某城镇污水处理厂设计方案
污水厂设计方案

1.设计规模
根据项目所在地的人口规模、经济发展状况及未来规划,确定污水处理厂的设计规模为日处理污水X万吨。
2.处理工艺
本项目采用“预处理+生化处理+深度处理+污泥处理”的污水处理工艺,具体如下:
(1)预处理:采用粗格栅、细格栅、沉砂池等设备,去除污水中的悬浮物、砂粒等杂质。
(2)生化处理:采用A2/O工艺,实现污水的脱氮、除磷、去除有机物等目标。
2.采用高效节能的污水处理技术,提高能源利用率。
3.加强污水处理过程中的臭气治理,采用生物滤池、活性炭吸附等工艺,降低臭气排放。
4.对污泥进行资源化利用,如焚烧、土地利用等。
5.优化污水处理厂布局,提高土地利用率,节约用地。
六、投资估算及经济效益分析
1.投资估算
根据设计规模、处理工艺、设备选型等因素,估算污水处理厂的总投资。
3.深度处理
采用砂滤池、活性炭吸附等技术,进一步去除残余污染物,确保出水水质。
4.污泥处理
通过污泥浓缩、消化、脱水等过程,实现污泥的减量化、稳定化和无害化。
五、设计方案详述
1.工程布局
结合地形地貌,合理规划厂区布局,实现工艺流程的高效衔接和设备的优化配置。
2.建筑设计
按照功能需求,设计各处理单元的建筑物,确保结构安全、使用方便、维护简单。
6.给排水及消防设计
设计合理的给排水及消防系统,确保污水处理厂内部用水安全、便捷。
7.通风及空调设计
针对各处理单元的特点,设计合理的通风及空调系统,改善工作环境,降低能耗。
8.环境保护及绿化设计
加强污水处理过程中的臭气、噪音治理,设置绿化带,提高环境质量。
五、环境保护及节能减排措施
某城镇污水处理厂处理工艺设计

辽宁科技学院(2011级)本科课程设计题目:某城镇污水处理厂处理工艺设计专业:环境工程班级:环境BG112 姓名:韩国然学号:6411111207指导教师:李晓惠说明书23 页,图纸2 张辽宁科技学院本科生课程设计I 某城镇污水处理厂处理工艺设计摘要本设计中,主要采用A2/O工艺来处理城镇废水。
处理构筑物主要有粗格栅,细格栅,旋流沉砂池,初沉池,厌氧池,缺氧池,好氧池,二沉池等。
该系统可在构筑物中对污水中的各种污染物进行高效的去除。
该系统具有高效,节能的特点,且工艺可靠,出水水质好。
设计污水处理厂处理所在城市生活污水,处理规模为日平均污水流量Q=10000m3/d;最大流量Q max=14000m3/d,有效去除水中BOD、SS以及氮、磷元素,处理出水要求符合《城镇污水处理厂污染物排放标准》(GB18918-2002)中的一级B标准。
污水处理的工艺流程为:由排水管网收集来的污水进入集水井,先经过粗格栅,经泵提升后经过细格栅进入旋流沉砂池,进入初沉池,再进入A2/O反应池,进入平流式二次沉淀池,再进入巴氏计量槽,最后出水;污泥的流程为:从沉淀池排出的部分污泥回流到A2/O反应池,剩余污泥进入污泥浓缩池,浓缩后的污泥经污泥提升泵进入脱水间,最后处理外运。
本设计完成设计计算书一份,污水处理厂总平面图、污水处理厂高程图各一份。
关键词:城市污水,A2/O ,脱氮除磷,污泥浓缩目录1前言 (1)1.1 课程设计目的 (1)1.2 设计依据与原则 (1)1.2.1设计原始资料 (1)1.2.2设计原则 (2)1.2.3工艺流程 (2)2 处理构筑物设计与计算 (3)2.1泵前中格栅设计计算 (3)2.1.1格栅的设计要求 (3)2.1.2格栅尺寸计算 (4)2.2 污水提升泵房设计计算 (5)2.2.1提升泵房设计说明 (5)2.2.2泵房设计计算 (6)2.3 泵后细格栅设计计算 (6)2.3.1细格栅设计说明 (6)2.3.2设计参数确定 (7)2.3.3设计计算 (7)2.4 沉砂池设计计算 (8)2.4.1 沉砂池的选型 (8)2.4.2 设计资料 (9)2.4.3 池体设计计算 (9)2.5初沉池 (11)2.6 A/A/O工艺构筑物的设计计算 (12)2.6.1曝气池的计算与各部位尺寸的确定 (12)2.6.2曝气系统的计算与设计 (17)2.7二沉池 (18)2.8计量槽设计计算 (19)2.8.1.主要部分尺寸设计 (19)2.8.2.计量槽总长度 (19)2.9机械脱水间设计计算 (20)3高程计算 (21)参考文献 (23)1前言厌氧-缺氧-好氧(Anaerobic-Anoxic-aerobic,即A2/O工艺),A2/O 生物脱氮除磷工艺是传统活性污泥工艺、生物硝化及反硝化工艺和生物除磷工艺的综合。
某城镇污水处理厂毕业答辩

工艺 普通活性污泥法
氧化沟
优点
缺点
推广年限长,具有成熟的 运行经验,处理效果可靠, 如设计合理,运行得当, 出水BOD5可10~20mg/L
工艺路线长,工艺构筑物 及设备多而复杂,运行管 理困难,运行费用高。
采用低负荷延时曝气方式,
曝气效果好,处理效果好, 不但可以达到95%以上的 BOD去除率,还可以达到 部分脱氮除磷的目的
贮泥池
L5×B3×H5.3
2座
污泥消化池(一级) DN19×H17.5
污泥消化池(二级)
DN19
贮气柜
DN12.4×H8.27
2座 一座 2座
污泥脱水
5台
事故干化场
主要设备 竖流式浓缩池 矩形贮泥池 固定盖式消化池 固定盖式消化池
低压浮盖式贮气柜 带式压滤机
5 泵站设计
采用自灌式泵房,采用集水池与机器间合建,泵房运用半地 下式。
7 污水处理厂高程布置
