代数式知识点经典例题习题及答案
代数式(压轴必刷30题5种题型专项训练)(解析版)

代数式(压轴必刷30题5种题型专项训练)一.列代数式(共7小题)1.(2022秋•拱墅区月考)现有一张边长为a的大正方形卡片和三张边长为b的小正方形卡片(a<b<a),如图1;取出两张小正方形卡片放入大正方形卡片内拼成的图案如图2;再重新用三张小正方形卡片放入大正方形卡片内拼成的图案如图3.则图3中阴影部分的面积为(用含有a,b的代数式表示);已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab﹣15,则小正方形卡片的面积是.【分析】图2中阴影正方形的边长为(2b﹣a),面积就是(2b﹣a)2;图3中两个阴影部分的面积可以上下拼在一起,也是个正方形,其边长是(a﹣b),面积就是(a﹣b)2.再根据等量关系列方程就可以得出含有a、b的关系式了.【解答】解:图2中阴影部分是正方形,它的边长是(2b﹣a),所以它的面积就是(2b﹣a)2.图3a﹣b),所以它的面积就可以表示为:(a﹣b)2.又因为图3中的阴影部分的面积比图2中的阴影部分的面积大2ab﹣15,所以可得:(2b﹣a)2+2ab﹣15=(a﹣b)2,4b2﹣4ab+a2+2ab﹣15=a2+b2﹣2ab,3b2=15,b2=5,故小正方形的面积是5.【点评】本题考查列代数式的能力,用字母表示阴影部分的面积.再根据等量关系进行推导.2.(2022秋•余姚市校级期中)A市、B市和C市分别有某种机器10台、10台、8台,现在决定把这些机器支援给D市18台,E市10台.已知调运机器的费用如表所示.设从A市、B市各调x台到D市.(1)C市调运到D市的机器为台(用含x的代数式表示);(2)B市调运到E市的机器的费用为元(用含x的代数式表示,并化简);(3)求调运完毕后的总运费(用含x的代数式表示,并化简);(4)当x=5和x=8时,哪种调运方式总运费少?少多少?【分析】(1)用D市需要的总数减去从A市、B市各调的台数即可;(2)求得B市剩下的台数,再乘运费即可;(3)用运送的台数乘运费分别求得各自得运费,再进一步求和即可;(4)把x=5和x=8分别代入求得答案即可.【解答】解:(1)C市调运到D市的机器为18﹣2x台;故答案为:(18﹣2x);(2)B市调运到E市的机器的费用为700(10﹣x)=(7000﹣700x)元(用含x的代数式表示,并化简);故答案为:(7000﹣700x).(3)调运完毕后的总运费为200x+800(10﹣x)+300x+700(10﹣x)+400(18﹣2x)+500[8﹣(18﹣2x)]=17200﹣800x;(4)当x=5时,总运费为17200﹣800×5=13200元;当x=8时,总运费为17200﹣800×8=10800元;10800元<13200元,13200﹣10800=2400,所以当x=8时,总运费最少,最少为10800元,少2400元.【点评】此题考查列代数式,题目关系是比较多,理清顺序,正确利用基本数量关系解决问题.3.(2021秋•陕州区期末)某单位在五月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a(a>10)人,则甲旅行社的费用为元,乙旅行社的费用为元;(用含a的代数式表示,并化简.)(2)假如这个单位现组织包括管理员工在内的共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由.(3)如果计划在五月份外出旅游七天,设最中间一天的日期为a,则这七天的日期之和为.(用含a的代数式表示,并化简.)(4)假如这七天的日期之和为63的倍数,则他们可能于五月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程.)【分析】(1)由题意得,甲旅行社的费用=2000×0.75a;乙旅行社的费用=2000×0.8(a﹣1),再对两个式子进行化简即可;(2)将a=20代入(1)中的代数式,比较费用较少的比较优惠;(3)设最中间一天的日期为a,分别用含有a的式子表示其他六天,然后求和即可;根据前面求得七天的日期之和的求得最中间的那个日期,然后分别求得当为63的1倍,2倍,3倍时,日期分别是什么即可.【解答】解:(1)由题意得,甲旅行社的费用=2000×0.75a=1500a;乙旅行社的费用=2000×0.8(a﹣1)=1600a﹣1600;故答案为1500a.(1600a﹣1600).(2)将a=20代入得,甲旅行社的费用=1500×20=30000(元);乙旅行社的费用=1600×20﹣=30400(元)∵30000<30400元∴甲旅行社更优惠;(3)设最中间一天的日期为a,则这七天分别为:a﹣3,a﹣2,a﹣1,a,a+1,a+2,a+3∴这七天的日期之和=(a﹣3)+(a﹣2)+(a﹣1)+a+(a+1)+(a+2)+(a+3)=7a(4)①设这七天的日期和是63,则7a=63,a=9,所以a﹣3=6,即6号出发;②设这七天的日期和是63的2倍,即126,则7a=126,a=18,所以a﹣3=15,即15号出发;③设这七天的日期和是63的3倍,即189,则7a=189,a=27,所以a﹣3=24,即24号出发;所以他们可能于五月6号或15号或24号出发.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.4.(2020秋•衢州期中)甲.乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店的优惠办法是:每买一副乒乓球拍赠一盒乒乓球;乙店的优惠办法是:按定价的9折出售.某班需购买乒乓球拍4副,乒乓球若干盒(不少于4盒).(1)用代数式表示(所填式子需化简):当购买乒乓球的盒数为x盒时,在甲店购买需付款元;在乙店购买需付款元.(2)当购买乒乓球盒数为10盒时,到哪家商店购买比较合算?说出你的理由.(3)当购买乒乓球盒数为10盒时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付款几元?【分析】(1)甲店需付费:4副乒乓球拍子费用+(x﹣4)盒乒乓球费用;乙店需付费:(4副乒乓球拍子费用+x盒乒乓球费用)×0.9,把相关数值代入求解即可;(2)把x=10代入(1)得到的式子计算,比较结果即可;(3)可在甲店购买乒乓球拍子,在乙店购买乒乓球.【解答】解:(1)甲店需付费:4×20+(x﹣4)×5=80+5x﹣20=(5x+60)元;乙店需付费:(4×20+x ×5)×0.9=(4.5x+72)元;故答案为(5x+60);(4.5x+72);(2)当x=10时,甲店需付费5×10+60=110元;乙店需付费4.5×10+72=117元,∴到甲商店比较合算;(3)可在甲店购买4副乒乓球拍子,在乙店购买(10﹣4)盒乒乓球,所需费用为:4×20+(10﹣4)×5×0.9=80+27=107元.【点评】5.(2021秋•下城区校级期中)从2012年7月1日起某市执行新版居民阶梯电价,小明同学家收到了新政后的第一张电费单,小明爸爸说:“小明,请你计算一下,这个月的电费支出与新政前相比是多了还是少了?”于是小明上网了解了有关电费的收费情况,得到如下两表:2004年1月至2012年6月执行的收费标准:2012年7月起执行的收费标准:(1)若小明家2012年7月份的用电量为200度,则小明家7月份的电费支出是多少元?比新政前少了多少元?(2)若新政后小明家的月用电量为a度,请你用含a的代数式表示当月的电费支出.【分析】(1)根据表格中的数据可以计算出小明家2012年7月份的用电量为200度时当月的电费支出和新政前用电量为200度时当月的电费支出,从而可以解答本题;(2)根据表格中的数据可以分别用代数式表示出各个阶段的电费支出.【解答】解:(1)由题意可得,小明家2012年7月份的用电量为200度,小明家7月份的电费支出是:200×0.53=106(元),新政前,用电200度电费支出为:50×0.53+(200﹣50)×0.56=110.5(元),∵110.5﹣106=4.5(元),∴新政后比新政前少华4.5元,即若小明家2012年7月份的用电量为200度,则小明家7月份的电费支出是106元,比新政前少了4.5元;(2)由题意可得,当0≤a≤230时,小明家当月的电费支出为:0.53a,当230<a≤400时,小明家当月的电费支出为:0.53×230+(a﹣230)×0.58=0.58a﹣11.5,当a>400时,小明家当月的电费支出为:0.53×230+0.58×(400﹣230)+0.83×(a﹣400)=0.83a﹣111.5,由上可得,新政后小明家的月用电量为a度,当月支出的费用为:.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.6.(2023秋•海曙区校级期中)小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是1.50元/支,但甲、乙两商店的优惠条件却不同.甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.乙商店:按标价的80%付款.在水性笔的质量等因素相同的条件下.(1)设小明要购买的该品牌笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌笔的费用;(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.【分析】(1)先求出甲商店10支水性笔的价钱,然后再求出超过10支的部分的价钱,然后列出代数式;乙商店每支水性笔的价钱是1.5×0.8元,那么x支的价钱是1.5×0.8×x元;(2)把x=30代入即可得到答案.【解答】解:(1)在甲商店需要:10×1.5+0.6×1.5×(x﹣10)=0.9x+6(元),在乙商店需要:1.5×0.8×x=1.2x(元),(2)当x=30时,0.9x+6=33,1.2x=36,因为33<36,所以小明要买30支笔应到甲商店买比较省钱.【点评】本题考查了列代数式,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.7.(2021秋•临海市月考)大客车上原有(3a﹣b)人,中途下车一半人,又上车若干人,使车上共有乘客(8a﹣5b)人.问中途上车乘客是多少人?当a=10,b=8时,上车乘客是多少人?【分析】原有(3a﹣b)人,中途下车(3a﹣b)人,又上车若干人后车上共有乘客(8a﹣5b)人.中途上车乘客数=车上共有乘客数﹣中途下车人数,所以中途上车乘客为,把a=10,b=8代入上式可得上车乘客人数.【解答】解:中途上车乘客是(8a﹣5b)﹣(3a﹣b)=(人),当a=10,b=8时,上车乘客是29人.【点评】要分析透题中的数量关系:中途上车乘客数=车上共有乘客数﹣中途下车人数,用代数式表示各个量后代入即可.二.代数式求值(共7小题)8.(2023秋•西湖区期中)已知|m|=3,|n|=2,且m<n,求m2+mn+n2的值.【分析】先利用绝对值的性质求得m、n的值,然后根据m<n分类计算即可.【解答】解:由题意可得,m=±2,n=±2,又∵m<n,∴m=﹣3,n=2 或m=﹣3,n=﹣2,当m=﹣3,n=2时,原式=(﹣3)2+(﹣3)×2+22=9﹣6+4=7;当m=﹣3,n=﹣2时,原式=(﹣3)2+(﹣3)×(﹣2)+(﹣2)2=9+6+4=19.【点评】本题主要考查的是求代数式的值,求得m、n的值是解题的关键.9.(2022秋•阳新县期中)某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元,“十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉10台,电磁炉x台(x>10).(1)若该客户按方案一、方案二购买,分别需付款多少元?(用含x的式子表示)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.并计算需付款多少元?【分析】(1)根据题目提供的两种不同的付款方式列出代数式即可;(2)将x=30代入求得的代数式中即可得到费用,然后比较即可得到选择哪种方案更合算;(3)根据题意考可以得到先按方案一购买10台微波炉送10台电磁炉,再按方案二购买20台电磁炉更合算.【解答】解:(1)800×10+200x﹣10)=200x+6000(元),(800×10+200x)×90%=180x+7200(元);(2)当x=30时,方案一:200×30+6000=12000(元),方案二:180×30+7200=12600(元),所以,按方案一购买较合算.(3)先按方案一购买10台微波炉送10台电磁炉,再按方案二购买20台电磁炉,共10×800+200×20×90%=11600(元).【点评】本题考查了列代数式和求代数式的值的相关的题目,解题的关键是认真分析题目并正确的列出代数式.10.