除运算,正确掌握相关定义是解题的关键;【10题答案】【答案】C【解析】【分析】先计算1S ,2S ,3S 的值,找出规律,然后求解即可.【详解】解:a = ,b =,1ab ∴=,11111S a b=+++ (111)1)(b a a b =+++++21a ba b ab++=+++22a b a b++=++1=,2221111S a b =+++222211(1)(1)b a a b +++=++22222221a b a b a b ++=+++2222211a b a b ++=+++222222a b a b ++=++1=,3331111S a b =+++333311(1)(1)b a a b +++=++33333321a b a b a b ++=+++33333321a b a b a b ++=+++3333211a b a b ++=+++333322a b a b ++=++1=,⋯⋯1111n n nS a b =+++1(1)(1)n nn n b a a b ++=++21n nn n n na b a b a b ++=+++211n nn n a b a b ++=+++22n nn na b a b ++=++1=,1001S ∴=,123100S S S S ∴+++⋯+111100=++⋯⋯+=,故选:C【点睛】本题考查的分式的规律计算以及二次根式的乘法,正确掌握异分母分式的加减计算法则及运算规律是解题的关键.二、填空题【11题答案】【解析】【分析】根据倒数的定义解答即可.【详解】∵1=,【点睛】本题考查了实数的性质以及倒数,熟记互为倒数的两个数的乘积为1是解题的关键.【12题答案】【解析】【分析】直接利用倒数的定义结合二次根式的性质化简得出答案.【详解】解:∵实数1a=-,∴a=.【点睛】此题主要考查了实数的性质,正确掌握相关性质是解题关键.【13题答案】【答案】﹣6.【解析】【分析】由于二次根式都是最简二次根式,因此被开方数的幂指数均为1,由此可得出关于m、n的方程组,可求出m、n的值.【详解】由题意可得:31 211mm n+=⎧⎨-+=⎩解得:24 mn=-⎧⎨=-⎩∴m +n =﹣6故答案:﹣6.【点睛】本题考查了最简二次根式的定义,当已知一个二次根式是最简二次根式时,那么被开方数(或因式)的幂指数必为1.【14题答案】【答案】3【解析】【分析】确定与.【详解】解:由题意得3b ab =,解得3a =,故答案为3.【点睛】本题考查了二次根式的概念,明确最简二次根式的被开方数是解题的关键.【15题答案】【答案】>1x 【解析】【分析】根据一元一次不等式的解法及二次根式的除法即可求得.【详解】解:由原不等式得: 解得>1x 故答案为:>1x .【点睛】本题考查了一元一次不等式的解法及二次根式的化简与除法,熟练掌握和运用一元一次不等式的解法及二次根式的化简与除法是解决本题的关键.【16题答案】【答案】2【解析】【分析】根据题意知m -1,将所求式子进行通分化简,再将m 的值代入即可求解.【详解】解:由题意,知m -1,当m -1时,原式=2.故答案为2.【点睛】本题考查了实数的混合运算,二次根式的化简求值.解题的关键是掌握二次根式的性质.【17题答案】【答案】9和10【解析】【分析】先计算17【详解】17=∵9=10=∴910<<∴这两个相邻整数是9和10.故答案为:9和10.【点睛】此题考查了无理数的估算,正确估算出17÷的大小是解题的关键.【18题答案】【答案】【解析】【详解】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4).故答案为三、解答题【19题答案】【答案】(1)8;(2)0【解析】【分析】(1)原式先计算乘方和二次根式乘法,然后再算加法即可得到答案;(2)原式先计算二次根式的除法,再合并即可得到答案.【详解】解:(1)计算:()20231-=1-+=19-+=8;(2-+-=0.【点睛】本题主要考查了二次根式的运算,解答本题的关键是熟练掌握二次根式相关的运算法则.【20题答案】【答案】(1)<(2)3π<-【解析】【分析】(1)根据实数比较大小的方法求解即可;(2)根据实数比较大小的方法求解即可.【小问1详解】解:∵((221218=<=,∴<;【小问2详解】解:∵222254544363936πππ⎛⎛⎫==>-== ⎪⎝⎭⎝,∴3π<-.