污水处理厂污水处理高程布置的主要任务是:确定各构 筑物和泵房的标高,确定处理构筑物之间连接管(渠)的尺 寸及其标高,保证污水处理厂的正常运行。污水高程计
编号算表
名称
上游水面标高 下游水面标高 构筑物水面标高
1
出水口至计量堰
2
计量堰
3
计量堰到消毒池
4
消毒接触池
140.5 140.9 141.004 141.3
上游水面标高 142.260 141.860 141.145 142.490 142.400 141.200 141.096
146.031 144.831 144.571 143.371 142.851 142.900 142.500
下游水面标高 141.860 141.145 142.490 142.400 142.200 141.096 141.031
某城镇污水A2O工艺设计方案详细完整好懂

摘要本次毕业设计的题目为某城镇污水处理厂2/A O工艺设计(6万m3/天)。
主要任务是完成个该地区污水的2/A O工艺处理设计。
设计要完成设计说明书一份、污水处理工艺流程图、高程图、平面布置图、二沉池及其配管图等。
城镇污水在去除BOD5和SS的同时,还需要进行脱氮处理,故采用当代水处理工艺中较流行的2/A O工艺。
2/A O工艺由于不同环境条件,不同功能的微生物群落的有机配合,加之厌氧、缺氧条件下,部分不可生物降解的有机物能被开环或断链,使得N、P、有机碳被同时去除,并提高对不可降解有机物的去除效果。
它可以同时完成有机物的去除,硝化脱氮、磷的过量摄取而被去除等功能,脱氮的前提是NH3-N应完全硝化,好氧池能完成这一功能,缺氧池则完成脱氮功能。
厌氧池和好氧池联合完成除磷功能。
设计主要内容包括二沉池(含配管)及生化池构筑物设计计算、水力计算;运行说明及其它(含有关设备选定、污泥的培养驯化、运行监测指标、水电等动力消耗、总操作运行费用及总投资预测等)本设计采用了2/A O为主体工艺,工艺流程相对简单,省去了污泥消化系统,节省了基建投资和运行费用,该工艺处理污水运行稳定,易于管理,出水水质达到设计要求,真正做到了污水的综合利用。
关键词:2/A O污泥驯化二沉池第一章设计总论1.1 设计任务本设计内容是某县污水处理厂A2/O设计,设计规模为6万m3/d。
1.2 设计规模及要求1.2.1 进出水质表1-1 进水水质数据水质指标BOD5(mg/L)COD cr(mg/ L)SS(mg/ L)NH3-N(mg/ L)TN(mg/ L)P(mg/ L)原水水质240 450 225 30 40 4 项目1.2.2 出水水质污水处理后达到《城镇污水处理厂污染物排放标准(GB8918-2002)中的一级标准(B标准)。
因此该城镇污水处理厂二级出水标准为:表1-2 出水水质数据水质指标BOD5 COD cr SS NH3-N TN P1.2.3设计内容1) 工艺方案比选:对文献认真阅读后,就课题内容进行酝酿和思考,确定设计方案。
某城镇污水治理工程中污水处理厂的初步设计——毕业设计

某城镇污水治理工程中污水处理厂的初步设计——毕业设计摘要本设计是某城镇污水治理工程中污水处理厂的初步设计。
设计处理废水为典型的城镇综合污水,规模为1.84万吨/天,处理水质为:BOD5 = 190 mg/L、COD = 380 mg/L、SS = 238 mg/L、NH3-N = 49 mg/L、TP = 4.9 mg/L,设计出水水质:BOD5≤ 20 mg/L、COD ≤ 60 mg/L、SS ≤ 20 mg/L、NH3-N ≤ 15 mg/L、TP = 0.5 mg/L。
要求废水处理后达到《城镇污水处理厂污染物排放标准(GB 18918-2002)》的一级B排放标准。
设计采用二段生物接触氧化法工艺,工艺主体构筑物主要包括沉砂池、初沉池、生物处理池和消毒池。
生物处理池采用的是二段接触氧化工艺,该方法不仅结构紧凑,管理操作也很方便。
消毒池采用加氯消毒。
本工艺具有出水水质良好、生物脱氮效果佳、污泥量少且稳定、以及运行管理方便等特点。
关键词:城镇污水处理;接触氧化工艺;脱氮除磷AbstractThis project is a primary design of sewage treatment plant in a town. The treated wastewater is a typical integrated sewage in a town. The design capacity of the sewage is 18 400 m3/d. The primary water quality is presented as following:-N = 20 mg/L, TP = 2.5 BOD5 = 150 mg/L, COD = 300 mg/L, SS = 180mg/L, NH3mg/L; and the effluent need reach the State criterion, Discharge standard of pollutants for municipal wastewater treatment plant (GB 18918-2002), which is BOD5≤ 20mg/L, COD ≤ 60mg/L, SS ≤ 30 mg/L, NH4-N ≤ 8mg/L, TP ≤ 1 mg/L.The two-stage contact oxidation method was adopted in the design process that