(2022秋•吴兴区期中)电动车厂计划每天平均生产n辆电动车(每周工作五天),而实际产量与计划产量相比有出入,下表记录了某周五个工作日每天实际产量情况(超过计划产量记为正、少于计划产量记为负):(1)用含n的整式表示本周五天生产电动车的总数;(2)该厂实行每日计件工资制,每生产一辆车可得200元,若超额完成任务,则超过部分每辆另奖55元;少生产一辆扣60元,当n=50时,那么该厂工人这一周的工资总额是多少元?(3)若将上面第(2)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,当n =50时,在此方式下这一周工人的工资总额与按日计件的工资哪一个更多?请说明理由.【分析】(1)根据正负数的意义分别表示出5天的生产电动车的数量,再求和即可;(2)5天的生产电动车的总数×200元+超出部分的奖励﹣罚款可得工人这一周的工资总额;(3)计算出一周的工资,然后与(2)中数据进行比较即可.【解答】解:(1)n+5+n﹣1+n﹣6+n+13+n﹣2=5n+9;(2)当n=50时,5n+9=5×50+9=259,200×259+55(5+13)+60(﹣1﹣6﹣2)=52250,所以该厂工人这一周的工资总额是52250元.(3)5+(﹣1)+(﹣6)+13+(﹣2)=9,259×200+9×55=52295,∵52250<52295,∴每周计件工资制一周工人的工资总额更多.【点评】此题主要考查了由实际问题列代数式,关键是正确理解题意,掌握每日计件工资制的计算方法.11.(2021秋•镇海区校级期中)周末小明陪爸爸去陶瓷商城购买一些茶壶和一些茶杯,了解情况后发现甲、乙两家商店都在出售两种同样品牌的茶壶和茶杯,定价相同,茶壶每把定价40元,茶杯每只定价5元,且两家都有优惠,甲商店买一送一大酬宾(买一把茶壶送一只茶杯),乙商店全场九折优惠,小明的爸爸需茶壶5把,茶杯a只(不少于25只)(1)分别用含有a的代数式表示在甲、乙两家商店购买所需的费用;(2)当a=40时,在甲、乙哪个商店购买付款较少?请说明理由.(3)若小明的爸爸准备了1800元钱,在甲、乙哪个商店购买的茶杯多?请说明理由.【分析】(1)根据实际付款数得到甲店购买需付款为5(a﹣5)+40×5=(5a+175)(元),乙店购买需付款为(5a+40×5)×0.9=(4.5a+180)(元);(2)将a=40分别代入(1)中所求的两式子,得出的值在哪家少就在那家买;(3)令甲乙的付款数都为1800,然后解方程5a+175=1800和4.5a+135=1800,根据a的大小进行判断.【解答】解:(1)设购买茶杯a只(不少于25只),甲商店买一送一大酬宾(买一把茶壶送一只茶杯),且茶壶每把定价40元,茶杯每只定价5元,故在甲店购买需付:5(a﹣5)+40×5=(5a+175)(元);乙商店全场九折优惠,故在乙店购买需付:(5a+40×5)×0.9=(4.5a+180)(元);(2)在乙商店购买付钱较少.理由如下:当a=40时,在甲店购买需付:5×40+175=375元,在乙店购买需付:4.5×40+180=360元,∵375>360,∴在乙商店购买付款较少;(3由5a+175=1800,得a=325;由4.5a+180=1800,得a=360.所以在乙商店购买的茶杯多.【点评】本题考查了一元一次方程在经济问题中的运用以及买东西的优惠问题,注意细心求解即可.12.(2023秋•下城区校级月考)如图,是一个有理数运算程序的流程图,请根据这个程序回答问题:当输入的x为4时,求最后输出的结果y是.【分析】根据题中的程序流程图,将x=4代入计算,得到结果为﹣2小于1,将x=﹣2代入计算得到结果为1,将x=1代入计算得到结果大于1,即可得到最后输出的结果.【解答】解:输入x=4,代入(x2﹣8)×(﹣)得:(16﹣8)×(﹣)=﹣2<1,将x=﹣2代入(x2﹣8)×(﹣)得:(4﹣8)×(﹣)=1=1,将x=1代入(x2﹣8)×(﹣)得:(1﹣8)×(﹣)=>1,则输出的结果为.故答案为:.【点评】此题考查了代数式求值,弄清题中的程序流程是解本题的关键.13.(2021秋•诸暨市期中)若在运动会颁奖台上面及两侧铺上地毯(如图阴影部分),长为m,宽为n,高为h,(单位为:cm)(1)用m,n,h表示需要地毯的面积;(2)若m=160,n=60,h=80,求地毯的面积.【分析】(1)根据平移计算出地毯总长,然后再根据长×宽可得面积;(2)把已知数据代入(1)中求出答案.【解答】解:(1)地毯的面积为:mn+2nh;(2)地毯总长:80×2+160=320(cm),320×60=19200(cm2),答:地毯的面积为19200cm2.【点评】此题主要考查了生活中的平移现象、代数式求值,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.14.(2021秋•椒江区校级期中)历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)(f可用其它字母,但不同的字母表示不同的多项式)形式来表示,例如f(x)=x2+3x﹣5,把x=某数时多项式的值用f(某数)来表示.例如x=﹣1时多项式x2+3x﹣5的值记为f(﹣1)=(﹣1)2+3×(﹣1)﹣5=﹣7.已知g(x)=﹣2x2﹣3x+1,h(x)=ax3+2x2﹣x﹣12.(1)求g(﹣2)值;(2)若h()=﹣11,求g(a)的值.【分析】(1)根据举的例子把x=﹣2代入求出即可;(2)把x=代入h(x)=ax3+2x2﹣x﹣12得出一个关于a的方程,求出a的值,把a的值代入g(x)=﹣2x2﹣3x+1即可.【解答】解:(1)g(﹣2)=﹣2×(﹣2)2﹣3×(﹣2)+1=﹣2×4﹣3×(﹣2)+1=﹣8+6+1=﹣1;(2)∵h()=﹣11,∴a×()3+2×()2﹣﹣12=﹣11,解得:a=1,即a=8∴g(a)=﹣2×82﹣3×8+1=﹣2×64﹣24+1=﹣128﹣24+1=﹣151.【点评】本题考查了有理数的混合运算和新定义,关键是培养学生的阅读能力和理解能力,也培养学生的计算能力,题目比较典型,是一道比较好的题目.三.多项式(共1小题)15.(2021秋•越城区期中)关于x的多项式﹣5x2﹣(2m﹣1)x2+(2﹣3n)x﹣1中不含二次项和一次项时,求m、n的值.【分析】利用多项式的定义得出二次项与一次项系数为0,进而求出即可.【解答】解:∵关于x的多项式﹣5x2﹣(2m﹣1)x2+(2﹣3n)x﹣1中不含二次项和一次项,∴﹣5﹣(2m﹣1)=0,2﹣3n=0,解得:m=﹣2,n=.【点评】此题主要考查了多项式的定义,得出各项系数之间关系是解题关键.四.整式的加减(共9小题)16.(2020秋•西湖区校级期末)定义:若a+b=2,则称a与b是关于1的平衡数.(1)3与是关于1的平衡数,5﹣x与是关于1的平衡数.(用含x的代数式表示)(2)若a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],判断a与b是否是关于1的平衡数,并说明理由.【分析】(1)由平衡数的定义可求得答案;(2)计算a+b是否等于2即可.【解答】解:(1)设3的关于1的平衡数为a,则3+a=2,解得a=﹣1,∴3与﹣1是关于1的平衡数,设5﹣x的关于1的平衡数为b,则5﹣x+b=2,解得b=2﹣(5﹣x)=x﹣3,∴5﹣x与x﹣3是关于1故答案为:﹣1;x﹣3;(2)a与b不是关于1的平衡数,理由如下:∵a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],∴a+b=2x2﹣3(x2+x)+4+2x﹣[3x﹣(4x+x2)﹣2]=2x2﹣3x2﹣3x+4+2x﹣3x+4x+x2+2=6≠2,∴a与b不是关于1的平衡数.【点评】本题主要考查整式的加减,理解题目中所给平衡数的定义是解题的关键.17.(2021秋•婺城区校级期中)已知整式M=x2+5ax﹣x﹣1,整式M与整式N之差是3x2+4ax﹣x (1)求出整式N;(2)若a是常数,且2M+N的值与x无关,求a的值.【分析】(1)根据题意,可得N=(x2+5ax﹣x﹣1)﹣(3x2+4ax﹣x),去括号合并即可;(2)把M与N代入2M+N,去括号合并得到最简结果,由结果与x值无关,求出a的值即可.【解答】解:(1)N=(x2+5ax﹣x﹣1)﹣(3x2+4ax﹣x)=x2+5ax﹣x﹣1﹣3x2﹣4ax+x=﹣2x2+ax﹣1;(2)∵M=x2+5ax﹣x﹣1,N=﹣2x2+ax﹣1,∴2M+N=2(x2+5ax﹣x﹣1)+(﹣2x2+ax﹣1)=2x2+10ax﹣2x﹣2﹣2x2+ax﹣1=(11a﹣2)x﹣3,由结果与x值无关,得到11a﹣2=0,解得:a=.【点评】此题考查了整式的加减,熟练掌握去括号与合并同类项法则是解本题的关键.18.(2021秋•临海市校级期中)已知:A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1.(1)求3A+6B;(2)若3A+6B的值与a的取值无关,求b的值;(3)如果A+2B+C=0,则C的表达式是多少?【分析】(1)先把A、B的表达式代入,再去括号,合并同类项即可;(2)根据(1)中3A+6B的表达式,再令a的系数等于0,求出b的值即可;(3)先把A、B C的表达式即可.【解答】解:(1)∵A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,∴3A+6B=3(2a2+3ab﹣2a﹣1)+6(﹣a2+ab﹣1)=6a2+9ab﹣6a﹣3﹣6a2+6ab﹣6=15ab﹣6a﹣9;(2)3A+6B=15ab﹣6a﹣9=a(15b﹣6)﹣9,∵3A+6B的值与a无关,∴15b﹣6=0,∴b=;(3)∵A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,A+2B+C=0,∴C=﹣A﹣2B=﹣(2a2+3ab﹣2a﹣1)﹣2(﹣a2+ab﹣1)=﹣2a2﹣3ab+2a+1+2a2﹣2ab+2=﹣5ab+2a+3.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.19.(2020秋•奉化区校级期末)已知多项式A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,A﹣2B中不含有x2项和y项,求n m+mn的值.【分析】把A与B代入A﹣2B中,去括号合并得到最简结果,由结果不含有x2项和y项求出m与n的值,代入原式计算即可得到结果.【解答】解:∵A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,∴A﹣2B=2x2﹣xy+my﹣8+2nx2﹣2xy﹣2y﹣14=(2+2n)x2﹣3xy+(m﹣2)y﹣22,由结果不含有x2项和y项,得到2+2n=0,m﹣2=0,解得:m=2,n=﹣1,则原式=1﹣2=﹣1.【点评】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.20.(2021秋•嵊州市期中)一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1.如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求这个三位数.【分析】x,则这个数是100(2x+1)+10x+(3x﹣1),把这个三位数的百位上的数字和个位上的数字对调后的数为100(3x﹣1)+10x+(2x+1),根据新数减去原数等于99建立方程求解.【解答】解:由题意设十位上的数为x,则这个数是100(2x+1)+10x+(3x﹣1),把这个三位数的百位上的数字和个位上的数字对调后的数为100(3x﹣1)+10x+(2x+1),则100(3x﹣1)+10x+(2x+1)﹣[100(2x+1)+10x+(3x﹣1)]=99,解得x=3.所以这个数是738.【点评】本题利用了整式来表示每位上的数,整式的减法,建立方程求解.21.(2021秋•嵊州市期中)符号“”称为二阶行列式,规定它的运算法规为:=ad﹣bc.(1)计算:=;(直接写出答案)(2)化简二阶行列式:.【分析】(1)原式利用题中的新定义计算即可得到结果;(2)原式利用题中的新定义化简,去括号合并即可得到结果.【解答】解:(1)根据题中的新定义得:原式=10﹣12=﹣2;故答案为:﹣2;(2)根据题中的新定义得:原式=(a+2b)(a﹣2b)﹣4b(0.5a﹣b)=a2﹣4b2﹣2ab+4b2=a2﹣2ab.【点评】此题考查了整式的加减,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.22.(2023秋•象山县校级期中)已知:A=ax2+x﹣1,B=3x2﹣2x+4(a为常数).(1)若A与B的和中不含x2项,求出a的值;(2)在(1)的基础上化简:B﹣2A.【分析】(1)A与B的和中不含x2项,即x2项的系数为0,依此求得a的值;(2)先将表示A与B的式子代入B﹣2A,再去括号合并同类项.【解答】解:(1)A+B=ax2+x﹣1+3x2﹣2x+4=(a+3)x2﹣x+3,∵A与B的和中不含x2项,∴a+3=0,则a=﹣3;(2)B﹣2A=3x2﹣2x+4﹣2×(﹣3x2+x﹣1)=3x2﹣2x+4+6x2﹣2x+2=9x2﹣4x+6.