【点睛】本题主要考查了实数比较大小,熟知实数比较大小的方法是解题的关键.【21题答案】【答案】(1)5-;(2)1-;(3【解析】【分析】(1)本题首先需要将二次根式化简,之后进行计算,去括号注意符号变化;(2)先对二次根式进行化简,去括号利用完全平方公式进行运算在进行合并;(3)利用平方差公式对括号进行化简,之后针对绝对值,判断绝对值内符号的正负,再去绝对值,之后进行合并运算.【详解】(1)原式155552=⨯-=-=-;(2)原式(423451=-+-=--+=-;(3)原式((202122221⎛⎡⎤=-+--- ⎣⎦⎝22=+=【点睛】本题重点考查的是二次根式的混合运算,需要用到简便运算,熟练掌握二次根式的化简及运算方法是解此类题型的关键.【22题答案】【答案】a b a b +-【解析】【分析】根据分式的运算法则即可求出答案.【详解】解:原式=()()222a b a b a ab b aa+--+÷()()()2a b a b aa ab +-⨯-=a ba b+-,∴当33a b ==-,时,原式=【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则是解题关键 .【23题答案】【答案】=,=,=(答案不唯一);(2)(1n =+,证明见解析.【解析】【分析】(1)此题应先观察列举出的式子,再根据式子的特点书写.(2)先找出它们的一般规律,用含有n 的式子表示出来即可.【详解】(1)===.(2)(1n =+.==(1n =+【点睛】本题主要考查学生把特殊归纳到一般的能力及二次根式的化简,解题的关键是仔细观察,找出各式的内在联系解决问题.【24题答案】【答案】(1)2.23 2.24<<;(2)①>;②4;(3)他的方法可行,理由见解析.【解析】【分析】(1可;(2)①将两个数进行平方,平方后再进行比较即可;②要使得a b + 有最小值,只需要求得a 和b 的最小值,再进行计算即可得到答案;(3 4.13的大小即可得到答案.【详解】解:(1)∵224=,239=,∴23<<;∵22.2 4.84=,22.3 5.29=,∴2.2 2.3<<;∵22.23 4.9729=,22.24 5.0176=,∴2.23 2.24<<,(2)①∵(218=,(212=∴((22>∴>故答案为:>.②∵224=,239=,∴23<<;∵a >a 为正整数∴a 的最小值为3∵311=,328=,∴12<<∵b <b 为正整数∴b 的最小值为1∴a b +的最小值为4;(3)∵两个正方形的面积分别为2dm 、5dm<<< 2.2431.42+<+=<2.24 1.423.664.1∴这个方法可行【点睛】本题主要考查了无理数的估值和比较大小,解题的关键在于能够熟练掌握相关知识进行求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式乘除计算练习一.选择题(共7小题)1.下列二次根式中属于最简二次根式的是( )A .B .C .D .2.如果ab>0,a+b<0,那么下面各式:①=,②•=1,③÷=﹣b,其中正确的是( )A.①②B.②③C.①③D.①②③3.下列等式不一定成立的是( )A .=(b≠0)B.a3•a﹣5=(a≠0)C.a2﹣4b2=(a+2b)(a﹣2b)D.(﹣2a3)2=4a64.使式子成立的条件是( )A.a≥5B.a>5C.0≤a≤5D.0≤a<55.若,且x+y=5,则x的取值范围是( )A.x >B .≤x<5C .<x<7D .<x≤76.下列计算正确的是( )A .×=B.x8÷x2=x4C.(2a)3=6a3D.3a5•2a3=6a67.化简的结果是( )A .B .C .D .二.填空题(共1小题)8.若和都是最简二次根式,则m= ,n= .三.解答题(共32小题)9..10.(1)÷3×5;(2)﹙﹣﹚÷().11..12.2×÷5.13.计算:.14.(1)(2)(3).15.(1)化简:•(﹣4)÷(2)已知x=﹣1,求x2+3x﹣1的值.16.计算:2×.17.计算:(2+4)×18..19.计算:2÷•.20.计算:4÷(﹣)×.21.