main structure consists of grit chamber, primary clarifier, contact bio-oxidation unit and disinfection unit. The two-stage biological contact oxidation process in the biochemistry treatment unit is characterized as compact structure and convenient operation. Chlorine was used for disinfection of the effluent. The process has a lot of features, such as good water-quality of the effluent, efficient bio-denitrification, producing of small amount of steady sludge, and automated operation.Key words: sewage treatment; biological contact oxidation process; denitrification and phosphorous removal目录摘要 0第一章绪论 (1)1.1设计任务及原始资料: (1)第二章污水处理厂工艺设计及计算 (2)2.1污水处理厂设计规模的确定 (2)2.2污水处理厂工艺流程方案的确定 (3)第三章污水处理构筑物的设计计算 (9)3.1泵前中格栅的设计计算 (9)3.2污水提升泵房设计计算 (10)3.3沉砂池设计计算 (12)3.4初次沉淀池设计计算 (14)3.5一段和二段氧化池设计计算 (17)3.6一段和二段沉淀池的设计计算 (19)3.7鼓风机房设计计算 (23)3.8加氯间和氯库设计计算 (24)3.9加氯消毒池设计计算 (24)第四章污泥处理构筑物设计计算 (26)4.1污泥泵房设计 (26)4.2污泥浓缩池设计计算 (26)4.3污泥脱水 (28)第五章污水处理厂平面布置 (30)5.1各处理单元构筑物的平面布置 (30)5.2附属构筑物的平面布置 (30)5.3厂区管线布置 (30)5.4厂区内道路的规划 (31)第六章污水处理厂高程计算 (32)6.1水头损失计算 (32)6.2各处理构筑物的高程计算 (32)第七章处理成本估算 (34)7.1计算依据 (34)7.2单项构筑物工程造价计算 (34)7.3污水处理成本计算 (38)致谢 (40)参考文献 (41)第一章绪论1.1 设计任务及原始资料:1.1.1 设计人口:40000人1.1.2 人均污水量标准:180~220 L/人·d第三产业以及工业废水总量12000 m3/d1.1.3 综合污水水质:COD Cr=380 mg/L;BOD5=190 mg/L;SS=238 mg/L;NH3-N=49 mg/L;TP=4.9 mg/L1.1.4 污水平均水温15.0 ℃,pH=6~9出水水质要求:中华人民共和国国家标准《城镇污水处理厂污染物排放标准(GB 18918-2002)》中一级B标准1.1.5 气象资料:年平均气温15.0℃,年均降雨量1200 mm,年平均风力3.5 mm/s 1.1.6 城镇地质资料:土壤冰冻深度为10 mm,土质一般为砂质粘土。
某城市日处理水量3万3m污水处理厂工艺设计课程设计

第1章课程设计任务书1.1设计题目某城市日处理水量3万污水处理厂工艺设计1.2设计资料1.处理流量:5万2.进出水要求1.3设计要求1.方案确定按照原始资料数据进行处理方案的确定,拟定处理工艺流程,选择各处理构筑物。
2.设计计算各构筑物的设计参数应根据同类型污水的实际运行参数或参考有关手册选用;各构筑物的尺寸计算。
3.平面和高程布置根据构筑物的尺寸合理进行平面布置和高程布置。
4.编写设计说明,计算书第2章污水处理工艺流程说明2.1工艺方案分析工艺工艺自被开发以来,就因为某特有的经济技术化优势和环境效益,愈来愈受到人们的广泛重视。
在一个处理系统中同时具有厌氧区、缺氧区、和好氧区,能够同时做到脱氧、除磷和有机物的降解。
3m 3m /d 2A /O 2A /O污水经过第一个厌氧反应器以后进入缺氧反应器,本反应器的首要功能是进行脱氧。
硝态氮通过混合液内循环由好氧反应器传输过来,通常内回流为倍原污水流量,部分有机物在反硝化菌的作用下利用硝酸盐作为电子受体而得到降解去除。
混合液从缺氧反应区进入好氧反应区,混合液中的浓度已基本接近排放标准,在好氧反应区出进一步降解有机物外,主要进行氧氮的硝化和磷的吸收,混合液中硝态氮回流至缺氧反应区,污泥中华过量吸收的磷通过剩余污泥排除。
该工艺流程简单,污泥在厌氧、缺氧和好氧环境中交替运行,丝状菌不能大量繁殖,污泥沉降性能好。
在同时脱氧除磷的工艺中,该工艺流程最为简单,总的水力停留时间也少于同类其他工艺。
该法需要注意的问题。
进入沉淀池的混合液通常需要保持一定的溶解氧浓度,以防沉淀池中反硝化和污泥厌氧释磷,但这会导致回流污泥和回流混合液中存在一定的溶解氧,回流污泥中存在的硝酸盐对厌氧释磷过程也存在一定影响。
同时,系统所排放的剩余污泥中,仅有一部分污泥经历了完整的厌氧和好氧的过程,影响了污泥的充分吸磷,系统污泥龄因为兼顾硝化菌的生长而不可能太短,导致除磷效果难于进一步提高。