【点评】本题考查了整式的加减,解答本题的关键是掌握多项式加减的运算法则,合并同类项的法则.23.(2020秋•婺城区期末)已知A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)用含a,b的代数式表示A.(2)若|a+1|+(b﹣2)2=0,求A的值.【分析】(1)表示出A,然后去掉括号,再根据整式的加减运算方法进行计算即可得解;(2)根据非负数的性质列式求出a、b的值,然后代入进行计算即可得解.【解答】解:(1)∵A﹣2B=7a2﹣7ab,∴A=7a2﹣7ab+2B,=7a2﹣7ab+2(﹣4a2+6ab+7)=7a2﹣7ab﹣8a2+12ab+14=﹣a2+5ab+14;(2)根据题意得,a+1=0,b﹣2=0,解得a=﹣1,b=2,∴A=﹣a2+5ab+14=﹣(﹣1)2+5×(﹣1)×2+14=﹣1﹣10+14=3.【点评】本题考查了整式的加减,代数式求值,非负数的性质,实质就是去括号,合并同类项的过程,熟记去括号法则和合并同类项法则是解题的关键.24.(2022秋•鄞州区校级期中)已知A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2.(1)化简:2B﹣A;(2)已知﹣a|x﹣2|b2与ab y是同类项,求2B﹣A的值.【分析】(1)把A与B代入2B﹣A中,去括号合并即可得到结果;(2)利用同类项的定义求出x与y的值,代入原式计算即可得到结果.【解答】解:(1)∵A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,∴2B﹣A=2(2xy﹣3y2+4x2)﹣(3x2+3y2﹣5xy)=4xy﹣6y2+8x2﹣3x2﹣3y2+5xy=5x2+9xy﹣9y2;(2)∵﹣a|x﹣2|b2与ab y的同类项,∴|x﹣2|=1,y=2,解得:x=3或x=1,y=2,当x=3,y=2时,原式=45+54﹣36=63;当x=1,y=2时,原式=5+18﹣36=﹣13.【点评】此题考查了整式的加减,以及同类项,熟练掌握运算法则是解本题的关键.五.整式的加减—化简求值(共6小题)25.(2020秋•永嘉县校级期末)先化简再求值:2(x2+3y)﹣(2x2+3y﹣x),其中x=1,y=﹣2.【分析】先去括号,再合并同类项即可化简原式,继而将x、y的值代入计算可得.【解答】解:原式=2x2+6y﹣2x2﹣3y+x=3y+x,当x=1、y=﹣2时,原式=3×(﹣2)+1=﹣6+1=﹣5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算整式加减运算顺序和法则是解本题的关键.26.(2020秋•诸暨市期中)化简求值:5(3a2b﹣2ab2)﹣4(﹣2ab2+3a2b),其中a=﹣2,b=1.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=(15a2b﹣10ab2)﹣(﹣8ab2+12a2b)=15a2b﹣10ab2+8ab2﹣12a2b=3a2b﹣2ab2,当a=﹣2,b=1时,原式=16.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.27.(2020秋•富阳区期中)化简并求值:[2b2﹣3+2(a2﹣1)]﹣(4a2﹣3b2),其中a=﹣2,b=1.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=2b2﹣3+2a2﹣2﹣4a2+3b2=5b2﹣2a2﹣5,当a=﹣2,b=1时,原式=5﹣8﹣5=﹣8.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.28.(2020秋•温州月考)求多项式的值,其中x=5,y=﹣8.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=﹣xy+x2﹣3x2+xy=﹣2x2,当x=5时,原式=﹣50.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.29.(2020秋•长兴县期末)先化简,再求值:2(a2﹣ab)﹣3(a2﹣ab﹣1),其中a=﹣2,b=3.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=2a2﹣2ab﹣2a2+3ab+3=ab+3,当a=﹣2,b=3时,原式=﹣6+3=﹣3.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.30.(2021秋•椒江区校级期中)已知|x+2|+(y﹣)2=0,求代数式(x3+2x2y)+x3﹣(﹣3x2y+5xy2)﹣(7﹣5xy2)的值.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:∵|x+2|+(y﹣)2=0,∴x=﹣2,y=,则原式=x3+2x2y+x3+3x2y﹣5xy2﹣7+5xy2=x3+5x2y﹣7=﹣8+10﹣7=﹣5.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.。
代数式经典测试题及答案

代数式经典测试题及答案一、选择题1.若(x +1)(x +n )=x 2+mx ﹣2,则m 的值为( )A .﹣1B .1C .﹣2D .2【答案】A【解析】【分析】先将(x+1)(x+n)展开得出一个关于x 的多项式,再将它与x 2+mx-2作比较,即可分别求得m ,n 的值.【详解】解:∵(x+1)(x+n)=x 2+(1+n)x+n ,∴x 2+(1+n)x+n=x 2+mx-2, ∴12n m n +=⎧⎨=-⎩, ∴m=-1,n=-2.故选A .【点睛】本题考查了多项式乘多项式的法则以及类比法在解题中的运用.2.下列各运算中,计算正确的是( )A .2a•3a =6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a+b)2=a 2+ab+b 2【答案】B【解析】试题解析:A 、2a •3a =6a 2,故此选项错误;B 、(3a 2)3=27a 6,正确;C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误;故选B .【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.3.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.4.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=( )A .7500B .10000C .12500D .2500 【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199 =22119919922++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A .【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.5.下列各式中,计算正确的是( )A .835a b ab -=B .352()a a =C .842a a a ÷=D .23a a a ⋅=【答案】D【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.解:A 、8a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、()326a a =,故选项B 不合题意;C 、844a a a ÷=,故选项C 不符合题意;D 、23a a a ⋅=,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.6.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩ 【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】 由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.7.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .8.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a -=D .(﹣2a )3=﹣8a 3 【答案】D【解析】 【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案. 【详解】 A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a ,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】 此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.9.在长方形内,若两张边长分别为和()的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为,图2中阴影部分的面积和为,则关于,的大小关系表述正确的是( )A .B .C .D .无法确定 【答案】A【解析】【分析】 利用面积的和差分别表示出,,利用整式的混合运算计算他们的差即可比较.【详解】 =(AB-a )·a+(CD-b )(AD-a )=(AB-a )·a+(AD-a )(AB-b )=(AB-a )(AD-b )+(CD-b )(AD-a )=(AB-a )(AD-b )+(AB-b )(AD-a )∴-=(AB-a )(AD-b )+(AB-b )(AD-a )-(AB-a )·a-(AD-a )(AB-b )=(AB-a )(AD-a-b)∵AD <a+b , ∴-<0, 故选A.【点睛】此题主要考查此题主要考查整式的运算,解题的关键是熟知整式的乘法法则.10.如果长方形的长为2(421)a a -+,宽为(21)a +,那么这个长方形的面积为( ) A .228421a a a -++B .328421a a a +--C .381a -D .381a +【答案】D【解析】【分析】利用长方形的面积等于长乘宽,然后再根据多项式乘多项式的法则计算即可.【详解】解:根据题意,得:S 长方形=(4a 2−2a +1)(2a +1)= 322814422-++-+a a a a a =8a 3+1,故选:D .【点睛】本题考查了多项式乘多项式,熟练掌握其运算方法:()()++=+++a b p q ap aq bp bq 是解题的关键.11.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )A .(a+b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .(a+b )2=a 2+2ab+b 2D .(a+b )2=(a ﹣b )2+4ab【答案】B【解析】【分析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a ﹣b )2;图2中阴影部分的面积为:a 2﹣2ab+b 2; ∴(a ﹣b )2=a 2﹣2ab+b 2,故选B .【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.12.多项式2a 2b ﹣ab 2﹣ab 的项数及次数分别是( )A .2,3B .2,2C .3,3D .3,2【答案】C【解析】【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】2a 2b ﹣ab 2﹣ab 是三次三项式,故次数是3,项数是3.故选:C.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.13.若多项式x 2+mx +4能用完全平方公式分解因式,则m 的值可以是( ) A .4B .﹣4C .±2D .±4【答案】D【解析】【分析】利用完全平方公式因式分解2222=()a ab b a b ±+±计算即可.【详解】解:∵x 2+mx +4=(x ±2)2,即x 2+mx +4=x 2±4x +4,∴m =±4.故选:D .【点睛】本题要熟记完全平方公式,尤其是两种情况的分类讨论.14.下列运算正确的是( )A .2352x x x +=B .()-=23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.15.