(1)计算:•(÷);(2)已知实数x、y 满足:+(y﹣)2=0,求的值.22..23.计算:()2﹣(2016)0+()﹣1.24.已知x、y 为正数,且(+)=3(+5),求的值.25.计算:.26.自习课上,张玉看见同桌刘敏在练习本上写的题目是“求二次根式中实数a的取值范围”,她告诉刘敏说:你把题目抄错了,不是“”,而是“”,刘敏说:哎呀,真抄错了,好在不影响结果,反正a和a﹣3都在根号内.试问:刘敏说得对吗?就是说,按照解题和按照解题的结果一样吗?27.计算:.28.计算:.29.(x>0,y>0)30.化简:3a•(﹣)(a≥0,b≥0)31.计算:(1)(2).32.计算:2×÷10.33.计算:×()÷.34.计算:.35.计算:()﹣||36.化简与计算:(1)÷;(2)3a•(﹣)(b≥0).37.计算:(1)9×3﹣2+20160﹣×(2)(a+2)(a﹣2)﹣(a﹣1)2.38.化简:4x2.39.计算:(a≥0,b≥0).40.计算:×(﹣2)÷. 二次根式乘除计算练习参考答案与试题解析一.选择题(共7小题)1.(2015•锦州)下列二次根式中属于最简二次根式的是( )A .B .C .D .【分析】A、B选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:A、不是最简二次根式,故本选项错误;B、不是最简二次根式,故本选项错误;C、不是最简二次根式,故本选项错误;D、是最简二次根式,故本选项正确;故选D.【点评】本题考查了对最简二次根式定义的应用,在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.2.(2014•济宁)如果ab>0,a+b<0,那么下面各式:①=,②•=1,③÷=﹣b,其中正确的是( )A.①②B.②③C.①③D.①②③【分析】由ab>0,a+b<0先求出a<0,b<0,再进行根号内的运算.【解答】解:∵ab>0,a+b<0,∴a<0,b<0①=,被开方数应≥0,a,b不能做被开方数,(故①错误),②•=1,•===1,(故②正确),③÷=﹣b,÷=÷=×=﹣b,(故③正确).故选:B.【点评】本题是考查二次根式的乘除法,解答本题的关键是明确a<0,b<0. 3.(2015•烟台)下列等式不一定成立的是( )A .=(b≠0)B.a3•a﹣5=(a≠0)C.a2﹣4b2=(a+2b)(a﹣2b)D.(﹣2a3)2=4a6【分析】分别利用二次根式的性质以及负整数指数幂的性质和平方差公式以及积的乘方运算法则化简求出即可.【解答】解:A 、=(a≥0,b>0),故此选项错误,符合题意;B、a3•a﹣5=(a≠0),正确,不合题意;C、a2﹣4b2=(a+2b)(a﹣2b),正确,不合题意;D、(﹣2a3)2=4a6,正确,不合题意.故选:A.【点评】此题主要考查了二次根式的性质以及负整数指数幂的性质和平方差公式以及积的乘方运算法则等知识,正确掌握运算法则是解题关键.4.(2010•黄山校级一模)使式子成立的条件是( )A.a≥5B.a>5C.0≤a≤5D.0≤a<5【分析】根据分式有意义分母不为0及二次根式的被开方数为非负数可得出答案.【解答】解:由题意得:,解得:a>5.故选B.【点评】本题考查二次根式及分式有意义的条件,难度不大,注意掌握分式有意义分母不为0及二次根式的被开方数为非负数.5.(2016•萧山区模拟)若,且x+y=5,则x的取值范围是( )A.x >B .≤x<5C .<x<7D .<x≤7【分析】直接利用二次根式有意义的条件,得出y的取值范围,进而得出答案.【解答】解:∵,∴y+2≥0,2x﹣1>0,解得:y≥﹣2,x >,∵x+y=5,∴<x≤7.故选:D.【点评】此题主要考查了二次根式有意义的条件,得出y的取值范围是解题关键.6.(2016•长沙)下列计算正确的是( )A .×=B.x8÷x2=x4C.(2a)3=6a3D.3a5•2a3=6a6【分析】直接利用二次根式乘法运算法则以及结合同底数幂的乘除运算法则分别化简求出答案.【解答】解:A 、×=,正确;B、x8÷x2=x6,故此选项错误;C、(2a)3=8a3,故此选项错误;D、3a5•2a3=6a8,故此选项错误;故选:A.【点评】此题主要考查了二次根式乘法运算以及结合同底数幂的乘除运算、积的乘方运算等知识,正确掌握相关性质是解题关键.7.