综上,充分考虑工艺的特点及进出水质的要求,最终确定选择工艺为本厂的污水处理工艺。
新疆某县城污水处理厂工艺设计

新疆某县城污水处理厂工艺设计1、工程概况该县位于新疆西部天山与昆仑山交接处的帕米尔高原东麓,塔里木盆地西缘。
县城性质为:我国西部边陲战略重镇,南疆矿业与农副产品加工业基地。
目前,县城主要以农业为主。
该县城2021年末的居住人口为4.1万人,根据总体规划,近期2021年,县城规划人口为10.0万人。
新建污水处理厂接纳的主要为县城生活污水,污水处理厂设计规模近期1.5万m3/d,远期为2.5万m3/d,总占地面积为3.36hm2,采用卡鲁塞尔氧化沟处理工艺,污水出水用于灌溉下游林地。
2、县城污水处理厂工程设计2.1设计进出水水质污水厂进水水质根据州环境保护局《关于<县城排水改扩建二期工程> 环境影响报告表的批复》为基础,并结合县城现状及产业规划特点进行预测,污水处理厂出水执行《城镇污水处理厂污染物排放标准》(GB*****-2002)的一级B标准。
本工程设计进出水水质指标见下表Ⅰ。
</县城排水改扩建二期工程>2.2工艺流程2.3 主要构筑物及设计参数(1)粗格栅间及污水提升泵房:本工程服务主要对象为县城的生活污水,小时变化系数取1.45。
粗格栅间与提升泵房合建,按远期2.5万m3/d的规模设计。
粗格栅采用反捞式格栅除污机2台,1用1备,设备宽度1000mm,栅条间隙15mm。
污水提升泵房配备潜水排污泵3台,2用1备,Q=320m3/h,H=10m,远期增加1台潜水泵。
(2)细格栅和旋流沉砂池:细格栅采用循环式齿耙除污机并于沉砂池合建以节省占地。
设计采用循环式齿耙除污机2台,设备宽度为1200mm,栅条间隙5mm。
沉砂池采用2座直径3.05m的成套旋流沉砂设备(含工作桥),旋流沉砂设备处理量1080 m3/h,砂水排量34m3/h。
(3)卡鲁塞尔氧化沟:氧化沟分期建设,近期2座,远期1座。
泥龄取18d,其中硝化泥龄为14.4d,缺氧泥龄为3.6d,污泥浓度X 取4.0gBOD5/L,污泥产率系数Y取0.6kgVSS/kgBOD。
某城镇污水处理工艺设计(sbr法)

某城镇污水处理工艺设计(sbr法)随着城镇化进程的加快,城市污水处理问题成为不可忽视的问题。
因此,城镇污水处理工艺设计显得十分重要。
本文将介绍一种常用的城镇污水处理工艺——SBR法。
SBR法是一种基于序批式反应器(SBR)的生物处理工艺,具有处理效果好、操作简单、投资费用低等优点。
SBR法适用于城镇污水、工业废水以及农村生活污水等各种污水的处理。
SBR法的基本原理是,通过控制进水、搅拌、曝气、沉淀和排放等过程,使废水中的污染物经过生物转化,最终转化为安全无害的污泥沉淀物和可回收水。
SBR法主要包括以下几个步骤:1. 进水:将城镇或工业污水引入SBR反应器中,实现进水。
2. 搅拌:利用机械搅拌或气力搅拌,使进水中的污泥与空气充分混合。
3. 曝气:向搅拌好的污水中通入气体,促进微生物进行生物降解反应,使废水中的污染物被分解为稳定地的有机物和无机物,释放出大量的二氧化碳。
4. 沉淀:曝气结束后,停止搅拌,废水中的污泥在静置过程中逐渐沉淀。
5. 排放:将上层清水排放或作为处理后的回用水,将沉淀物作为污泥处理或高度压缩离干剩余污泥。
SBR法的优点在于:1. 处理效果好:SBR法采用预定义控制的水质处理方法,处理效率高,水质稳定。
2. 操作简单:SBR法不需要专业技能,设备和控制系统简单易学,污泥处理的复杂程度低。
3. 投资费用低:SBR法的设备费用低,廉价可靠,使用寿命较长。
4. 建设周期短:SBR工艺设计简单,建设周期较短,可在短时间内投产。
5. 绿色环保:SBR法能够有效去除污水中的有害物质,实现废水零排放,对环境污染小。
需要注意的是,SBR法处理污水的效果受到各种因素的影响,因此在设计和操作过程中应该根据污水成分和处理要求,灵活调整和优化反应器操作过程。
总之,SBR法是一种效果好、操作简单、投资费用低、建设周期短、绿色环保的城镇污水处理工艺,在城镇污水治理过程中具有良好的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
某城镇污水处理厂设计方案1 设计任务及概况1.1 设计任务及依据1.1.1 设计任务30万吨城市污水处理厂初步设计1.1.2 设计依据及原则1.1.2.1 设计依据《给水排水工程快速设计手册》1-5给排水设计规范《污水处理厂工艺设计手册》《三废设计手册废水卷》1.1.2.2 设计原则(1)执行国家关于环境保护的政策符合国家地方的有关法规、规范和标准;(2)采用先进可靠的处理工艺确保经过处理后的污水能达到排放标准;(3)采用成熟、高效、优质的设备并设计较好的自控水平以方便运行管理;(4)全面规划、合理布局、整体协调使污水处理工程与周围环境协调一致;(5)妥善处理污水净化过程中产生的污泥固体物以免造成二次污染;(6)综合考虑环境、经济和社会效益在保证出水达标的前提下尽量减少工程投资和运行费用1.1.3设计范围设计二级污水处理厂进行工艺初步设计1.2设计水量及水质1.2.1设计水量污水的平均处理量为=30=12500=3.47;污水的最大处理量为=15125=4.2;污水的最小处理量为日变化系数取为1.1时变化系数取K为1.1总变化系数取为1.211.2.2设计水质设计水质如表1.1所示表1.1 