下列运算正确的是( )A .236(2)8x x -=-B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y -+--=-- 【答案】A【解析】解:A . (-2x 2)3=-8x 6,正确;B . -2x (x +1)=-2x 2-2x ,故B 错误;C . (x +y )2=x 2+2xy +y 2,故C 错误;D . (-x +2y )(-x -2y )=x 2-4y 2,故D 错误;故选A .16.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .17.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A【解析】【分析】 根据题意,每个选项进行计算,即可判断.【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意;C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意.故选:A .【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.18.若x +y =,x ﹣y =3﹣的值为( )A .B .1C .6D .3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y =,x ﹣y =3﹣,==1.故选:B .【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.19.下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=-【答案】C【解析】试题分析:4x 与2x 不是同类项,不能合并,A 错误; 235x x x ⋅=,B 错误;236()x x =,C 正确;22()()x y x y x y -=+-,D 错误.故选C .考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.20.通过计算大正方形的面积,可以验证的公式是( )A.B.C.D.【答案】C【解析】【分析】根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案.【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故选C.【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.。
初中数学代数式知识点训练含答案(1)

初中数学代数式知识点训练含答案(1)一、选择题1.如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm时停下,则它停的位置是()A.点F B.点E C.点A D.点C【答案】A【解析】分析:利用菱形的性质,电子甲虫从出发到第1次回到点A共爬行了8cm(称第1回合),而2014÷8=251……6,即电子甲虫要爬行251个回合,再爬行6cm,所以它停的位置是F点.详解:一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,从出发到第1次回到点A共爬行了8cm,而2014÷8=251……6,所以当电子甲虫爬行2014cm时停下,它停的位置是F点.故选A.点睛:本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.2.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=()A.7500 B.10000 C.12500 D.2500【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199=22 119919922++⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A.【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.3.下列各式中,计算正确的是( )A .835a b ab -=B .352()a a =C .842a a a ÷=D .23a a a ⋅= 【答案】D【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.【详解】解:A 、8a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、()326a a =,故选项B 不合题意;C 、844a a a ÷=,故选项C 不符合题意;D 、23a a a ⋅=,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.4.下列图形都是由面积为1的正方形按一定的规律组成的,其中,第1个图形中面积为1的正方形有9个,第2个图形中面积为1的正方形有14个,……,按此规律,则第几个图形中面积为1的正方形的个数为2019个( )A .400B .401C .402D .403 【答案】D【解析】【分析】 由第1个图形有9个边长为1的小正方形,第2个图形有9+5=14个边长为1的小正方形,第3个图形有9+5×2=19个边长为1的小正方形,…由此得出第n 个图形有9+5×(n-1)=5n+4个边长为1的小正方形,由此求得答案即可.【详解】解:第1个图形边长为1的小正方形有9个,第2个图形边长为1的小正方形有9+5=14个,第3个图形边长为1的小正方形有9+5×2=19个,…第n 个图形边长为1的小正方形有9+5×(n-1)=5n+4个,当5n+4=2019时,解得n=403所以第403个图形中边长为1的小正方形的个数为2019个.故选:D .【点睛】此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.5.下列运算正确的是()A .336a a a +=B .632a a a ÷=C .()235a a a -⋅=-D .()336a a = 【答案】C【解析】【分析】分别求出每个式子的值,3332a a a +=,633a a a ÷=,()235aa a -⋅=-,()339a a =再进行判断即可.【详解】解:A: 3332a a a +=,故选项A 错;B :633a a a ÷=,故选项B 错;C :()235aa a -⋅=-,故本选项正确; D.:()339a a =,故选项D 错误.故答案为C.【点睛】本题考查了同底数幂的乘除,合并同类项,幂的乘方和积的乘方的应用;掌握乘方的概念,即求n 个相同因数的乘积的运算叫乘方,乘方的结果叫做幂;分清()22n n a a -=,()2121n n a a ++-=-.6.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.7.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a-= D .(﹣2a )3=﹣8a 3 【答案】D【解析】【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案.【详解】A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a ,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】 此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.8.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【解析】【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.9.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a ,用含a 的式子表示这组数的和是( )A .2a 2-2aB .2a 2-2a -2C .2a 2-aD .2a 2+a【答案】C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n =2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n =2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a ,∴2101=(250)2•2=2a 2,∴原式=2a 2-a .故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n =2n+1-2.10.下列运算正确的是( )A .x 3+x 5=x 8B .(y+1)(y-1)=y 2-1C .a 10÷a 2=a 5D .(-a 2b)3=a 6b 3【答案】B【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【详解】A、x3+x5,无法计算,故此选项错误;B、(y+1)(y-1)=y2-1,正确;C、a10÷a2=a8,故此选项错误;D、(-a2b)3=-a6b3,故此选项错误.故选:B.【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题的关键.11.如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab【答案】A【解析】【分析】分别计算出两个图形中阴影部分的面积即可.【详解】图1阴影部分面积:a2﹣b2,图2阴影部分面积:(a+b)(a﹣b),由此验证了等式(a+b)(a﹣b)=a2﹣b2,故选:A.【点睛】此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.12.如图1所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的8个长为a,宽为b的小长方形,用这8个小长方形不重叠地拼成图2所示的大正方形,则大正方形中间的阴影部分面积可以表示为()A .2()a b -B .29bC .29aD .22a b -【答案】B【解析】【分析】 根据图1可得出35a b =,即53a b =,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +,阴影部分的面积即为正方形的面积与长方形面积的差.【详解】解:由图可知,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +∴阴影部分的面积为:22(2)8(2)a b ab a b +-=-∵35a b =,即53a b = ∴阴影部分的面积为:222(2)()39b b a b -=-= 故选:B .【点睛】本题考查的知识点是完全平方公式,根据图1得出a ,b 的关系是解此题的关键.13.如果(x 2+px +q )(x 2-5x +7)的展开式中不含x 2与x 3项,那么p 与q 的值是( ) A .p =5,q =18B .p =-5,q =18C .p =-5,q =-18D .p =5,q =-18【答案】A【解析】试题解析:∵(x 2+px+q )(x 2-5x+7)=x 4+(p-5)x 3+(7-5p+q )x 2+(7-5q )x+7q , 又∵展开式中不含x 2与x 3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A .14.下列计算正确的是( )A .a•a 2=a 2B .(a 2)2=a 4C .3a+2a =5a 2D .(a 2b )3=a 2•b 3【答案】B【解析】本题考查幂的运算.点拨:根据幂的运算法则.解答:2123a a a a +⋅==()22224a a a ⨯== 325a a a += ()3263a b a b = 故选B .15.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +-【答案】A【解析】【分析】 根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决.【详解】解:由图可得,“L”型钢材的截面的面积为:ac+(b-c )c=ac+bc-c 2,故选项B 、D 正确,或“L”型钢材的截面的面积为:bc+(a-c )c=bc+ac-c 2,故选项C 正确,选项A 错误, 故选:A .【点睛】本题考查整式运算的应用,解答本题的关键是理解题意,掌握基本运算法则,利用数形结合的思想解答.16.若多项式x 2+mx +4能用完全平方公式分解因式,则m 的值可以是( ) A .4B .﹣4C .±2D .±4【答案】D【解析】【分析】利用完全平方公式因式分解2222=()a ab b a b ±+±计算即可.【详解】解:∵x 2+mx +4=(x ±2)2,即x 2+mx +4=x 2±4x +4,∴m =±4.故选:D .【点睛】本题要熟记完全平方公式,尤其是两种情况的分类讨论.17.图(1)是一个长为2a ,宽为2()b a b >的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .abB .2()a b +C .2()a b -D .22a b -【答案】C【解析】【分析】 图(2)的中间部分是正方形,边长为a-b ,根据图形列面积关系式子即可得到答案.【详解】中间部分的四边形是正方形,边长为:a+b-2b=a-b ,∴面积是2()a b -,故选:C.【点睛】此题考查完全平方公式的几何背景,观察图形得到线段之间的关系是解题的关键.18.计算(-2)2009+(-2)2010的结果是( )A .22019B .22009C .-2D .-22010【答案】B【解析】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B .19.下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=-【答案】C【解析】试题分析:4x与2x不是同类项,不能合并,A错误;235⋅=,B错误;x x x236=,C正确;x x()22()()-=+-,D错误.x y x y x y故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.20.通过计算大正方形的面积,可以验证的公式是( )A.B.C.D.【答案】C【解析】【分析】根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案.【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故选C.【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.。