(2014•新泰市模拟)化简的结果是( )A .B .C .D .【分析】先判断出a的符号,再把二次根式进行化简即可.【解答】解:由可知,a<0,原式=﹣=﹣.故选C.【点评】将根号外的a移到根号内,要注意自身的符号,把符号留在根号外,同时注意根号内被开方数的符号.二.填空题(共1小题)8.(2013春•阳谷县期末)若和都是最简二次根式,则m= 1 ,n= 2 .【分析】由于两二次根式都是最简二次根式,因此被开方数的幂指数均为1,由此可得出关于m、n的方程组,可求出m、n的值.【解答】解:由题意,知:,解得:;因此m的值为1,n的值为2.故答案为:1,2.【点评】本题考查的最简二次根式的定义.当已知一个二次根式是最简二次根式时,那么被开方数(或因式)的幂指数必为1.三.解答题(共32小题)9.(2015春•宁城县期末).【分析】首先把乘除法混合运算转化成乘法运算,然后进行乘法运算即可.【解答】解:原式=3×(﹣)×2=﹣3××2×=﹣=﹣×10=﹣.【点评】本题考查了分式的乘除混合运算,正确转换成乘法运算是关键.10.(2013秋•云梦县校级期末)(1)÷3×5;(2)﹙﹣﹚÷().【分析】(1)利用二次根式的乘除运算法则将除法变为乘法,根号内的和根号内部相乘除,根号外的与根号外部相乘除,进而化简得出即可;(2)利用二次根式的乘除运算法则将除法变为乘法,根号内的和根号内部相乘除,根号外的与根号外部相乘除,进而化简得出即可.【解答】解:(1)÷3×5=×5=;(2)﹙﹣﹚÷()=﹣××3=﹣=﹣9x2y.【点评】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.11.(2014春•苏州期末).【分析】因为两个因式的第一项完全相同,第二、三项互为相反数,符合平方差公式的特点,按平方差公式计算即可.【解答】解:原式==2﹣9+2=.【点评】本题主要考查了二次根式的乘法运算以及平方差公式的应用.运用平方差公式(a+b)(a﹣b)=a2﹣b2计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.12.(2016春•乌拉特前旗期末)2×÷5.【分析】本题需先根据二次根式的乘除法的法则分别进行计算,即可求出答案.【解答】解:2×÷5=4×==.【点评】本题主要考查了二次根式的乘除法,在解题时要根据二次根式的乘除法的法则进行计算是本题的关键.13.(2015春•湖北校级期中)计算:.【分析】首先化简二次根式,进而利用二次根式的乘除运算法则求出即可.【解答】解:原式=3×5×=15.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.14.(2014春•赵县期末)(1)(2)(3).【分析】(1)先将各二次根式化为最简,再运用乘法分配律进行运算,然后再进行二次根式的加减.(2)运用平方差公式进行计算即可.(3)直接进行开方运算即可得出答案.【解答】解:(1)原式=6×(3﹣5﹣2)=18﹣60﹣12,=6﹣60,(2)原式=﹣,=18﹣75,=﹣57;(3)==.【点评】本题考查二次根式的乘除运算,难度不大,注意在运算时公式的运用,更要细心.15.(2011秋•东台市校级期中)(1)化简:•(﹣4)÷(2)已知x=﹣1,求x2+3x﹣1的值.【分析】(1)根据二次根式的定义和已知求出x、y都是负数,先化成最简根式,再根据二次根式的乘除法法则进行计算即可.(2)把代数式化成(x+1)2+x﹣2,代入后根据二次根式的混合运算法则进行计算即可.【解答】(1)解:原式=﹣•()÷,=(••),=﹣8x2y.(2)解:x=﹣1,∴x2+3x﹣1,=x2+2x+1+x﹣2,=(x+1)2+x﹣2,=+﹣1﹣2,=2+﹣3,【点评】本题考查了二次根式的性质和定义,代数式求值,二次根式的乘除法法则等知识点的应用,解此题的关键是把根式化成最简根式,注意:从题中得出x、y 都是负数,=﹣x,=﹣y,题型较好,但是一道比较容易出错的题目.16.(2014春•曲阜市期末)计算:2×.【分析】根据二次根式的乘除法法则,系数相乘除,被开方数相乘除,根指数不变,如:2×÷3,÷,计算后求出即可.【解答】解:原式=(2××),=.