工业机器人技术基础及应用最新版教学课件3.9
合集下载
工业机器人技术基础及应用配套课件

工业机器人技术基础及应用
Industrial Robot Field Programming
课程概览
项目一 工业机器人概述
工业机器人概述 工业机器人的分类及应用
第一部分 什么是工业机器人?
在中国,机器人专家从应 用环境出发,将机器人分为两 大类,即工业机器人和特种机 器人。 ①工业机器人就是面向工业领 域的多关节机械臂或多自由度 机器人。 ②特种机器人则是除工业机器 人之外的,用于非制造业并服 务于人类的各种先进的机器人。 包括:服务型机器人、水下机 器人、娱乐机器人、军用机器 人、农业机器人等。
工业机器人的分类及选型
并联三/四关节机器人(Delta)
Delta机器人又名并联机器人或蜘蛛手机器人, 具有3个空间自由度和1个转动自由度,通过示教编 程或视觉系统捕捉目标物体,由三个并联的伺服轴 确定抓具中心(TCP)的空间位置,实现目标物体 的快速拾取、分拣、装箱、搬运、加工等操作。主 要应用于乳品、食品、药品和电子产品等行业,具有 重量轻、体积小、速度快、定位精、成本低、效率 高等特点。
>机晷人密度
700 -
631
600
500 400 / ;F
309
300
89
200
。 100
1 韩国
厂 一——江 - 6h 1
3德国
4日本
7美国 全球平均 23中国
机 器 人 使 用 密 度 :台/万 人 数据来源 2017年IFR. (国际机器人联盟)全球机器人密度报告
按照工信部的发展规划,到 2020年,工业机器人装机量将达到 百万台,而与之相对应的人才需求 将到达20万人,而现如今,人才紧 缺正在影响着工业机器人在国内的 推广与普及,多地已经出现相关技 术人才招聘难的问题,工业机器人 人才培养迫在眉睫。
Industrial Robot Field Programming
课程概览
项目一 工业机器人概述
工业机器人概述 工业机器人的分类及应用
第一部分 什么是工业机器人?
在中国,机器人专家从应 用环境出发,将机器人分为两 大类,即工业机器人和特种机 器人。 ①工业机器人就是面向工业领 域的多关节机械臂或多自由度 机器人。 ②特种机器人则是除工业机器 人之外的,用于非制造业并服 务于人类的各种先进的机器人。 包括:服务型机器人、水下机 器人、娱乐机器人、军用机器 人、农业机器人等。
工业机器人的分类及选型
并联三/四关节机器人(Delta)
Delta机器人又名并联机器人或蜘蛛手机器人, 具有3个空间自由度和1个转动自由度,通过示教编 程或视觉系统捕捉目标物体,由三个并联的伺服轴 确定抓具中心(TCP)的空间位置,实现目标物体 的快速拾取、分拣、装箱、搬运、加工等操作。主 要应用于乳品、食品、药品和电子产品等行业,具有 重量轻、体积小、速度快、定位精、成本低、效率 高等特点。
>机晷人密度
700 -
631
600
500 400 / ;F
309
300
89
200
。 100
1 韩国
厂 一——江 - 6h 1
3德国
4日本
7美国 全球平均 23中国
机 器 人 使 用 密 度 :台/万 人 数据来源 2017年IFR. (国际机器人联盟)全球机器人密度报告
按照工信部的发展规划,到 2020年,工业机器人装机量将达到 百万台,而与之相对应的人才需求 将到达20万人,而现如今,人才紧 缺正在影响着工业机器人在国内的 推广与普及,多地已经出现相关技 术人才招聘难的问题,工业机器人 人才培养迫在眉睫。
工业机器人及应用全套课件完整版ppt教学教程最新最全

☞ 结论:不在同一体量。
4. 工业机器人 PK 机械手
PLC 机械手
机器人 控制系统
相同点 ✓ 作用相同,都是自动化制造的辅助设备; 定义类似:机器人=可编程的机械手。 ✓ 区别 控制