代数式知识点总复习有答案

代数式知识点总复习有答案一、选择题1.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +-【答案】A【解析】【分析】 根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决.【详解】解:由图可得,“L”型钢材的截面的面积为:ac+(b-c )c=ac+bc-c 2,故选项B 、D 正确,或“L”型钢材的截面的面积为:bc+(a-c )c=bc+ac-c 2,故选项C 正确,选项A 错误, 故选:A .【点睛】本题考查整式运算的应用,解答本题的关键是理解题意,掌握基本运算法则,利用数形结合的思想解答.2.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a ,用含a 的式子表示这组数的和是( )A .2a 2-2aB .2a 2-2a -2C .2a 2-aD .2a 2+a【答案】C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n =2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n =2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a ,∴2101=(250)2•2=2a 2,∴原式=2a 2-a .故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n =2n+1-2.3.下列运算正确的是( ).A .()2222x y x xy y -=--B .224a a a +=C .226a a a ⋅=D .()2224xy x y = 【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方法则、同底数幂的乘法法则、完全平方公式分别化简求出答案.【详解】解:A.、()2222x y x xy y -=-+,故本选项错误;B.、2222a a a +=,故本选项错误;C.、224a a a ⋅=,故本选项错误;D 、 ()2224xy x y =,故本选项正确;故选:D .【点睛】本题主要考查合并同类项、积的乘方、同底数幂的乘法、完全平方公式,熟练掌握相关的计算法则是解题的关键.4.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a -= D .(﹣2a )3=﹣8a 3 【答案】D【解析】【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案.A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a ,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】 此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.5.观察下列图形:( )它们是按一定规律排列的,依照此规律,那么第7个图形中共有五角星的个数为( ) A .20B .21C .22D .23【答案】C【解析】【分析】设第n 个图形共有a n (n 为正整数)个五角星,根据各图形中五角星个数的变化可找出变化规律“a n =3n +1(n 为正整数)”,再代入n =7即可得出结论.【详解】解:设第n 个图形共有a n (n 为正整数)个五角星,∵a 1=4=3×1+1,a 2=7=3×2+1,a 3=10=3×3+1,a 4=13=3×4+1,…,∴a n =3n +1(n 为正整数),∴a 7=3×7+1=22.故选:C .【点睛】本题考查了规律型:图形的变化类,根据各图形中五角星个数的变化,找出变化规律“a n =3n +1(n 为正整数)”是解题的关键.6.计算的值等于( )A .1B .C .D .【解析】【分析】直接利用幂的乘方运算法则、积的乘方运算法则将原式变形进而得出答案.【详解】 原式= ==.故选C .【点睛】此题主要考查了幂的乘方运算以及积的乘方运算,正确将原式变形是解题关键.7.如果长方形的长为2(421)a a -+,宽为(21)a +,那么这个长方形的面积为( ) A .228421a a a -++B .328421a a a +--C .381a -D .381a +【答案】D【解析】【分析】利用长方形的面积等于长乘宽,然后再根据多项式乘多项式的法则计算即可.【详解】解:根据题意,得:S 长方形=(4a 2−2a +1)(2a +1)= 322814422-++-+a a a a a =8a 3+1,故选:D .【点睛】本题考查了多项式乘多项式,熟练掌握其运算方法:()()++=+++a b p q ap aq bp bq 是解题的关键.8.若35m =,34n =,则23m n -等于( ) A .254 B .6C .21D .20 【答案】A【解析】【分析】根据幂的运算法则转化式子,代入数值计算即可.解:∵35m =,34n =, ∴222233(3)3253544-==÷÷÷==m n m n m n , 故选:A .【点睛】本题考查了同底数幂的除法和幂的乘方的逆用,熟练掌握同底数幂的除法和幂的乘方的运算法则是解题的关键.9.下列各运算中,计算正确的是( )A .2a•3a =6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a+b)2=a 2+ab+b 2【答案】B【解析】试题解析:A 、2a •3a =6a 2,故此选项错误;B 、(3a 2)3=27a 6,正确;C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误;故选B .【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.10.已知:()()22x 1x 32x px q +-=++,则p ,q 的值分别为( ) A .5,3B .5,−3C .−5,3D .−5, −3【答案】D【解析】【分析】 此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p 、q 的值.【详解】由于()()2x 1x 3+-=2x 2-6x+x-3=2 x 2-5x-3=22x px q ++, 则p=-5,q=-3,故答案选D.【点睛】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.11.下列运算中,正确的是( )A .236x x x ⋅=B .333()ab a b =C .33(2)6a a =D .239-=-【答案】B【分析】分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可.【详解】x2•x3=x5,故选项A不合题意;(ab)3=a3b3,故选项B符合题意;(2a)3=8a6,故选项C不合题意;3−2=19,故选项D不合题意.故选:B.【点睛】此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.12.将(mx+3)(2﹣3x)展开后,结果不含x的一次项,则m的值为()A.0 B.92C.﹣92D.32【答案】B【解析】【分析】根据多项式乘以多项式的法则即可求出m的值.【详解】解:(mx+3)(2-3x)=2mx-3mx2+6-9x=-3mx2+(2m-9)x+6由题意可知:2m-9=0,∴m=9 2故选:B.【点睛】本题考查多项式乘以多项式,解题的关键是熟练运用整式的运算法则,本题属于基础题型.13.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为()A .7B .12C .13D .25【答案】C【解析】【分析】 设正方形A 的边长为a ,正方形B 的边长为b ,根据图形列式整理得a 2+b 2−2ab =1,2ab =12,求出a 2+b 2即可.【详解】解:设正方形A 的边长为a ,正方形B 的边长为b ,由图甲得:a 2−b 2−2(a−b )b =1,即a 2+b 2−2ab =1,由图乙得:(a +b )2−a 2−b 2=12,即2ab =12,所以a 2+b 2=13,即正方形A ,B 的面积之和为13,故选:C.【点睛】本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.14.图(1)是一个长为2a ,宽为2()b a b >的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .abB .2()a b +C .2()a b -D .22a b -【答案】C【解析】【分析】 图(2)的中间部分是正方形,边长为a-b ,根据图形列面积关系式子即可得到答案.【详解】中间部分的四边形是正方形,边长为:a+b-2b=a-b ,∴面积是2()a b -,故选:C.【点睛】此题考查完全平方公式的几何背景,观察图形得到线段之间的关系是解题的关键.15.下列运算正确的是( )A .236(2)8x x -=-B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y -+--=-- 【答案】A【解析】解:A . (-2x 2)3=-8x 6,正确;B . -2x (x +1)=-2x 2-2x ,故B 错误;C . (x +y )2=x 2+2xy +y 2,故C 错误;D . (-x +2y )(-x -2y )=x 2-4y 2,故D 错误;故选A .16.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .17.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A【解析】【分析】 根据题意,每个选项进行计算,即可判断.【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意;C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意. 故选:A .【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.18.已知112x y+=,则23xy x y xy +-的值为( ) A .12 B .2 C .12- D .2-【答案】D【解析】【分析】先将已知条件变形为2x y xy +=,再将其整体代入所求式子求值即可得解.【详解】 解:∵112x y+= ∴2x y xy+= ∴2x y xy +=∴2222323xy xy xy x y xy xy xy xy===-+---. 故选:D【点睛】本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为2x y xy +=的形式是解题的关键.19.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1【答案】B【解析】【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,,…,, 下边三角形的数字规律为:1+2,,…,, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.20.下列计算正确的是( )A .a•a 2=a 2B .(a 2)2=a 4C .3a+2a =5a 2D .(a 2b )3=a 2•b 3【答案】B【解析】本题考查幂的运算.点拨:根据幂的运算法则.解答:2123a a a a +⋅== ()22224a a a ⨯==325a a a +=()3263a b a b =故选B .。