【点评】本题考查了二次根式的乘除法的应用,关键是能熟练地运用法则进行计算,题目比较典型,难度适中,此题是一道容易出错的题目.17.(2014春•沅陵县校级期末)计算:(2+4)×【分析】用和分别去乘括号里的每一项,然后再进行加法运算,即可得出结果.【解答】解:原式==.【点评】解答本题关键是要掌握二次根式的混合运算的运算法则.18.(2016春•吉林期末).【分析】运用(a≥0,b>0)直接进行计算.也可以先分子做减法运算,再分子、分母做除法运算.【解答】解:原式===3﹣2=1.【点评】对于二次根式的乘除法,应结合给出的算式的特点灵活进行计算. 19.(2015秋•闸北区期中)计算:2÷•.【分析】直接利用二次根式的乘除运算法则化简求出答案.【解答】解:原式=2×6=12=8.【点评】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.20.(2014秋•门头沟区期末)计算:4÷(﹣)×.【分析】根据二次根式的乘法法则和除法法则求解.【解答】解:原式=﹣2÷×=﹣×=﹣.【点评】本题考查了二次根式的乘除法,解答本题的关键是掌握二次根式的乘法法则和除法法则.21.(2014春•孝义市期末)(1)计算:•(÷);(2)已知实数x、y 满足:+(y﹣)2=0,求的值.【分析】(1)利用二次根式的乘除法法则求解;(2)利用算术平方根和一个数的平方等于0求出x,y ,再求的值.【解答】解:(1)•(÷)=•===;(2)由+(y﹣)2=0,可知,=0且(y﹣)2=0,即,解得.所以==.【点评】本题主要考查了二次根式的乘除法,非负数的性质及算术平方根,解题的关键是利用算术平方根和一个数的平方等于0求解.22.(2013秋•岳麓区校级期末).【分析】先化简,再根据二次根式的乘法进行计算即可.【解答】解:原式=÷×3=××3=9.【点评】本题考查了二次根式的乘除法,化简二次根式是解此题的关键.23.(2016•福建模拟)计算:()2﹣(2016)0+()﹣1.【分析】直接利用二次根式的性质以及零指数幂的性质和负整数指数幂的性质化简求出答案.【解答】解:原式=5﹣1+3=7.【点评】此题主要考查了二次根式的乘法运算以及零指数幂的性质和负整数指数幂的性质,正确有关掌握运算法则是解题关键.24.(2016春•宿城区校级期末)已知x、y 为正数,且(+)=3(+5),求的值.【分析】要求代数式的值,要首先将分子分母的字母统一成一种,因此要整理已知条件,设法将其中一种字母用另一种表示,然后代入代数式中,约分即可.【解答】解:由已知条件得x﹣2﹣15y=0,∴(+3)(﹣5)=0,∵+3>0,∴﹣5=0,∴,x=25y,∴==2.【点评】能够对所给条件适当的变形是解题的关键,对条件的变形没有规律可循,要根据题目需要,运用所学知识适当变形.25.(2016•厦门校级模拟)计算:.【分析】根据有理数的乘方、去括号法则、二次根式的乘法法则分别计算,再合并即可.【解答】解:原式=﹣1﹣2+5+4=6.【点评】本题考查了二次根式的乘法法则,有理数的乘方,去括号法则的应用,能求出各个部分的值是解此题的关键.26.(2015春•赵县期中)自习课上,张玉看见同桌刘敏在练习本上写的题目是“求二次根式中实数a的取值范围”,她告诉刘敏说:你把题目抄错了,不是“”,而是“”,刘敏说:哎呀,真抄错了,好在不影响结果,反正a和a﹣3都在根号内.试问:刘敏说得对吗?就是说,按照解题和按照解题的结果一样吗?【分析】本题需注意的是,被开方数为非负数,按计算,则a和a﹣3可为同号的两个数,即同为正,或同为负;而按计算,只有同为正的情况.【解答】解:刘敏说得不对,结果不一样.按计算,则a≥0,a﹣3>0或a≤0,a﹣3<0解之得,a>3或a≤0;而按计算,则只有a≥0,a﹣3>0解之得,a>3.【点评】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.27.(2014春•博湖县校级月考)计算:.【分析】先将带分数化为分数,然后然后根据×=进行二次根式的乘法运算即可.【解答】解:原式=××==×4=3.【点评】本题考查了二次根式的乘除法运算,难度不大,将带分数化简为分数是很关键的一步.28.(2016春•夏津县校级月考)计算:.【分析】直接利用二次根式乘除运算法则直接求出即可.