设计水质情况项目入水()200200出水()≤25≤30去除率(%)87.5851.3.3设计人口(1)按SS浓度折算:式中:Css--废水中SS浓度为200mg/LQ --平均日污水量为30万m3/dass--每人每日SS量一般在35-55/人g.d则:(2)按浓度折算式中:--废水中浓度为200mg/LQ --平均日污水量为30万m3/d --每人每日BOD量一般在20-35/人gd取30/人g.d则:2 工艺设计方案的确定2.1方案确定的原则(1)采用先进、稳妥的处理工艺经济合理安全可靠(2)合理布局投资低占地少(3)降低能耗和处理成本(4)综合利用无二次污染(5)综合国情提高自动化管理水平2.2污水处理工艺流程的确定2.2.1厂址及地形资料该污水处理厂厂址位于某市西北部厂址所在地区地势比较平坦污水处理厂所在地区地面平均标高为40.50米地震基本烈度为7度2.2.2气象及水文资料某市位于东经北纬属温带半湿润季风型大陆性气候多年平均温度7.4冬季长气候寒冷多偏北风最冷月(一月)平均气温-12.7;夏季多偏南风非采暖季节主导风向为东南风最热月(七月)平均气温24.6降雨集中在7-8月约占全年降雨的50%多年平均降雨量75毫米地面冻结深度1.2-1.4米2.2.3可行性方案的确定城市污水的生物处理技术是以污水中含有的污染物作为营养源利用微生物的代谢作用使污染物降解它是城市污水处理的主要手段是水资源可持续发展的重要保证城市二级污水处理厂常用的方法有:传统活性污泥法、AB法、氧化沟法、SBR法等等下面对传统活性污泥法和SBR法两种方案进行比较(工艺流程见图2.12.2)以便确定污水的处理工艺传统活性污泥法的方案特点:(1)工艺成熟管理运行经验丰富;(2)曝气时间长吸附量大去除效率高90~95%;(3)运行可靠出水水质稳定;(4)污泥颗粒大易沉降;(5)不适于水质变化大的水质;(6对氮、磷的处理程度不高;(7)污泥需进行厌氧消化可以回收部分能源;SBR法的方案特点:(1)处理流程简单构筑物少可不设沉淀池;(2)处理效果好不仅能去除有机物还能有效地进行生物脱氮;(3)占地面积小造价低;(4)污泥沉降效果好;(5)自动化程度高基建投资大;(6)适合于中小水量的污水处理工艺从上面的对比中我们可以得到如下结论:从工艺技术角度考虑普通曝气法和SBR法出水指标均能满足设计要求但是SBR法对自动化控制程度要求较高且处理规模一般小于10万立方米/天这与实际情况不符(污水厂自动化水平不高且本设计规模属大型污水处理厂)故普通曝气法更适合于本设计对污水进、出水水质的要求(对P、N去除要求不高水质变化小)故可行性研究推荐采用普通曝气法为污水处理厂的工艺方案2.2.4工艺流程方案的确定SBR法是间歇式活性污泥法或序批式活性污泥法的简称相对于传统活性污泥法SBR法工艺是一种正处于发展、完善阶段的技术因为从SBR法的再次兴起直至应用到今天只不过十几年的历史许多研究工作刚刚起步缺乏科学的设计依据和方法以及成熟的运行管理经验SBR法现阶段在基础研究方面、实践应用方面、工程设计方面仍存在问题例如:SBR的适宜规模、合理的设计和运行参数的选择建立完整的运行维护和管理方法运行模式的选择于设计方法脱节等等污水工艺流程的确定主要依据污水水量、水质及变化规律以及对出水水质和对污泥的处理要求来确定本着上述原则本设计选传统活性污泥法作为污水处理工艺图2.1 传统活性污泥法图2.2 SBR法2.2.5污泥处理工艺流程目前污泥的最终处置有污泥填埋污泥焚烧污泥堆肥和污泥工业利用四种途径该厂的污泥主要来源于城市污水完全可以再利用只需在厂内进行预处理将重金属去除该厂的污泥用于农业是完全可能的目前暂时有困难也可将污泥用于园林绿化使污泥中的肥分得以充分利用污泥也可得以妥善处置根据上述原则决定污泥采用中温厌氧二级消化再经机械脱水后运出厂外处置这时的污泥已基本实现了无害化不会对环境造成二次污染污泥消化产生的沼气用于烧锅炉和发电热量可满足消化池污泥加热需要电能供本厂使用2.3主要构筑物的选择2.3.1格栅格栅用以去除废水中较大的悬浮物、漂浮物、纤维物质和固体颗粒物质以保证后续处理单元和水泵的正常运行减轻后续处理单元的负荷防止阻塞排泥管道本设计中在泵前和泵后各设置一道格栅泵前为粗格栅泵后为弧形细格栅由于污水量大相应的栅渣量也较大故采用机械格栅栅前栅后各设闸板供格栅检修时用每个格栅的渠道内设液位计控制格栅的运行格栅间配有一台螺旋输送机输送栅渣螺旋格栅压榨输送出的栅渣经螺旋运输机送入渣斗打包外运粗格栅共有三座两座使用一台备用栅前水深为1.4m过栅流速0.9m/s栅条间隙为50mm格栅倾角为60°细格栅有四座三台使用一台备用栅前水深为1.05m过栅流速0.9m/s栅条间隙为20mm格栅倾角为60°2.3.2泵房考虑到水力条件、工程造价和布局的合理性采用长方形泵房为充分利用时间选择集水池与机械间合建的半地下式泵房这种泵房布置紧凑占地少机构省操作方便水泵及吸水管的充水采用自灌式其优点是启动及时可靠不需引水的辅助设备操作简便泵房地下部分高6.2m地上部分6.3m共高12.5m2.3.3沉砂池沉砂池的形式有平流式、竖流式、辐流式沉砂池其中平流式矩形沉砂池是常用的形式具有结构简单处理效果好的优点其缺点是沉砂中含有15%的有机物使沉砂的后续处理难度加大竖流式沉砂池是污水自下而上由中心管进入池内无机物颗粒借重力沉于池底处理效果一般较差曝气沉砂池是在池体的一侧通入空气使污水沿池旋转前进从而产生与主流垂直的横向环流其优点:通过调节曝气量可以控制污水的旋流速度使除砂效果较稳定