机械手:由CNC系统的PLC控制,无独立控制系统; IR:有独立的控制系统。 ✓ 作用 机械手:单功能、固定用途和动作; IR:可操作、可编程,多功能、多用途。 ✓ 驱动 机械手: PLC开关量控制,液压、气动系统为主; IR:轨迹插补控制,必须用伺服驱动系统。
✓ 包装类:分拣、包装(食品、药品行业),码垛等;
目的:保障安全卫生、提高自动化程度。
❖ 服务机器人(Service Robots) : ✓ 服务于人类非生产性活动的机器人总称; ✓ 作业环境为未知,大多具备“行走”功能,产品技术要 求高,以第二、三代机器人居多; ✓ 市场广阔、潜力巨大,产品占机器人的95%以上。
执行器 回转变位器
本体
连杆
关节
直线变位器
• 电气部分 • 控制器 • 功能与数控系统相同; • 产生机器人运动轨迹控制脉冲; • 控制轴数较多(通常6轴)。 • 操作单元 • 机器人的操作面板;又称示教器; • 结构简单、采用手持式结构。 • 驱动器 • 将控制脉冲转换为电机转角; • 多采用交流伺服驱动系统。
✓ 形态 CNC机床:直线运动轴为主,回转、摆动为辅; IR机床:高精度轮廓加工,多为0.001mm级; IR:粗略轨迹运动,多为0.1mm级。
✓ 控制 CNC机床:一般5轴及以下,准确轮廓运动; IR:一般6轴及以上,粗略轨迹运动。
软件 CNC机床:笛卡尔坐标运动为主,相对简单; IR:多轴摆动空间合成运动,相当复杂。
摆动(Bend):转动范围一般小于等于270° 。
4. 工业机器人 PK 机械手
PLC 机械手
机器人 控制系统
相同点 ✓ 作用相同,都是自动化制造的辅助设备; 定义类似:机器人=可编程的机械手。 ✓ 区别 控制
机械手:由CNC系统的PLC控制,无独立控制系统; IR:有独立的控制系统。 ✓ 作用 机械手:单功能、固定用途和动作; IR:可操作、可编程,多功能、多用途。 ✓ 驱动 机械手: PLC开关量控制,液压、气动系统为主; IR:轨迹插补控制,必须用伺服驱动系统。
✓ 包装类:分拣、包装(食品、药品行业),码垛等;
目的:保障安全卫生、提高自动化程度。
❖ 服务机器人(Service Robots) : ✓ 服务于人类非生产性活动的机器人总称; ✓ 作业环境为未知,大多具备“行走”功能,产品技术要 求高,以第二、三代机器人居多; ✓ 市场广阔、潜力巨大,产品占机器人的95%以上。
执行器 回转变位器
本体
连杆
关节
直线变位器
• 电气部分 • 控制器 • 功能与数控系统相同; • 产生机器人运动轨迹控制脉冲; • 控制轴数较多(通常6轴)。 • 操作单元 • 机器人的操作面板;又称示教器; • 结构简单、采用手持式结构。 • 驱动器 • 将控制脉冲转换为电机转角; • 多采用交流伺服驱动系统。
✓ 形态 CNC机床:直线运动轴为主,回转、摆动为辅; IR机床:高精度轮廓加工,多为0.001mm级; IR:粗略轨迹运动,多为0.1mm级。
✓ 控制 CNC机床:一般5轴及以下,准确轮廓运动; IR:一般6轴及以上,粗略轨迹运动。
软件 CNC机床:笛卡尔坐标运动为主,相对简单; IR:多轴摆动空间合成运动,相当复杂。
摆动(Bend):转动范围一般小于等于270° 。
工业机器人应用 ppt课件

按照結构坐標系來分,可以分為 :直角坐標型、 圓柱坐標型、球坐標型、全關節型。
工业机器人应用
二、焊接机器人的优点
穩定和提高焊接質量,保証其均勻性。 提高勞動生產率,一天可小時連續生產。 改善工人勞動條件,可在有害環境下工作。 降低對工人操作技術的要求。 縮短產品改型換代的准備周期,減少相應的設
工业机器人应用
其他用途的工业机器人
工业机器人应用
其他用途的工业机器人
❖搬运机器人 ❖ 主要用于工厂中一些工序的上下料作业、拆垛和码 垛作业等。这类机器人精度相对低一些,但负荷比较大, 运动速度比较高。其机器人操作机多采用点焊或弧焊机器 人结构,也有的采用框架式和直角坐标式结构形式。随着 工厂自动化程度的不断提高和生产节拍的加快,搬运机器 人使用得越来越多。
