图形变换练习题(二)

合集下载

第三单元图形的变换常考题型练习

第三单元图形的变换常考题型练习
12、平移:要说清楚向什么 左 方向平移多少格。
上 右 B A D O C 逆时针
旋转:要说清楚绕什么点 下
顺时针
什么方向
旋转多少度。
13、看上图填一填。
(1)图形 A绕点O(逆时针)方向旋转(90 )度得到图形B。
(2)图形 B绕点O逆时针方向旋转90度得到图形( C )。 顺时针 (3)图形 B绕点O( )旋转( 180)度得到图形D。 逆时针 (4)图形 A绕点O( 顺时针 )旋转( 90 )度得到图形D。
3 ( 40% 5 2 5
)填百分数

二成 )填成数
( 50% )填百分数 ( 7折 )填折扣
10、找规律填数:20% 0.3
( 六成 )填成数
11、找规律填数:100% (
( 70% )填百分数
0.9 )填小数
4 5
( 六成 )填成数
第三单元 图形的变换
三、考点3:起跑线
判断:
2、在短跑比赛中,运动员所在的起跑线的位置不一样,
(1)以直线MN为对称轴作图形A的轴对称图形,得到图形B。
(2)将图形B绕点O顺时针旋转90°,得到图形C。 (3)将图形C向右平移6格,得到图形D。 A
M
C
O
D
N
B
第三单元 图形的变换
二、考点2:比赛场次、找规律
1、有8人参加乒乓球比赛,如果每2个人之间比赛一场, 一共要赛( 28 )场。 2、某学校有7个班级参加篮球赛,如果每两个班级之间 都进行一场比赛,一共要赛( 21 )场。 3、一次体育比赛中,有10名运动员,如果每两个运动员 之间都要握一次手,一共握了(
①钟面上分钟和时针的转动 ③汽车车轮的滚动 ⑤滑滑梯 ②电梯的运动 ④国旗的升降 ⑥大风车

最新版2019七年级数学下册章节测试题-《第二章图形的变换》考试题(含答案)

最新版2019七年级数学下册章节测试题-《第二章图形的变换》考试题(含答案)

2019年七年级下册数学单元测试题第二章图形的变换一、选择题1.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换. 在自然界和日常生活中,大量地存在这种图形变换(如图(1)). 结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图(2))的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行答案:B2.如图,将四边形AEFG变换到四边形ABCD,其中E,G分别是AB,AD的中点,下列叙述不正确的是()A.这种变换是相似变换B.对应边扩大到原来的2倍C.各对应角度数不变D.面积扩大到原来的2倍答案:D3.如图△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,下列说法不正确的是()A.AP=A′PB.MN垂直平分AA′,CC′C.这两个三角形面积相等D.直线AB,A′B′的交点不一定在MN上解析:D4.下列图案是几种名车的标志,在这几个图案中,是轴对称图形的有()A.1个B.2个C.3个D.4个答案:C5.下列图形不一定是轴对称图形的是()A.等边三角形B.长方形C.等腰三角形D答案:D6.下面给出的是一些产品的商标图案,从几何图形的角度看(不考虑文字和字母),既是轴对称图形又能旋转l80°后与原图重合的是()答案:C7.下列图形中,旋转60°后可以和原图形重合的是()A.正六边形B.正五边形C.正方形D.正三角形答案:A8.下列对于旋转的判断中,正确的是()A.图形旋转时,图形的形状发生了改变B.图形旋转时,图形的大小发生了改变C.图形旋转时,图形的位置发生了改变D.图形旋转时,图形的形状、大小和位置都发生了改变答案:C9.把△ABC先向左平移1 cm,再向右平移2 cm,再向左平移3 cm。