;受流量变化的影响较小;同时还对污水起预曝气作用而且能克服平流式沉砂池的缺点综上所述采用曝气沉砂池池子共有六座;尺寸:12m×16.8m×4.59m;有效水深为2.5m2.3.4初沉池、二沉池沉淀池主要去除依附于污水中的可以沉淀的固体悬浮物按在污水流程中的位置可以分为初次沉淀池和二次沉淀池初次沉淀池是对污水中的以无机物为主体的比重大的固体悬浮物进行沉淀分离二次沉淀池是对污水中的以微生物为主体的、比重小的、因水流作用易发生上浮的固体悬浮物进行分离沉淀池按水流方向可分为平流式的、竖流式的和辐流式的三种竖流式沉淀池适用于处理水量不大的小型污水处理厂而平流式沉淀池具有池子配水不易均匀排泥操作量大的缺点辐流式沉淀池不仅适用于大型污水处理厂而且具有运行简便管理简单污泥处理技术稳定的优点所以本设计在初沉池和二沉池都选用了辐流式沉淀池初沉池共有六座直径为40m高为6.83m有效水深为3.6m为了布水均匀进水管设穿孔挡板穿孔率为10%-20%出水堰采用直角三角堰池内设有环形出水槽双堰出水每座沉淀池上设有刮泥机沉淀池采用中心进水周边出水周边传动排泥二沉池九坐直径为36m高为6.79m有效水深为3.5m也采用中心进水周边出水排泥装置采用周边传动的刮吸泥机其特点是运行效果好设备简单污泥回流设备采用型螺旋泵2.3.5曝气池本设计采用传统活性污泥法(又称普通活性污泥法)该法对BOD的处理效果可达90%以上传统活性污泥法按池形分为推流式曝气池和完混合曝气池推流式曝气特点是:废水浓度自池首至池尾是逐渐下降的由于在曝气池内存在这种浓度梯度废水降解反应的推动力较大效率较高;推流式曝气池可采用多种运行方式;对废水的处理方式较灵活;由于沿池长均匀供氧会出现池首供气不足池尾供气过量的现象增加动力费用的现象完全混合式曝气池的特点是:冲击负荷的能力较强;由于全池需氧要求相同能节省动力;曝气池与沉淀池合建不需要单独设置污泥回流系统便于运行管理;连续进水、出水可能造成短路;易引起污泥膨胀;适于处理工业废水特别是高浓度的有机废水综上根据各自特点本设计选择推流式活性污泥法在运行方式上以推流式活性污泥法为基础辅以分段曝气系统运行曝气系统采用鼓风曝气选择其中的网状微孔空气扩散器共有6座曝气池池型采用折流廊道式分五廊道池长为66m高为5.7m宽6m有效水深为5.2m污泥回流比R=30%2.3.6接触池城市污水经二级处理后水质改善但仍有存在病原菌的可能因此在排放前需进行消毒处理液氯是目前国内外应用最广泛的消毒剂它是氯气经压缩液化后贮存在氯瓶中氯气溶解在水中后水解为Hcl和次氯酸其中次氯酸起主要消毒作用氯气投加量一般控制在1-5mg/L接触时间为30分钟接触池总长为312.5m分14个廊道每廊道长23m宽4m2.3.7计量槽为提高污水厂的工作效率和运转管理水平并积累技术资料以总结运转经验为今后处理厂的设计提供可靠的依据设计计量设备以正确掌握污水量、污泥量、空气量以及动力消耗等本设计选用巴式计量槽设在污水处理系统的末端2.3.8浓缩池浓缩池的形式有重力浓缩池气浮浓缩池和离心浓缩池等重力浓缩池是污水处理工艺中常用的一种污泥浓缩方法按运行方式分为连续式和间歇式前者适用于大中型污水厂后者适用于小型污水厂和工业企业的污水处理厂浮选浓缩适用于疏水性污泥或者悬浊液很难沉降且易于混合的场合例如接触氧化污泥、延时曝起污泥和一些工业的废油脂等离心浓缩主要适用于场地狭小的场合其最大不足是能耗高一般达到同样效果其电耗为其它法的10倍从适用对象和经济上考虑故本设计采用重力浓缩池形式采用连续式的其特点是浓缩结构简单操作方便动力消耗小运行费用低贮存污泥能力强采用水密性钢筋混凝土建造设有进泥管、排泥管和排上清夜管浓缩池二座直径为24米浓缩时间14h2.3.9消化池消化池的作用是使污泥中的有机物得到分解防止污泥发臭变质且其产生的沼气能作为能源可发电用本设计采用二级中温消化池形采用圆柱形消化池优点是减少耗热量减少搅拌所需能耗熟污泥含水率低一级消化池六座直径为24m消化温度为35℃二级消化池三座且尺寸与一级相同2.3.10污泥脱水污泥机械脱水与自然干化相比较其优点是脱水效率较高效果好不受气候影响占地面积小常用设备有真空过滤脱水机、加压过滤脱水机及带式压滤机等本设计采用带式压滤机其特点是:滤带可以回旋脱水效率高;噪音小;省能源;附属设备少操作管理维修方便但需正确选用有机高分子混凝剂另外为防止突发事故设置事故干化场使污泥自然干化3污水处理系统工艺设计3.1格栅的计算3.1.1粗格栅选用三个规格一样的粗格栅并列摆放两台工作一台备用图3.1 格栅示意图3.1.2格栅的计算(1) 栅条间隙数式中:--栅条间隙数个;--最大设计流量=4.2;--格栅倾角取= 60;--栅条间隙取=0.05;--栅前水深取=1.4;--过栅流速取=0.9;--生活污水流量总变化系数根据设计任务书=1.21则:(2) 栅槽宽度式中:--栅条宽度取0.01则: =0.01(31-1)+0.0531=0.3+1.55=1.85(3) 通过格栅的水头损失式中:--设计水头损失;--计算水头损失;--重力加速度取=9.8;--系数格栅受污物堵塞时水头损失增大倍数一般采用=3;--阻力系数其值与栅条断面形状有关;--形状系数取=2.42(由于选用断面为锐边矩形的栅条)则: ==0.28==0.01(4) 栅后槽总高度式中:--栅前渠道超高取=0.3则: =1.4+0.3+0.03=1.73(5) 栅槽总长度式中: --进水渠道渐宽部分的长度;--进水渠宽取=1.7;--进水渠道渐宽部分的展开角度取=20;--栅槽与进水渠道连接处的渐窄部分长度;--栅前渠道深.