动轨迹、运动速度以及动作的时间节奏等),同时还向各个执行
元件发出指令。必要时,控制系统汉对自己的行为加以监视,一
旦有越轨的行为,能自己排查出故障发生的原因并及时发出报警
信号。
()人工智能系统
人工智能系统赋予工业机器人五种感觉功能,以实现机器
人对工件的自动识别和适应性操作。具有自适应性的智能化的机
械系统也是当前机电一体化技术的发展方向,模糊计算机的应用
工业机器人应用
❖ 检查和测量机器人 ❖ 集三种功能于一体,包括机器人的运动控制、操作对象状态 的感知以及对所采集到的信息进行分析和判断,最终给出检查和测 量结果。检查和测量机器人主要用于工件的形状测量、装配检查以 及产品缺陷检查等。
工业机器人应用
随着信息技术和微电子技术的发展,这些行业也迫切需要机器 人进行作业。但这些行业的特点是超精密化和精细化,产品的质量 与环境的好坏有直接关系,在这种环境下作业对机器人有特殊要求, 因此产生了净化机器人。对于净化机器人,如何抑制尘埃粒子大小 和数量是其关键问题。另外,现代制造业中,许多器件的制造需要 在真空环境下进行,因此也出现了真空机器人。净化机器人和真空 机器人除对环境有很高的要求之外,其速度和精度也有了很大提高。 并且机器人的结构不同于一般工业机器人的结构,具有一定的特殊 性。
工业机器人应用
二、焊接机器人的优点
穩定和提高焊接質量,保証其均勻性。 提高勞動生產率,一天可小時連續生產。 改善工人勞動條件,可在有害環境下工作。 降低對工人操作技術的要求。 縮短產品改型換代的准備周期,減少相應的設
工业机器人应用
其他用途的工业机器人
工业机器人应用
其他用途的工业机器人
❖搬运机器人 ❖ 主要用于工厂中一些工序的上下料作业、拆垛和码 垛作业等。这类机器人精度相对低一些,但负荷比较大, 运动速度比较高。其机器人操作机多采用点焊或弧焊机器 人结构,也有的采用框架式和直角坐标式结构形式。随着 工厂自动化程度的不断提高和生产节拍的加快,搬运机器 人使用得越来越多。
动轨迹、运动速度以及动作的时间节奏等),同时还向各个执行
元件发出指令。必要时,控制系统汉对自己的行为加以监视,一
旦有越轨的行为,能自己排查出故障发生的原因并及时发出报警
信号。
()人工智能系统
人工智能系统赋予工业机器人五种感觉功能,以实现机器
人对工件的自动识别和适应性操作。具有自适应性的智能化的机
械系统也是当前机电一体化技术的发展方向,模糊计算机的应用
工业机器人应用
❖ 检查和测量机器人 ❖ 集三种功能于一体,包括机器人的运动控制、操作对象状态 的感知以及对所采集到的信息进行分析和判断,最终给出检查和测 量结果。检查和测量机器人主要用于工件的形状测量、装配检查以 及产品缺陷检查等。
工业机器人应用
随着信息技术和微电子技术的发展,这些行业也迫切需要机器 人进行作业。但这些行业的特点是超精密化和精细化,产品的质量 与环境的好坏有直接关系,在这种环境下作业对机器人有特殊要求, 因此产生了净化机器人。对于净化机器人,如何抑制尘埃粒子大小 和数量是其关键问题。另外,现代制造业中,许多器件的制造需要 在真空环境下进行,因此也出现了真空机器人。净化机器人和真空 机器人除对环境有很高的要求之外,其速度和精度也有了很大提高。 并且机器人的结构不同于一般工业机器人的结构,具有一定的特殊 性。
工业机器人技术基础课件(最全)ppt课件

右图就处于a)的奇异状态,直角下示教会报警。
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
直角坐标系
Never Stop Improving
— 6—
1 机器人工坐业标系机器人坐标系
机器人系统 关节坐标系
两者关系???