代数式典型例题专项练习30题(有答案)

代数式专项练习30题(有答案)一.选择题(共5小题)1.在1,a,a+b,,x2y+xy2,3>2,3+2=5中,代数式有()A .3个B.4个C.5个D.6个2.下列各式:﹣x+1,π+3,9>2,,,其中代数式的个数是()A .5 B.4 C.3 D.23.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有()A .5个B.4个C.3个D.2个4.在下列的代数式的写法中,表示正确的一个是()A.“负x的平方”记作﹣x2B.“a除以2b的商”记作C.“x的3倍”记作x3 D.“y与的积”记作5.下列说法正确的是()A.x是代数式,0不是代数式B.表示a与b的积的代数式为a+bC.a、b两数和的平方与a、b两数积的2倍的和为(a+b)2+2abD.意义是:a与b的积除y的商二.填空题(共13小题)6.代数式“5x”,可解释为:“小明以5千米/时的速度走了x小时,他一共走了5x千米”.请你对“5x”再给出一个身边生活中的解释:_________ .7.叙述下列代数式的意义.(1)(x+2)2可以解释为_________ .(2)某商品的价格为n元.则80%n可以解释为_________ .8.一个三位数的百位数字是2,十位数字与个位数字组成的两位数为x,用代数式表示这个三位数为_________ .9.x表示一个两位数,y表示一个三位数,把x放在y的右边组成一个五位数,则这个五位数可以表示为_________ .11.一本书共n页,小华第一天读了全书的,第二天读了剩下的,则未读完的页数是_________ .(用含n的式子表示)12.(1)已知a﹣b=3,则3a﹣3b= _________ ,5﹣4a+4b= _________ .(2)已知x+5y﹣2=0,则2x+3+10y= _________ .(3)已知3x2﹣6x+8=0,则x2﹣2x+8= _________ .13.若a,b互为倒数,c,d互为相反数,则3c+3d﹣9ab= _________ .14.已知代数式ax3+bx,当x=﹣1时,代数式的值为5;则当x=1时,ax3+bx的值是_________ .15.任意写出x3y的3个同类项:_________ ,_________ ,_________ .16.已知7x m y3和﹣是同类项,则(﹣n)m= _________ .17.若单项式3x4y n与﹣2x2m+3y3的和仍是单项式,则(4m﹣n)n= _________ .18.已知x5y n与﹣3x2m+1y3n﹣2是同类项,则m+n= _________ .三.解答题(共12小题)19.如图,池塘边有一块长为18米,宽为10米的长方形土地,现在将其余三面留出宽都是x米的小路,中间余下的长方形部分做菜地,用代数式表示:(1)菜地的长a= _________ 米,宽b= _________ 米;(2)菜地的面积S= _________ 平方米;(3)求当x=1米时,菜地的面积.20.已知﹣3x4+m y与x4y3n是同类项,求代数式m100+(﹣3n)99﹣mn的值.21.已知关于多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,求n m的值.22.若关于x、y的方程6x+5y﹣2﹣3Rx﹣2Ry+4R=0合并同类项后不含y项,求R的值.23.k为何值时,多项式x2﹣2kxy﹣3y2+6xy﹣x﹣y中,不含x,y的乘积项.24.去括号,合并同类项(1)﹣3(2s﹣5)+6s;(2)3x﹣[5x﹣(x﹣4)];(3)6a2﹣4ab﹣4(2a2+ab);(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)25.先去括号,后合并同类项:(1)x+[﹣x﹣2(x﹣2y)];(2);(3)2a﹣(5a﹣3b)+3(2a﹣b);(4)﹣3{﹣3[﹣3(2x+x2)﹣3(x﹣x2)﹣3]}.26.观察下列各等式,并回答问题:;;;;…(1)填空:= _________ (n是正整数);(2)计算:….27.观察下面一列数,探求其规律:(1)请问第7个,第8个,第9个数分别是什么数?(2)第2004个数是什么如果这列数无限排列下去,与哪个数越来越接近?28.如图,每个正方形点阵均被一直线分成两个三角形点阵,根据图中提供的信息,用含n的等式表示第n个正方形点阵中的规律_________ .29.下列是幼儿园小朋友用火柴棒拼出的一列图形.仔细观察,找出规律,解答下列各题:(1)第4个图中共有_________ 根火柴,第6个图中有_________ 根火柴;(2)第n个图形中共有_________ 根火柴(用含n的式子表示);(3)请计算第2008个图形中共有多少根火柴.30.如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究并解答下列问题.(1)在第1个图中,共有白色瓷砖_________ 块.(2)在第2个图中,共有白色瓷砖_________ 块.(3)在第3个图中,共有白色瓷砖_________ 块.代数式典型例题30题参考答案:1.解:在1,a,a+b,,x2y+xy2,3>2,3+2=5中,代数式有1,a,a+b,,x2y+xy2,共5个.故选C2.解:题中的代数式有:﹣x+1,π+3,共3个.故选C.3.解:①1x分数不能为假分数;②2•3数与数相乘不能用“•”;③20%x,书写正确;④a﹣b÷c不能出现除号;⑤,书写正确;⑥x﹣5,书写正确,不符合代数式书写要求的有①②④共3个.故选:C4.解:“负x的平方”记作(﹣x)2;“x的3倍”记作3x;“y与的积”记作y.故选B5.解:A、x是代数式,0也是代数式,故选项错误;B、表示a与b的积的代数式为ab,故选项错误;C、正确;D、意义是:a与b的和除y的商,故选项错误.故选C6.解:答案不唯一,如买一支钢笔5元,买x支钢笔共5x元7.解:(1)(x+2)2可以解释为正方形的边长为x+2,则它的面积为(x+2)2;(2)某商品的价格为n元.则80%n可以解释为这件商品打八折后的价格.故答案为:(1)正方形的边长为x+2,则它的面积为(x+2)2;(2)这件商品打八折后的价格8.解:根据题意得此三位数=2×100+x=200+x9.解:两位数x放在一个三位数y的右边相当于y扩大了100倍,那么这个五位数为(100y+x)10.解:这m+n个数的平均数=.故答案为:.11.解:小华第一天读了全书的,还剩下(1﹣)n=n;第二天读了剩下的,即(1﹣)n×=n.则∴3a﹣3b=3,5﹣4a+4b=5﹣4(a﹣b)=5﹣4=1;(2)∵x+5y﹣2=0,∴x+5y=2,∴2x+3+10y=2(x+5y)+3=2×2+3=7;(3)∵3x2﹣6x+8=0,∴x2﹣2x=﹣,∴x2﹣2x+8=﹣+8=.故答案为:(1)3,1;(2)7;(3)13.解:因为a,b互为倒数,c,d互为相反数,所以ab=1,c+d=0,所以3c+3d﹣9ab=3(c+d)﹣9ab=0﹣9=﹣9,故答案为:﹣914.解:由题意知:﹣a﹣b=5所以a+b=﹣5;则当x=1时,ax3+bx=a+b=﹣515.解:开放题,答案无数个,只要所写同类项,所含字母相同且相同字母的指数也相同即可,同类项与字母的顺序无关.如5x3y,12x3y,20x3y.故答案为:5x3y,12x3y,20x3y16.解:由同类项的定义可知m=2,n=3,代入(﹣n)m,结果为9.答:(﹣n)m值是917.解:两个单项式的和是单项式,则它们是同类项,则2m+3=4,m=;n=3.则(4m﹣n)n=(4×﹣3)3=﹣1.答:(4m﹣n)n=﹣118.解:x5y n与﹣3x2m+1y3n﹣2是同类项,2m+1=5,n=3n﹣2,m=2,n=1,m+n=2+1=3,故答案为:3(2)由(1)知:菜地的长为18﹣2x米,宽为10﹣x米,所以菜地的面积为S=(18﹣2x)•(10﹣x);(3)由(2)得菜地的面积为:S=(18﹣2x)•(10﹣x),当x=1时,S=(18﹣2)(10﹣1)=144m2.故答案分别为:(1)18﹣2x,10﹣x;(2)(18﹣2x)(10﹣x);(3)144m220.解:∵﹣3x4+m y与x4y3n是同类项,∴4+m=4,3n=1,∴m=0,n=,∴m100+(﹣3n)99﹣mn=0+(﹣1)﹣0=﹣121.解:∵多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,即二次项系数为0,即m﹣2=0,∴m=2;∴2n+4=0,∴n=﹣2,把m、n的值代入n m中,得原式=422.解:∵6x+5y﹣2﹣3Rx﹣2Ry+4R=0合并同类项后不含y项,∴5﹣2R=0,解得R=2.523.解:原式=x2+(﹣2k+6)xy﹣3y2﹣y,∵不含x,y的乘积项,∴x,y的乘积项的系数为0,∴﹣2k+6=0,∴2k=6,∴k=3.∴当k=3时,已知多项式不含x,y的乘积项24.(1)﹣3(2s﹣5)+6s=﹣6s+15+6s=15;(2)3x﹣[5x﹣(x﹣4)]=3x﹣[5x﹣x+4]=3x﹣5x+x﹣4=﹣x+4;=6a2﹣4ab﹣8a2﹣2ab=﹣2a2﹣6ab;(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)=﹣6x2+3xy+4x2+4xy﹣24=﹣2x2+7xy﹣2425.(1)x+[﹣x﹣2(x﹣2y)]=x﹣x﹣2x+4y=﹣2x+4y;(2)原式=a﹣a﹣﹣+b2=;(3)2a﹣(5a﹣3b)+3(2a﹣b)=2a﹣5a+3b+6a﹣3b=3a;(4)﹣3{﹣3[﹣3(2x+x2)﹣3(x﹣x2)﹣3]},=﹣3{9(2x+x2)+9(x﹣x2)+9},=﹣27(2x+x2)﹣27(x﹣x2)﹣27,=﹣54x﹣27x2﹣27x+27x2﹣27,=﹣81x﹣2726.解:(1)﹣;(2)原式=1﹣+﹣++…+﹣=1﹣= 27.解:(1)∵第n个数是(﹣1)n,∴第7个,第8个,第9个数分别是﹣,,﹣.(2),最后与0越来越接近28.解:通过图案观察可知,当n=1时,点的个数是12=1;当n=2时,点的个数是22=4;当n=3时,点的个数是32=9;当n=4时,点的个数是42=16,…∴第n个正方形点阵中有n2个点,2(1)第4个图案火柴有3×4+1=13;第6个图案中火柴有3×6+1=19;(2)当n=1时,火柴的根数是3×1+1=4;当n=2时,火柴的根数是3×2+1=7;当n=3时,火柴的根数是3×3+1=10;所以第n个图形中火柴有3n+1.(3)当n=2008时,3n+1=3×2008+1=602530.解:(1)在第1个图中,共有白色瓷砖1×(1+1)=2块,(2)在第2个图中,共有白色瓷砖2×(2+1)=6块,(3)在第3个图中,共有白色瓷砖3×(3+1)=12块,(4)在第10个图中,共有白色瓷砖10×(10+1)=110块,(5)在第n个图中,共有白色瓷砖n(n+1)块。
代数式求值经典题型1-(含详细答案)

两边同时平方,x²-2xy+y²=5
将(1)、(2)代入上式,得
把-2xy 移到等号右边,
上式=( 5)² [( 5)² +4xy]
得,x²+y²=5 +2xy------(2)
第 4
【第 2 步】
题
(x²- y²)² - 10(x²+y²)
-10 (5 +2xy) =5(5+4xy)-10(5 +2xy) =25+20xy-50- 20xy
题
温馨提示 选B
本题有一定难度,请同学们自己先做一遍,实在 做不出来,再看答案。
.
. .
.
【思考】 因为 x+y 、x² +y²为已知数,所以,一 定要将代数式分解为含有 x+y 、x² +y²。
解 2x² +2x²y+2xy+xy²+y3
将 2x2 与 2xy 结合,2x2y、xy2、y3 结合,
. 把-6xy 移到括号里 .
=2(x2+xy+y2-3xy) =2(x2-2xy+y2)
答案: 8
.
.
第
11
已知 3x²-x-1 =0,
题
求代数式 6x3+7x²-5x-2018
.
. .
.
思考
已知 3x²-x-1 =0 故 3x²-x=1 ,
=2x+9x2-5x-2018 =9x2-3x-2018
1² 所求代数式=[a2-(2a)2]× a²
-3a² = a² = -3
答案: - 3
.