则:==(6) 每日栅渣量式中:--栅渣量取=0.01则: >0.2宜采用机械清渣(7) 校核式中:--栅前水速;一般取0.4m/s-0.9m/s--最小设计流量;=2.87--进水断面面积;--设计流量取=则:在之间符合设计要求3.1.3选型选用型链式旋转格栅除污机其性能如表3.1所示表3.1 粗格栅性能表项目型号安装角过栅水速电机功率性能型链式旋转格栅除污机600.91.53.2泵房3.2.1泵房的选择选择集水池与机械间合建的半地下矩形自灌式泵房这种泵房布置紧凑占地少机构省操作方便3.2.2泵的选择及集水池的计算(1) 平均秒流量(2) 最大秒流量(3) 考虑3台水泵每台水泵的容量为(4) 集水池容积采用相当于一台泵6分钟的容量集水池面积3.2.3扬程估算(1) 集水池最低工作水位与所需提升最高水位之间的高差=45-(35+2.0×0.75-0.03-2)=10.53其中:--集水池有效水深取;--出水管提升后的水面高程取;--进水管管底高程取;--进水管管径由设计任务书;--进水管充满度由设计任务书;--经过粗格栅的水头损失取h=0.03由于资料有限出水管的水头损失只能估算设总出水管管中心埋深0.9米局部损失为沿线损失的30%则泵房外管线水头损失为0.558m泵房内的管线水头损失假设为1.5米考虑自由水头为1米则水头总扬程: Hz=1.5+0.558+10.53+1=13.588m选用型污水水泵三台每台扬程集水池有效水深吸水管淹没深度喇叭口口径取泵房地下部分高6.2m地上部分6 .3m共3.3细格栅3.3.1细格栅的计算:设四台机械格栅三台运行一台备用3.3.2格栅的计算(1) 栅条间隙数式中:--栅条间隙数个;--最大设计流量=4.2;--格栅倾角取= 60;--栅条间隙取=0.02;--栅前水深取=1.05;(一般栅槽宽度B是栅前水深h的二倍)--过栅流速取=0.9;--生活污水流量总变化系数由设计任务书=1.21则:取70个(2) 栅槽宽度式中:--栅条宽度取0.01则:=0.01(70-1)+0.0170=2.10(3) 通过格栅的水头损失式中:--设计水头损失;--计算水头损失;--重力加速度取=9.8;--系数格栅受污物堵塞时水头损失增大倍数一般采用=3;--阻力系数其值与栅条断面形状有关;--形状系数取=2.42(选用迎背水面均为半圆形的矩形栅条);则:==0.96==0.034(4) 栅后槽总高度式中:--栅前渠道超高取=0.3则:=1.05+0.3+0.103=1.453(5) 栅槽总长度式中: --进水渠道渐宽部分的长度;--进水渠宽取=1.9;--进水渠道渐宽部分的展开角度取=20;--栅槽与进水渠道连接处的渐窄部分长度;--栅前渠道深则:==(6) 每日栅渣量式中:--栅渣量取=0.07则: >0.2 宜采用机械清渣(7) 校核式中:--栅前水速;--最小设计流量;A--进水断面面积;--设计流量取=则:在之间符合设计要求3.3.3选型选用型弧形格栅除污机其性能如表3-2所示表3.2 细格栅性能表项目圆弧半径栅条组宽重量安装角过栅水速电机功率性能5001200600600.90.30.73.4沉砂池的计算3.4.1池体计算(1) 池子总有效容积式中:--最大设计流量=4.2;--最大设计流量时的流行时间一般为1min~3min此处取=2则:(2) 水流断面面积式中:--最大设计流量时的水平流速取一般为0.06m/s-0.1m/s则:(3) 池子总宽度式中:--设计有效水深取=2.5一般值为2m-3m则:(4) 池子单格宽度式中:--池子分格数个取=6则:(5)校核宽深比:b/ =2.8/2.5=1.12在1-2范围内符合要求(6) 池长则:(7) 校核长宽比:L/B=12/2.8=4.37>4符合要求(8) 每小时所需空气量式中:--每污水所需空气量取=0.2则:3.4.2沉砂室尺寸计算(1) 砂斗所需容积式中:--城市污水沉砂量取=30;--两次清除沉砂相隔的时间取=2;--生活污水流量总变化系数由设计任务=1.21则:(2) 每个砂斗所需容积式中:--砂斗个数设沉砂池每个格含两个沉砂斗有6个分格沉砂斗个数为12个则:(3) 砂斗实际容积式中:--砂斗上口宽;--砂斗下口宽取=1;--砂斗高度取=0.8;--斗壁与水平面倾角取=55则:>=1.5(4) 沉砂池总高度(采用重力排砂)式中:--超高取=0.3;--砂斗以上梯形部分高度;--池底坡向砂斗的坡度取=0.1一般值为0.1-0.5则:(5) 最小流速校和式中:--设计流量取=;--最小设计流量;2.87--最小流量时工作的沉砂池格数个取=2;--最小流量时沉砂池中的水流断面面积为7.0则:>0.15符合设计要求3.4.3排砂采用重力排砂排砂管直径在沉砂池旁设贮砂池并在管道首端设贮砂阀门(1) 贮砂池容积则:(2) 贮砂池平面面积式中:--贮砂池有效水深取=2.5则:3.4.4出水水质查《给排水设计手册》2经曝气沉砂池去除率10%则:=3.5初沉池3.5.1池体尺寸计算(1) 沉淀部分水面面积式中:--最大设计流量=12500;--池数个取=6;--表面负荷取=1.8则:(2) 池子直径则:取40(3) 实际水面面积则:核算表面负荷:<1.8符合要求.