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
— 2—
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
1 机器人坐标系
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
在分析机器人时会牵涉诸多坐标系,一些是操作者不须关心的,另外一些却是和工艺相 关的。常见的坐标系有: 关节坐标系 基座坐标系 工具坐标系 用户坐标系
Never Stop Improving
px a
p
py
b
1pz
c w
— 12 —
2 机器人位姿变换
坐标轴方向的描述:
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
i、j、k分别是直角坐标系中x、y、Z坐标轴的单位向量。若用齐次坐标来描述x、y、z轴的方向, 则
基坐标系
Never Stop Improving
— 7—
1 机器人工坐业标系机器人坐标系
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
用户坐标系(工件坐标系):
用于描述各个物体或工位的方位的需要。用户常常在自
z
己关心的平面建立自己的坐标系,以方便示教。
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
直角坐标系
Never Stop Improving
— 6—
1 机器人工坐业标系机器人坐标系
机器人系统 关节坐标系
两者关系???
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
— 2—
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
1 机器人坐标系
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
在分析机器人时会牵涉诸多坐标系,一些是操作者不须关心的,另外一些却是和工艺相 关的。常见的坐标系有: 关节坐标系 基座坐标系 工具坐标系 用户坐标系
Never Stop Improving
px a
p
py
b
1pz
c w
— 12 —
2 机器人位姿变换
坐标轴方向的描述:
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
i、j、k分别是直角坐标系中x、y、Z坐标轴的单位向量。若用齐次坐标来描述x、y、z轴的方向, 则
基坐标系
Never Stop Improving
— 7—
1 机器人工坐业标系机器人坐标系
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
用户坐标系(工件坐标系):
用于描述各个物体或工位的方位的需要。用户常常在自
z
己关心的平面建立自己的坐标系,以方便示教。
工业机器人技术基础及应用最新版教学课件3.3

①变量(VAR)
变量型数据在程序执行的过程中和停止时,会保持当前值。但如果程序指针被移动 到(main)主程序后,数值则会丢失(恢复到初始值)。
在定义数据时,可定义变量数据 的初始值。part的初始值为0;name 的初始值为“John”;finished的初始 值为FALSE。
在程序中执行变量型程序数据的 赋值,在指针复位后将恢复初始值。
工业机器人技术基础及应用
Industrial Robot Field Programming
课程概览
项目三 工业机器人编程操作
RAPID程序结构组成 工业机器人运动指令 程序数据的应用及介绍 工业机器人重要程序数据的建立 示教板零件编程 机器人常用指令及介绍
目录
CONTENTS
1.工业机器人程序数据定义 2.程序数据的存储类型 3.程序数据的应用举例
感谢您的观看!
程序数据的存储类型
②可变量(PERS)
可变量最大的特点是,无论程序指针如何,都会保持最后赋予的值。
名称为nCount的数值型程序数据。 名称为text的字符数据。
在机器人执行的RAPID程序中也可以对 可变量存储类型数据进行赋值的操作。 在程序执行以后,赋值的结果会一直保 持,直到对其重新赋值。
程序数据的存储类型
程序数据 bool byte clock
dionum extjoint intnum jointtarget loaddata mecunit
num orient
说明 布尔量 整数数据 0~255 计时数据 数字输入/输出信号 外轴位置数据 中断标志符 关节位置数据 负荷数据 机械装置数据 数值数据 姿态数据
第一部分 工业机器人程序数据定义
工业机器人程序数据定义
变量型数据在程序执行的过程中和停止时,会保持当前值。但如果程序指针被移动 到(main)主程序后,数值则会丢失(恢复到初始值)。
在定义数据时,可定义变量数据 的初始值。part的初始值为0;name 的初始值为“John”;finished的初始 值为FALSE。
在程序中执行变量型程序数据的 赋值,在指针复位后将恢复初始值。
工业机器人技术基础及应用
Industrial Robot Field Programming
课程概览
项目三 工业机器人编程操作
RAPID程序结构组成 工业机器人运动指令 程序数据的应用及介绍 工业机器人重要程序数据的建立 示教板零件编程 机器人常用指令及介绍
目录
CONTENTS
1.工业机器人程序数据定义 2.程序数据的存储类型 3.程序数据的应用举例
感谢您的观看!