7y²
第
已知 x、y 是正数,且 x=2x+5y ,
代数式求值经典题型(含详细答案)

代数式求值经典题型(含详细答案)1、已知x+y=3,求代数式x²-xy的值。
解:将x+y=3代入式中,得x²-xy=x²-(3-x)x=2x²-3x,再将x+y=3代入式中,得x=3-y,代入原式中,得2(3-y)²-3(3-y),化简得-6y+15,所以代数式x²-xy的值为15-6y。
2、已知a+b=3ab,求代数式a+b的值。
解:将a+b=3ab代入式中,得a+b=3(a+b)ab,移项得3ab(a+b)-a-b=0,因式分解得(3ab-1)(a+b)=0,因为a+b≠0,所以3ab=1,代入a+b=3ab中,得a+b=3/3=1.4、已知2x-y=6,x²+y²=13,求代数式x-y的值。
解:将2x-y=6代入式中,得y=2x-6,代入x²+y²=13中,得x²+(2x-6)²=13,化简得5x²-24x+25=0,解得x=1或5,代入y=2x-6中,得y=-4或4,所以x-y的值为5或-3.6、已知y/x=2,则x的值是多少?解:将y/x=2代入式中,得y=2x,代入x-y=6中,得x-2x=6,解得x=-6,所x的值是-6.7、已知x-3xy+y/xy=27,求代数式3x-xy+3y的值。
解:将x-3xy+y/xy=27代入式中,得xy²-3xy+y=27xy,移项得xy²-3xy+y-27xy=0,化简得y(x-3)(y-9)=0,因为y≠0,所以x=3或y=9,代入3x-xy+3y中,得3(3)-3(3)(2)+3(9)=12,所以代数式3x-xy+3y的值为12.8、已知x-5=4y-4-y,则代数式2+4的值是多少?解:将x-5=4y-4-y代入式中,得x=3y-1,代入2+4中,得2+4=2+(3y-1)+4=3y+5,所以代数式2+4的值为3y+5.9、化简求值:(2x+2)/(2x+1)÷(x-3)/(x+1),其中x≠-1,-1/2.解:将(2x+2)/(2x+1)÷(x-3)/(x+1)化简得(2x+2)/(2x+1)×(x+1)/(x-3),分子分母同时约分,得(x+1)/(2x-3),将x=-1/2代入式中,得-1,所以代数式的值为-1.10、x-4x²+1=0,求代数式x的值。
代数式经典测试题含解析

代数式经典测试题含解析一、选择题1.下列计算,正确的是( )A .2a a a -=B .236a a a =C .933a a a ÷=D .()236a a = 【答案】D【解析】A.2a 和a,和不能合并,故本选项错误;B.2356a a a a ⋅=≠ ,故本选项错误;C.9363a a a a ÷=≠,和不能合并,故本选项错误;D.()236 a a =,故本选项正确;故选D.2.下列运算错误的是( )A .()326m m =B .109a a a ÷=C .358⋅=x x xD .437a a a +=【答案】D【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【详解】A 、(m 2)3=m 6,正确;B 、a 10÷a 9=a ,正确;C 、x 3•x 5=x 8,正确;D 、a 4+a 3=a 4+a 3,错误;故选:D .【点睛】此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.3.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩【答案】B【解析】【分析】 根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.4.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .5.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .18【答案】C【解析】【分析】观察第1个、第2个、第3个图案中的三角形个数,从而可得到第n 个图案中三角形的个数为2(n+1),由此即可得.【详解】∵第1个图案中的三角形个数为:2+2=4=2×(1+1);第2个图案中的三角形个数为:2+2+2=6=2×(2+1);第3个图案中的三角形个数为:2+2+2+2=8=2×(3+1);……∴第n 个图案中有三角形个数为:2(n+1)∴第7个图案中的三角形个数为:2×(7+1)=16,故选C.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.6.如图1所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的8个长为a ,宽为b 的小长方形,用这8个小长方形不重叠地拼成图2所示的大正方形,则大正方形中间的阴影部分面积可以表示为( )A .2()a b -B .29bC .29aD .22a b -【答案】B【解析】【分析】 根据图1可得出35a b =,即53a b =,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +,阴影部分的面积即为正方形的面积与长方形面积的差.【详解】解:由图可知,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +∴阴影部分的面积为:22(2)8(2)a b ab a b +-=-∵35a b =,即53a b = ∴阴影部分的面积为:222(2)()39b b a b -=-= 故选:B .【点睛】本题考查的知识点是完全平方公式,根据图1得出a ,b 的关系是解此题的关键.7.若(x +1)(x +n )=x 2+mx ﹣2,则m 的值为( )A .﹣1B .1C .﹣2D .2【答案】A【解析】【分析】先将(x+1)(x+n)展开得出一个关于x 的多项式,再将它与x 2+mx-2作比较,即可分别求得m ,n 的值.【详解】解:∵(x+1)(x+n)=x 2+(1+n)x+n ,∴x 2+(1+n)x+n=x 2+mx-2,∴12n m n +=⎧⎨=-⎩, ∴m=-1,n=-2.故选A .【点睛】本题考查了多项式乘多项式的法则以及类比法在解题中的运用.8.已知a +b +c =1,22223+-+=a b c c ,则ab 的值为( ).A .1B .-1C .2D .-2【答案】B【解析】【分析】将a +b +c =1变形为a +b =1- c ,将22223+-+=a b c c 变形为222221+=+--a b c c ,然后利用完全平方公式将两个式子联立即可求解.【详解】∵22223+-+=a b c c∴()222221=12+=--+-a b c c c∵a +b +c =1∴1+=-a b c∴()()221+=-a b c∴()2222+=+-a b a b展开得222222++=+-a b ab a b∴1ab =-故选B .【点睛】本题考查完全平方公式的应用,根据等式特点构造完全平方式是解题的关键.9.若2m =5,4n =3,则43n ﹣m 的值是( )A .910B .2725C .2D .4【答案】B【解析】【分析】根据幂的乘方和同底数幂除法的运算法则求解.【详解】∵2m =5,4n =3,∴43n ﹣m =344n m =32(4)(2)n m =3235=2725 故选B.【点睛】本题考查幂的乘方和同底数幂除法,熟练掌握运算法则是解题关键.10.如图,是一块直径为2a +2b 的圆形钢板,从中挖去直径分别为2a 、2b 的两个圆,则剩下的钢板的面积为( )A .ab πB .2ab πC .3ab πD .4ab π【答案】B【解析】【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:S 剩下=S 大圆- 1S 小圆-2S 小圆 =2222a+2b 2a 2b --222πππ()()() =()222a+b -a -b π⎡⎤⎣⎦=2ab π, 故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、 合并同类项法则,熟练掌握公式及法则是解本题的关键.11.下列运算中,正确的是( )A .236x x x ⋅=B .333()ab a b =C .33(2)6a a =D .239-=-【答案】B【解析】【分析】分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可.【详解】x 2•x 3=x 5,故选项A 不合题意;(ab )3=a 3b 3,故选项B 符合题意;(2a )3=8a 6,故选项C 不合题意;3−2=19,故选项D 不合题意. 故选:B .【点睛】 此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.12.将(mx +3)(2﹣3x )展开后,结果不含x 的一次项,则m 的值为( ) A .0B .92C .﹣92D .32 【答案】B【解析】【分析】根据多项式乘以多项式的法则即可求出m 的值.【详解】解:(mx +3)(2-3x )=2mx -3mx 2+6-9x=-3mx 2+(2m -9)x +6由题意可知:2m -9=0,∴m =92故选:B .【点睛】本题考查多项式乘以多项式,解题的关键是熟练运用整式的运算法则,本题属于基础题型.13.下列计算正确的是( )A .23a a a ⋅=B .23a a a +=C .()325a a =D .23(1)1a a a +=+【答案】A【解析】【分析】根据合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识求解即可求得答案.【详解】A 、a•a 2=a 3,故A 选项正确;B 、a 和2a 不是同类项不能合并,故B 选项错误;C 、(a 2)3=a 6,故C 选项错误;D 、a 2(a+1)=a 3+a 2,故D 选项错误.故答案为:A .【点睛】本题主要考查了合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识,解题的关键是熟记法则.14.计算(0.5×105)3×(4×103)2的结果是( )A .13210⨯B .140.510⨯C .21210⨯D .21810⨯ 【答案】C【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质进行计算.解:(0.5×105)3×(4×103)2=0.125×1015×16×106=2×1021.故选C .本题考查同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.15.下列计算正确的是()A .4482a a a +=B .236a a a •=C .4312()a a =D .623a a a ÷=【答案】C【解析】【分析】根据合并同类项、同底数幂的乘除法公式、幂的乘方公式逐项判断,即可求解.【详解】A 、4442a a a +=,故错误;B 、235a a a •=,故错误;C 、4312()a a =,正确;D 、624a a a ÷=,故错误;故答案为:C.【点睛】本题考查了整式的运算,解题的关键是熟练掌握合并同类项的运算法则、同底数幂的乘除法公式、幂的乘方公式.16.下列计算正确的是( )A .236a a a ⋅=B .22a a a -=C .632a a a ÷=D .236()a a =【答案】D【解析】根据同底数幂的乘除法公式,合并同类项,以及幂的乘方公式逐项计算得到结果,即可作出判断.【详解】A 、235a a a ⋅=,不符合题意;B 、22a 和a 不是同类项,不能合并,不符合题意;C 、633a a a ÷=,不符合题意;D 、236()a a =,符合题意,故选:D .【点睛】此题考查了同底数幂的乘除法,合并同类项,以及幂的乘方,熟练掌握运算法则是解本题的关键.17.若x +y =,x ﹣y =3﹣的值为( )A .B .1C .6D .3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y =,x ﹣y =3﹣,==1.故选:B .【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.18.若(x +4)(x ﹣1)=x 2+px +q ,则( )A .p =﹣3,q =﹣4B .p =5,q =4C .p =﹣5,q =4D .p =3,q =﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x +4)(x ﹣1)=x 2+3x ﹣4∴p =3,q =﹣4【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.19.下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=-【答案】C【解析】试题分析:4x 与2x 不是同类项,不能合并,A 错误; 235x x x ⋅=,B 错误;236()x x =,C 正确;22()()x y x y x y -=+-,D 错误.故选C .考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.20.已知:()()22x 1x 32x px q +-=++,则p ,q 的值分别为( ) A .5,3B .5,−3C .−5,3D .−5, −3【答案】D【解析】【分析】 此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p 、q 的值.【详解】由于()()2x 1x 3+-=2x 2-6x+x-3=2 x 2-5x-3=22x px q ++, 则p=-5,q=-3,故答案选D.【点睛】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2代数式【考纲说明】1、理解字母表示数的意义及用代数式表示规律。