【解答】解:=3×(﹣)×2=﹣×5=﹣.【点评】此题主要考查了二次根式的乘除运算,熟练应用运算法则是解题关键.29.(2014春•淮阴区校级月考)(x>0,y>0)【分析】根据二次根式的乘除法把根号外的相乘除,根号里的相乘除再化简即可.【解答】解:原式=﹣=﹣,∵x>0,y>0,∴原式=﹣=﹣3xy.【点评】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键.30.(2013秋•玄武区期末)化简:3a•(﹣)(a≥0,b≥0)【分析】根据二次根式的乘法运算法则直接得出即可.【解答】解:原式=﹣2a,=﹣12ab.【点评】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.31.(2016春•咸丰县校级月考)计算:(1)(2).【分析】(1)根据二次根式的乘法,可得答案;(2)根据二次根式的乘除法,可得答案.【解答】解:(1)原式=﹣12=﹣12×9=﹣108;(2)原式=÷×==1.【点评】本题考查了二次根式的乘除法,•=,÷=.32.(2016春•端州区期末)计算:2×÷10.【分析】先化简二次根式,再用乘法和除法运算即可.【解答】解:2×÷10=2×2××=【点评】此题是二次根式的乘除法,主要考查了二次根式的化简,分母有理化,解本题的关键是分母有理化的运用.33.(2012秋•上海期中)计算:×()÷.【分析】根据二次根式乘除法及分母有理化的知识解答即可.【解答】解:原式=b 2×(﹣a)÷3=2b×(﹣a)×=﹣a2b.【点评】此题考查了二次根式的乘除法,熟悉二次根式乘除法的法则是解题的关键.34.(2014春•张家港市校级期中)计算:.【分析】首先利用二次根式除法以及乘法法则转化成一个二次根式,然后对二次根式进行化简即可.【解答】解:原式===×2a=.【点评】本题考查了二次根式的乘除运算,正确理解法则,正确化简二次根式是关键.35.(2016春•罗定市期中)计算:()﹣||【分析】直接利用二次根式乘法运算法则化简进而利用绝对值的性质化简,再合并求出答案.【解答】解:原式=3﹣﹣(2﹣)=3﹣﹣2+,=1.【点评】此题主要考查了二次根式的乘法以及绝对值的性质,正确掌握运算法则是解题关键.36.(2014春•吴中区期末)化简与计算:(1)÷;(2)3a•(﹣)(b≥0).【分析】(1)利用二次根式除法运算法则求出即可;(2)利用二次根式乘法运算法则求出即可.【解答】解:(1)÷=×=;(2)3a•(﹣)(b≥0)=3a×(﹣)=﹣2a=﹣12ab.【点评】此题主要考查了二次根式的乘除运算,熟练掌握二次根式乘除运算法则是解题关键.37.(2016•海南模拟)计算:(1)9×3﹣2+20160﹣×(2)(a+2)(a﹣2)﹣(a﹣1)2.【分析】(1)先根据负整数指数幂的意义、零指数幂的意义化简乘方,再算乘法,然后计算加减;(2)利用平方差公式与完全平方公式计算乘法与乘方,再去括号合并同类项即可.【解答】解:(1)9×3﹣2+20160﹣×=9×+1﹣4=1+1﹣4=﹣2;(2)(a+2)(a﹣2)﹣(a﹣1)2=(a2﹣4)﹣(a2﹣2a+1)=a2﹣4﹣a2+2a﹣1=2a﹣5.【点评】本题考查了整式的混合运算,实数的混合运算,负整数指数幂、零指数幂的意义,二次根式的乘除法,掌握运算顺序与运算法则是解题的关键.38.(2016春•潮南区月考)化简:4x2.【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:4x2=4x2÷12×3=x 2=xy.【点评】此题主要考查了二次根式的乘除运算法则,正确化简二次根式是解题关键.实用文档文案大全39.(2013秋•南京期末)计算:(a≥0,b≥0).【分析】根据二次根式的乘法法则求解.【解答】解:原式=2=2=6a.【点评】本题考查了二次根式的乘法,解答本题的关键是掌握二次根式的乘法法则=.40.(2014秋•闵行区校级期中)计算:×(﹣2)÷.【分析】直接利用二次根式的乘除运算法则化简求出即可.【解答】解:×(﹣2)÷=×(﹣2)×=﹣=﹣=﹣.【点评】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.。