程序数据的存储类型
②可变量(PERS)
可变量最大的特点是,无论程序指针如何,都会保持最后赋予的值。
名称为nCount的数值型程序数据。 名称为text的字符数据。
在机器人执行的RAPID程序中也可以对 可变量存储类型数据进行赋值的操作。 在程序执行以后,赋值的结果会一直保 持,直到对其重新赋值。
程序数据的存储类型
程序数据 bool byte clock
dionum extjoint intnum jointtarget loaddata mecunit
num orient
说明 布尔量 整数数据 0~255 计时数据 数字输入/输出信号 外轴位置数据 中断标志符 关节位置数据 负荷数据 机械装置数据 数值数据 姿态数据
第一部分 工业机器人程序数据定义
工业机器人程序数据定义
工业机器人技术基础(最全)最新精选PPT课件

第一关节 动力学方程
第二关节 动力学方
程
4 机器人工动业力机学 器人基础知识
动力学——动力学的部署 将经(正向,逆向?)动力学计算出的力矩, 以前馈的方式,加入到伺服的电流控制环路
4 机器人工动业力机学 器人基础知识
动力学 ——动力学控制器的评价指标 控制性能的好坏主要通过位置跟踪偏差,速度跟踪偏差以及
z
0
z
0
z
0
o
1
? ?
对刚体Q位姿的描述就是对固连于刚体Q`的坐标系O`X`Y`Z`位姿
的描述。
3 机器人运动 学
运动学:机器人运动学的研究对象是机器人各关节位置和机器人 末端位姿之间的关系
机器人运动学包含两个基本问题:
1末.已端知的机位器姿人;各关节的位置,求机器人 2各.已关知节机的器位人置末. 端的位姿,求机器人
关节坐标系下的坐标值均为机器人关节的绝对位 置,方便用户调试点位时观察机器人的绝对位置,避 免机器人出现极限位置或奇异位置
关节坐标系
1 机器人工坐业标机器人基础知识
系
直角坐标系:
直角坐标系,包括很多种,但我们常常狭隘 的将基座坐标系称为直角坐标系。
机器 人末 端
直角坐标系的Z轴即第一轴的Z轴,X轴
时间。
25mm
300m m
25mm
5 机器人工性业能机指器人基础知识
标
机器人性能指标 测量工具:Compugauge机器人性能测试系统,价格约80万人民币
(Dynalog ,美国公司,一直从事机器人性能研究)
位姿准确度和位姿重复性; 多方位位姿准确度变动; 距离准确度和距离重复性; 位置稳定时间和位置超调量; 互换性; 轨迹准确度和轨迹重复性; 拐角偏差; 轨迹速度特性; 最小定位时间; 静态柔顺性; 摆动偏差;
第二关节 动力学方
程
4 机器人工动业力机学 器人基础知识
动力学——动力学的部署 将经(正向,逆向?)动力学计算出的力矩, 以前馈的方式,加入到伺服的电流控制环路
4 机器人工动业力机学 器人基础知识
动力学 ——动力学控制器的评价指标 控制性能的好坏主要通过位置跟踪偏差,速度跟踪偏差以及
z
0
z
0
z
0
o
1
? ?
对刚体Q位姿的描述就是对固连于刚体Q`的坐标系O`X`Y`Z`位姿
的描述。
3 机器人运动 学
运动学:机器人运动学的研究对象是机器人各关节位置和机器人 末端位姿之间的关系
机器人运动学包含两个基本问题:
1末.已端知的机位器姿人;各关节的位置,求机器人 2各.已关知节机的器位人置末. 端的位姿,求机器人
关节坐标系下的坐标值均为机器人关节的绝对位 置,方便用户调试点位时观察机器人的绝对位置,避 免机器人出现极限位置或奇异位置
关节坐标系
1 机器人工坐业标机器人基础知识
系
直角坐标系:
直角坐标系,包括很多种,但我们常常狭隘 的将基座坐标系称为直角坐标系。
机器 人末 端
直角坐标系的Z轴即第一轴的Z轴,X轴
时间。
25mm
300m m
25mm
5 机器人工性业能机指器人基础知识
标
机器人性能指标 测量工具:Compugauge机器人性能测试系统,价格约80万人民币
(Dynalog ,美国公司,一直从事机器人性能研究)
位姿准确度和位姿重复性; 多方位位姿准确度变动; 距离准确度和距离重复性; 位置稳定时间和位置超调量; 互换性; 轨迹准确度和轨迹重复性; 拐角偏差; 轨迹速度特性; 最小定位时间; 静态柔顺性; 摆动偏差;
(完整版)工业机器人技术基础课件(最全)

p
py
b
1pz
c w
2 机器人位姿 变换
坐标轴方向的描述:
i、j、k分别是直角坐标系中x、y、Z坐标轴的单位向量。若用齐次坐标 来描述x、y、z轴的方向,则
X 1 0 0 0T Y 0 1 0 0T Z 0 0 1 0T
1.已知机器人各关节的位置,求机器人 末端的位姿; 2.已知机器人末端的位姿,求机器人 各关节的位置.