2、用代数式表示实际问题中的数量关系,求代数式的值。
【知识梳理】1、代数式:指含有字母的数学表达式。
2、一个代数式由数、表示数的字母、运算符号组成。
单个字母或数字也是代数式。
3、代数式的值:一般地,用数值代替代数式•里的字母,计算后所得的结果叫做代数式的值。
4、用字母表示数的规范格式:(1)、数和表示数的字母相乘,或字母和字母相乘时,乘号可以省略不写,或用“•"来代替。
(2)、当数和字母相乘,省略乘号时,要把数字写到前面,字母写后而。
如:100a或100・“,na 或n*a o(3)、后而接单位的相加式子要用括号括起来。
如:(5s )时(4)、除法运算写成分数形式°(5)、带分数与字母相乘时,带分数要写成假分数的形式。
5、列代数式时要注意:(1)语言叙述中关键词的意义,如“大”,“小” “增加”“减少”。
"倍”「'几分「之几”等词语与代数式中的运算符号之间的关系。
(2)要理淸运算顺序和正确使用括号,以防出现颠倒等错误,例如“积的和”与“和的积”“平方差” “差的平方”等等。
(3)在同一问题中,不同的数呈必须用不"同的字母表示。
【经典例题】【例1] (2012重庆,9, 4分〉下列图形都是由同样大小的五角星按一立的规律组成。
其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中的五角星的个数为()★★★★★★★★¥举图①图②【解析】仔细观察图形的特点,它们都是轴对称图形,每一行的个数都是偶数,分别是2, 4,6,…,642,故第⑥个图形中五角星的个数为2+4+6+8+10+12+10+8+6+4+2=72o答案:D【例2] (2011甘肃兰州,20, 4分)如图,依次连接第一个矩形各边的中点得到一个菱形, 再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去,已知第一个矩形的面积为1,则第n个矩形的面积为______________ :【解析】由中点四边形的性质可知,每次所得新中点四边形的面积是前一个图形的丄.故2后一个矩形的而积是前一个矩形的丄,所以第n个矩形的而积是第一个矩形而积的4/ ] 、2刃_2 已知第一个矩形面积为则第n个矩形的而积为一辽丿【例3】按一定规律排列的一列数依次为丄丄,丄,丄,丄,丄按此规律,第7个数 2 3 10 1526 35是 ____ O【解析】先观察分子:都是1;再观察分母:2310,15.26,…与一些平方数1,4.9,16,…都差1,2二1*1, 3=2<1, 10=3*1, 15=43-1, 26=5*1,…,这样第7 个数为-J—= —0 72+1 50答案:丄50★★★★★★★★★★★★图③答案:【解析】由已知丄—丄=4,得— = 4,a - 2ab - b _ (a-b)-2ub _ -4ab - 2ab2u —2b + lab 2(。
一b) + lab -Sab + lab答案:A【课堂练习】1、(2012湖北武汉,9, 3分)一列数al, a2, a3,…,其中= =一!一 5为不2 1 + %小于2的整数),则①=()2、(2012四川宜宾,5, 3分)将代数式X2+6X +2化成(x+p)2+q的形式为()A. (x-3) 2+11B. (丫+3)2-7C. (ML-liD. (x+2) 2-F43、(2012安徽5, 4分)某企业今年3月份产值为a万元,4月份比3月份减少了10%, 5 月份比4月份增加了15%,则5月份的产值是()A. (“-10%) (”+15%)万元B. (1-10%) (1+15%)万元C.(”・10%+15%)万元 D « (1・10%+15%)万元4、(2012浙江丽水,10, 3分)小明用棋子摆放图形來研究数的规律。
图1中棋子围成三角形,其颗数为3,6,9,12,…称为三角形数,类似的,图2中的4,&12,16…称为正方形数。
下列数中既是三角形数也是正方形数的是()• • • •••• ••••6 9A. 6 B・-6 C.丄 D・一?15 7A. 2010B.2012C. 2014D. 2016【例4】已知:4 8 12R25、(2012四川成都,21,4分)已知当x=l时,用+加的值为3,则当x = 2时,ax2+bx的值为 ________ 。
6、(2012河北,17, 3分)某数学活动小组的20位同学站成一列做报数游戏,规则是:从1前而第一位同学开始,每位同学依次报自己顺序数的倒数加1>第1位同学报-+1 ,11第2位同学报(£ + 1),第3位同学报转+ 1]…这样得到的20个数的积为______________ o 7、(2012 辽宁沈阳,15, 4 分)有一组多项式:a + b\a2 -b4 -+b\a4 -b^ ,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为_____________________ -8、(2012山西,16, 3分)如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是_____________ (用含n的代数式表示)。
(1)⑵(3)(4)9、(2012河北,18, 3分)用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图①,用n个全等的正六边形按这种方式拼接, 如图②,若围成一圈后中间也形成一个正多边形,则n的值为________________ 。
團9」图9_210、(2012山东潍坊,17, 3分)图中每一个小方格的而积为1,则可根据面积计算得到如下算式:1+3+5+7+…+ (2n-l) = ______________ 。
(用n表示,n是正整数)11、(2012浙江宁波,20, 6分)用同样大小的黑色棋子按如图所示的规律摆放:第]个第2个弟3个第4个(1)、第5个图形有多少颗黑色棋子?(2)、第几个图形有2013颗黑色棋子?请说明理由。
12、(2012湖南益阳,19, 10分)观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:图① 用②国③三个牡三个数的机 1«-|)心-2 (-3)x (-4)x(-5)~-60三个的上三个放的利1+(・1)+2=2 (・3)+(-4)+(-5戶-12积钟啲两一2话-1,( 【课后作业】一、选择题1. (2007,白银)从边长为d 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将英裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过A. a 2-b 2 =(a-b)2B ・(“ +方F =a 2 +2ab + b 2C ・+D ・ a 2 -b‘ = (a + b)(a -b) 2. (2008,更庆)某商场2006年的销售利润为—预计以后每年比上一年增长 % 那么2008年该商场的销售利润将是( )A. a (\+byB ・ a (\ + b%y3•如图,阴影部分的面积是( )4. (2007,襄阳)某商品原价为”元,因需求量大,经营者连续两次提价,每次提价10%, 后因市场物价调整,又一次降价20%,降价后这种商品的价格是()A ・ 1.0&/ 元 B. 0.88^ 元 C ・ 0.968a 元 D ・ d 元汁算两个图形阴影部分的面积, 可以验证成立的公式为(A.11尹13 B. — xy2 C. 6xy D ・ 3xy5. (2007,郴州)目前,财政部将证券交易印花税税率由原来的1%。
(千分之一)提髙到3%>・如果税率提高后的某一天的交易额为d 亿元,则该天的证券交易印花税(交易印花税二E 卩 花税率X 交易额)比按原税率计算增加了( )亿元A ・ a %DB ・ 2 ci %oC. 3 ci %oD. 4 ci %o6. 为了吸收国民的银行存款,今年中国人民银行对一年期银行存款利率进行了两次调整,由原来的2.52$提高到3.06$ •现李爷爷存入银行。
万元钱,一年后,将多得利息( )万元.9. (2009,乐门)在中央电视台2套“开心辞典'‘节目中,有一期的某道题目是:如图所示,天平中放有苹果、香蕉、舷码,且两个天平都平衡,则一个苹果的重量是一个香蕉的重10. (2009,太原)已知一个多项式与3x 2 +9x 的和等于3疋+4人・一1 ,则这个多项式是( )A. —5x —1B. 5x +1 C ・—13x —1D ・ 13x + l11. 如果“/xO,那么下列判断正确的是().A. t/<0» /xO B ・b>0 C ・"20, "WO D ・ “v0, 或 Q 0, /?<0二、填空题A. 0・449血B. 0・54執C. 0.54“D. 0.54%7. (200&荆门)用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方 形的而积是144,小正方形的面积是4,若用x, y 表示矩形的长和宽 (x>y ),则下列关系式中不正确的是( )A ・ x+y=12B ・ x —y=2C ・ x )=35D ・.¥2+y 2=144&用代数式表示“d 的3倍与方的差的平方S 正确的是( )A. (3d — b)2B. 3(a-b)2C ・ 3a-b 2D ・(G -3〃)2量的( )4A.才倍B. -ii 23 C. 2倍D ・3倍、包•/、也9& /、孕/ △、‘△ 312.—盒铅笔12支,n盒铅笔共有__________ 支.13.(2002,株洲)针对药品市场价格不规范的现象,药监部门对部分药品的价格进行了调整.已知某药品原价为“元,经过调整后,药价降低了60%,则该药品调整后的价格为_______________ 元”14.(2007,鄂尔多斯)在边长为d的正方形纸片中剪去一个边长为b的小正方形(° >方)(如图(1)),把余下的部分沿虚线剪开,拼成一个矩形(如图(2)),分别计算这两个图形阴影部分的而枳,可以验证的乘法公式是_____________________ (用字母表示)・则剩余部分的长度为 ______________ 米.(结果要化简)16.___________________________________________________________________ (200 7,云南)一台电视机的原价为“元,降价4%后的价格为____________________________ 元. 17.(2007,湖州)利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a + b)2=a2 + 2ab + b2.你根据图乙能得到的数学公式是 ______________ .18.(2008,青海)对单项式我们可以这样解释:香蕉每千克5元,克,共付款5x元.请你对“ 5% "再给出另一个实际生活方面的合理解释:(2009,广安)为了增加游人观赏花园风景的路程,将平行四边形花园中形如图1的恒宽为"米的直路改为形如图2恒宽为“米的曲mil制iiiiiiMi血m俪路,道路改造前后各余下的面枳(即图中阴影部分而积)分别记为Si 和S2,则51 ________ S2(填或“<”)・20.(2009,海南)“d的2倍与1的和”用代数式表示是__________________ ・21.(2009,宁德)张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则尸______________________图(2)15. (2007,呼和浩特)一根钢筋长d米, 第-次用去了全长的第二次用去了余下畤某人买了x千19.图(1)甲乙22.(2012湖南)用代数式表示'力与b的和”,式子为______________ .23.(2011,衡阳)如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第"(“是正整数)个图案中由 ____________________ 个基础图形组成.24.(2009,上海)某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是加,那么该商品现在的价格是 ________________ 元(结果用含川的代数式表示).25.(2009,云南)一筐苹果总重x千克,筐本身重2千克,若将苹果平均分成5份,则每份重 _________ 千克.26.(2010,长春)为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中5名教师人均捐款a元,则该班学生共捐款______________ 元(用含有d的代数式表示).27.(2012,海南)某工厂计划d天生产60件产品,则平均每天生产该产品 ____________ 件.28.(2010,嘉兴)用代数式表示““、b两数的平方和”,结果为______________ .29.(2010,湖南)如果用s表示路程(单位:千米),/表示时间(单位:小时),v表示速度(单位:千米/时),那么匸 _______ 小时(用£和1,表示).30.(2010,咸宁)惠民新村分给小慧家一套价格为12万元的住房.按要求,需首期(第一年)付房款3万元,从第二年起,每年应付房款0.5万元与上一年剩余房款的利息的和.假设剩余房款年利率为0.4%,小葱列表推算如下:第一年第二年应还款(万元)30.5 + 9x04%0.5+&5x0.4%剩余房款(万元)98.5s若第"年小慧家仍需还款,则第“年应还款_______________________________ 万元(”>1).【参考答案】【课堂练习】I、A 2、B 3、B 4、D⑴5、66、217、a^-b208、4n・2 或2+4 (n-1)9、610、n2II、(1)第5个图形有18颗黑色棋子。