(4) 沉淀部分有效水深式中:--沉淀时间取=2.0则:(5)校核径深比:D/=40/3.6=11.11在6-11内符合要求(6) 沉淀部分有效容积则:(7) 污泥部分所需的容积式中:--每人每日污泥量查《给排水设计手册》5取=0.6;一般范围为(0.3-0.8)--设计人口数人取=人;为SS的设计人口因为此处主要去除的就是SS--两次清除污泥相隔时间取=4则:(8) 污泥斗容积式中: --污泥斗高度;--污泥斗上部半径取=2.0;--污泥斗下部半径取=1.0;--斗壁与水平面倾角取=60则:(9) 污泥斗以上圆锥部分污泥容积-式中:--圆锥体高度;--池子半径i──坡度此处取i=0.05则:(10) 沉淀池总高度式中:--超高取=0.3;--缓冲层高度取=0.3一般值为0.3-0.5──有效水深为3.6m──圆锥体高度为0.9m──污泥斗高度为1.73m则:(11) 沉淀池池边高则:(12) 污泥总容积V=V1+V2=12.7+418.3=430.9m3>20m3(13)校核径深比:D/h=40/3.6=11.23在6~12之间符合要求3.5.2中心管计算(1) 进水管直径:取=900 则在0.91.2之间符合设计要求(2) 中心管设计要求图3.2中心管计算图(3) 套管直径取 =2.2则:在0.150.20之间符合要求(4) 设8个进水孔取则:(5)取则:(6)取则:在之间符合设计要求3.5.3出水堰的计算(1) 出水堰采用直角三角堰过水堰水深取一般为0.021-0.2之间(2) 堰口流量:(3) 三角堰个数:个(4) 出水堰的出水流速取:则:断面面积(5) 取槽宽为0.8水深为0.8出水槽距池内壁0.5则:(6) 出水堰总长(7) 单个堰堰宽(8) 堰口宽0.10堰口边宽0.155-0.10=0.055(9) 堰高(10) 堰口负荷:在1.52.9之间符合设计要求3.5.4集配水井计算(1) 设计三个初沉池用一个集配水井共两座(2) 配水井来水管管径取=1500其管内流速为则:(3) 上升竖管管径取其管内流速为则:(4) 竖管喇叭口口径其管内流速为取则:(5) 喇叭口扩大部分长度取=则:(6) 喇叭口上部水深其管内流速为则:(7) 配水井尺寸:直径取则:(8) 集水井与配水井合建集水井宽集水井直径则:3.5.5出水水质查《给排水设计手册》2经初沉池、去除率分别取25%、60%==3.5.6选型选用ZG型周边传动刮泥机六台每座初沉池一台其性能如表3.3所示表3.3 型周边传动刮泥机性能表项目池径电动机功率滚轮与轨道型式重量性能402.2钢滚轮、钢板轨道160003.6曝气池3.6.1池体计算(1) 水中非溶解性含量式中:--微生物自身氧化率一般在0.050.10之间取=0.08;--微生物在处理水中所占的比例取=0.4;--水中悬浮固体浓度取=25则:(2) 出水中溶解性含量式中:--出水中的总含量取=25则:(3) 的去除率式中:--的去除效率%;--进水的浓度取=150则:>83% 符合要求(4) --污泥负荷率式中:--污泥负荷;--系数取=0.0185;--系数一般为0.70.8取=0.75则:在0.20.4之间符合设计要求(5) 混合污泥浓度式中:--污泥体积指数取=120;一般为(100-120)mg/L--污泥回流比取=30%;--考虑污泥在二沉池中停留时间、池深、污泥厚度等因素的有关系数取=1.2;则:(6) 曝气池容积式中:--进水设计流量取=则:(7) 单个池容积式中:--曝气池个数共设三组曝气池每组两座共六座=6则:(8) 单个池面积式中:H--池深则:核算宽深比取池宽则: 在12之间符合设计要求(9) 池总长则:(10) 单廊道长式中:--廊道条数个取=5(11) 池总高式中:--超高取=0.5则:3.6.2曝气系统设计与计算(1) 曝气池平均需气量式中:--氧化每公斤需氧公斤数取;--污泥自身氧化需氧率取;--去除的浓度;--混合液挥发性悬浮物浓度则:(2) 最大需氧量式中:--变化系数取=0.2则:(3) 每日去除的量(4) 则去除每千克的需氧量(5) 最大需气量与平均需氧量之比3.6.3供气量本设计采用网状模型微孔空气扩散器距池底0.2淹没深度5.0计算温度定为30查得水中溶解氧的饱和度(1) 空气扩散器出口处的绝对压力式中:--空气大气压力取;--曝气头在水面以下造成的压力损失;--曝气装置处绝对压力则:(2) 空气离开水面时氧的百分比式中:--曝气池逸出气体中含氧百分数%;--氧利用率%取=12%则:(3) 曝气池混合液氧饱和度式中:--标准条件下清水表面处饱和溶解氧;--按曝气装置在水下深度处至池面的平均溶解氧值则:(4) 换算成20时脱氧清水的充氧量为:式中:--混合液中值与水中值之比即一般为0.80.85取=0.82;--混合液的饱和溶解氧值与清水的饱和溶解氧值之比一般为0.90.97取=0.95;--混合液剩余值一般采用2则:=(5) 相应的最大时需氧量则:(6) 曝气池平均时供气量则:(7) 曝气池最大时供气量则:(8) 去除一千克的供气量(9) 每污水的供气量3.6.4空气管道系统计算在曝气池的两个相邻廊道的隔墙上布设一条空气干管共15条空气干管在每根干管上布设6对空气竖管全曝气池共设根空气竖管则每根空气竖管供气量为曝气池总平面面积则:每个扩散器的服务面积按计则需空气扩散器的总数为个按m=21600个计则每根竖管上安装采用布置则:每个扩散器的配气量空气管路及曝气头的布置如图3.3及图3.4所示选择一条从鼓风机房开始的最远最长的管路作为计算管路在空气流量变化处设计计算节点统一编号后列表(表3.5)进行空气管道计算。