3学机器人工运业动机器人基础知识
为什么要研究运动学:机器人的运动无非有两种:PTP(点到点) 及CP(连续运动)
3学机器人工运业动机器人基础知识
运动学的实用方式:
位置反 馈
3 机器人运动
学
D-H参数:
关节 坐标
系
两个关节轴线沿公垂线的距离an,称为连杆长度;另一个是 垂直于an的平面内两个轴线的夹角αn,称为连杆扭角,这两 个参数为连杆的尺寸参数;是沿关节n轴线两个公垂线的距离,
刚体的姿态可由动坐标系的坐标轴方向来表示。 令n、o、a分别为X′、y ′、z ′坐标轴的单位 方向矢量,每个单位方向矢量在固定坐标系上的 分量为动坐标系各坐标轴的方向余弦,用齐次坐 标形式的(4×1)列阵分别表示为:
2 机器人位姿 变换
刚体的位姿可用下面(4×4)矩
阵来描述:
nx ox ax xo
a)4、6轴共线附件,即5轴角度0附件。 b)2、3、5轴关节坐标系原点接近共线,即 已经到达工作范围边界。
c) 5轴关节坐标系原点在Z轴正上方附近。
右图就处于a)的奇异状态,直角下示 教会报警。
直角坐标系
1 系
机器人工坐业标机器人坐标系
工业机器人技术及应用PPT课件

气流负压气吸附
返回 目录
14
13/52
5.2 搬运机器人的系统组成
所 1) 气吸附 主要是利用吸盘内压力和大气压之间压力差进行工作,依据压
处
力差分为真空吸盘吸附、气流负压气吸附、挤压排气负压气吸附等。
位
置
———
—
【
课
堂
认 知
利用吸盘变形和拉
】
杆移动改变吸盘内
外部压力完成工件
吸取和释放动作。
1 — 橡胶吸盘; 2 — 弹簧; 3 — 拉杆 挤压排气负压气吸附
置 ———
法进行工作的场合。常见手爪前端形状分 V 型爪、平面型爪、尖型爪 等。
—
1) V 型爪 常用于圆柱形工件,其加持稳固可靠,误差相对较小。
【
课
2) 平面型爪 多数用于加持方形工件(至少有两个平行面如方形包装盒等),厚
堂 认
板形或者短小棒料。
知 】
3) 尖型爪 常用于加持复杂场合小型工件,避免与周围障碍物相碰撞,也可加
真空压铸系统自动模温机、 自动三维伺服喷涂机械手、耐高温抗腐蚀的装件取件
机器人、镶嵌自动快速加热和均温装置、自动型芯冷却系统、自动余料去除及飞
边清理装置、大型精密压铸模具、输送带、冷却装置、在线智能检测系统、激光
打标机、智能转运小车、压铸生产信息化管理系统、嵌入式专用控制器、压铸专 返回
家系统等设备和系统。
置
———
—
【 课 堂 认 知 】
龙门式搬运机器人
悬臂式搬运机器人
摆臂式搬运机器人
侧壁式搬运机器人
搬运机器人分类
6/52
关节式搬运机器人
返回 目录
7
5.1 搬运机器人的分类及特点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测试
判断题: 1、 下列语句各pper; (1)p10 (2)v200 (3)z50 (4)tGripper
IO控制指令结构及使用
(3)PulseDO 含义:产生关于数字输出信号的脉冲 作用:用于产生关于数字信号输出信号的脉冲 例1 PulseDO do15; 输出信号do15产生脉冲长度为0.2 s的脉冲。 例2 PulseDO \PLength:=1.0, ignition; 信号ignition产生的脉冲长度为1.0 s
第四部分 例行程序调用指令结构及使用
例行程序调用指令结构及使用
(1)ProcCall 含义:调用新无返回值程序 使用:用于将程序执行转移至另一个无返回值程序。当充分执行本无返回值程序时,程序执行将继续过程调 用后的指令 。 例1 PROC main() ... pick1; Set do1; ... ENDPROC
工业机器人技术基础及应用
Industrial Robot Field Programming
课程概览
项目三 工业机器人编程操作
RAPID程序结构组成 工业机器人运动指令 程序数据的应用及介绍 工业机器人重要程序数据的建立 示教板零件编程 机器人常用指令及介绍
目录
CONTENTS
1. 赋值指令的结构及使用 2 .IO控制指令结构及使用 3. 等待指令结构及使用 4. 例行程序调用指令结构及使用
IO控制指令结构及使用
(2)Reset 含义:重置数字信号输出信号 使用:用于将数字信号输出信号的值重置为零 例 1: Reset do15; 将信号do15设置为0。 例 2: Reset weld; 将信号weld设置为0 。 注意:如果在Set ,Reset指令前有运动指令MoveJ、MoveL、MoveC、MoveAbsj的转弯区数据,必须使 用fine才可以准确地输出I/O型号的状态变化。 例3: moveL p10 v200,fine,tool1; Reset do15; moveL p20 v200,fine,tool1;
ENDPROC PROC Routine1()
Waitdi di1 ,1; Set do1; WaitTime 1; Reset do1; ENDPROC ENDMODULE
感谢您的观看!
等待指令结构及使用
(3)WaitDI含义:等待直至已设置数字输入信号 使用:(Wait Digital Input)用于等待,直至已设置数字信号输入 例1 WaitDI di4, 1; 仅在已设置di4输入后,继续程序执行。 例2 WaitDI grip_status, 0; 仅在已重置grip_status输入后,继续程序执行 。
第一部分 赋值指令的结构及使用
赋值指令的结构及使用
赋值指令“:=” : 分配一个数值 使用:用于向数据分配新值。该值可以是一个恒定值,亦可以是一个算术表达式, 例如,reg1+5*reg3。 例1 reg1 := 5; 将reg1指定为值5。 例2 reg1 := reg2 - reg3; 将reg1的值指定为reg2-reg3的计算结果。 例3 counter := counter + 1; 将counter增加一 ;
第二部分 IO控制指令结构及使用
IO控制指令结构及使用
(1)Set 含义: 设置数字信号输出信号 使用: 用于将数字信号输出( Digital Output )信号的值设置为1。 例1 Set do15; 将信号do15设置为1。 例2 Set weldon; 将信号weldon设置为1。 注意:必须建立do1信号,否则无法进行置位,具体建立方法见信号的建立内容。
等待指令结构及使用
(4)WaitDO含义:等待直至已设置数字输出信号 使用: WaitDO(Wait Digital Output)用于等待,直至已设置数字信号输出。
例1 WaitDO do4, 1; 仅在已设置do4输出后,继续程序执行。 例2 WaitDO grip_status, 0; 仅在已重置grip_status输出后,继续程序执行。
等待指令结构及使用
(2)WaitUntil 含义: 等待直至满足条件 使用:直至满足逻辑条件; WaitUntil信号判断指令可用于布尔量、数字量和I/O信号值的判 断,如果条件到达指令中的设定值,程序继续往下执行,否则就一直等待,除非设定了最大 等待时间。 例 1: WaitUntil di1 = 1; WaitUntil do1 = 0; WaitUntil bPalletFull= TRUE; WaitUntil nCount = 8; 仅在已设置满足后,继续程序执行
PROC pick() TPWrite "ERROR"; ENDPROC 调用pick1无返回值程序。当该无返回值程序就绪时,程序执行返回过程调用后的指令Set do1。
进行程序综合举例,对set,reset, WaitDI及waittime等指令应用下:
MODULE MainModule PROC main() Routine1;
第三部分 等待指令结构及使用
等待指令结构及使用
(1)WaitTime含义: 等待给定的时间 使用: WaitTime 用于等待给定的时间。该指令可用于等待,直至机械臂和外轴静止 。 单位:s。 例 1: WaitTime 0.5; 程序执行等待0.5秒 例 2: WaitTime 50; 程序执行等待50秒