再向右平移4 cm,……,经这样移动l00次后,最后△ABC所停留的位置是()A.△ABC左边50 cm B.△ABC右边50 cm C.△ABC左边l m D.△ABC右边l m 答案:B10.如图所示,矩形ABCD沿着AE折叠,使D点落在BC边上的F点处,若∠BAF=50°,则∠EAF的度数为()A.50°B.45°C.40°D.20°答案:D11.小宇同学在一次手工制作活动中,先把一张矩形纸片按图①的方式进行折叠,使折痕的左侧部分比右侧部分短l cm;展开后按图②的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长lcm,再展开后,在纸上形成的两条折痕之问的距离是()A.0.5 cm B.1 cm C.1.5 cm D.2 cm答案:B二、填空题12.用有45°直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角 为.解析:22°13.如图,已知△ABC中的∠C=50°,则放大镜下△ABC中∠C=_______.解析:50°14.如图,∠AOB=90°,它绕点O旋转30°后得到∠COD,•则∠AOC=•_____,•∠BOC=_____,∠COD=______.解析:30°,60°,90°15.下图是一些国家的国旗,其中是轴对称图形的有__________个.解析:316.观察图形:其中是轴对称图形的是 (填序号) .解析:①②③④⑥17.已知△CDE是△CAB经相似变换后得到的像,且∠A=30°,∠CDE=30°,AB=4,DE=2,AC=3,则CD= .解析:3218.下列各图中,从左到右的变换分别是什么变换?解析:轴对称变换,相似变换,旋转变换,平移变换19.判断下列各组图形分别是哪种变换?解析:轴对称,平移,旋转,相似20.直角三角形作相似变换,各条边放大到原来的3倍,则放大后所得图形面积是原图形面积的倍.解析:921.等边三角形ABC绕着它的中心,至少旋转度才能与其本身重合.解析:12022.点A和点A′关于直线l成轴对称,则直线l和线段AA′的位置关系是:.解析:垂直且平分三、解答题23.如图所示,将△ABC经相似变换、边长扩大一倍得到像△A′B′C′.(1)请你画出像△A′B′C′.(2)猜测△A′B′C′的面积是△ABC的面积的多少倍.解析:(1)图略;(2)S 4A B C ABC S S '''∆∆=24.如图,在小正方形组成的“L”形图中,请你用三种方法分别在图中添画一个小正方形使它成为轴对称图形.解析:图略25.如图所示的轴对称图形的对称轴都不止一条,请把它们都画出来.解析:略26.已知,如图□ABCD .(1)画出□A 1B 1C 1D 1,使□A 1B 1C 1D 1与□ABCD 关于直线MN 对称;(2)画出□A 2B 2C 2D 2,使□A 2B 2C 2D 2与□A 1B 1C 1D 1关于直线EF 对称.解析:略27.画出图中图形的对称轴,并给予必要的作图说明.解析:略28.如图所示,在一块长为20 m,宽为14 m的草地上有一条宽为2 m的曲折的小路,你能运用所学的知识求出这块草地的绿地面积吗?解析:216 m229.你看到过如图所示的图案吗? 这个图案可以由什么基本图形经怎样的平移得到?解析:可以由“V”平移得到30.电子跳蚤在数轴上的一点A,第一次从点A0向左平移1个单位到达点A l,第二次由点A l向右平移2个单位到达点A2,第三次由点A2向左平移3个单位到达点A3,第四次由点A3向右平移4个单位到达点A4,….按以上规律平移了l00次,电子跳蚤处于数轴上的点A100所表示的数恰是2058,则电子跳蚤的初始位置点A0所表示的数是多少?解析:200831.如图所示,准备一张正方形的纸.沿如图①所示的虚线对折两次,得到一个小正方形;再沿图②的虚线对折;在得到的直角三角形上画出如图③所示的图形,再将阴影部分剪下来;打开你的作品.是一个旋转图形吗?旋转多少度后能与自身重合?你还能画出更有创意的作品吗?解析:它是一个旋转图形,旋转90°后与自身重合32.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.解析:(1)16;(2)图略33.数学兴趣小组的同学想利用树影测树高,在阳光下他们测得一根长为1 m的竹竿的影长为0.9 m.此刻测量树影,发现树的影子不全落在地上,有一部分影子落在墙壁上,如图所示,同学们测得地面上的影子长为3.6 m,墙壁上的影子长为0.9 m.又知以树和地面上的树影为边的三角形与同一时刻以竹竿和地面上的影子为边的三角形是一个相似变换,求这棵树的实际高度.解析:4.9m34.如图所示,在方格纸中,有两个形状、大小完全相同的图形,请指出如何运用轴对称、平移、旋转这三种运动,将一个图形重合到另一个图形上.解析:把△ABC先绕点A逆时针旋转90°,再向上平移2个单位,然后以D点所在的竖格子线为对称轴进行轴对称变换35.如图所示是视力表中的一部分.以第一个图形为基本图形.请分析后三个图形可以根据基本图形作怎样的变换得到.解析:略36.如图所示,有三个正方形的花坛,准备把每个花坛都分成形状、大小相同的四块,种不同的花草.现向大家征集设计图案,图①是某同学设计的图案,请你在图②、③中再设计两种不同的图案.解析:略37.请你用正方形、三角形、•圆设计一个有具体形象的轴对称图形(例如下图的脸谱),并给你的作品取一个适当的名字.解析:略38.如图,请用三种方法,在已知图案上再添上一个小正方形后,使其成为轴对称图形,并画出对称轴.解析:略39.如图,直线a是一个轴对称图形的对称轴,画出这个轴对称图形的另一半,并说明这个轴对称图形是一个什么图形,它一共有几条对称轴.(不写作法,保留作.图痕迹.)解析:是一个正五角星,它共有五条对称轴. 如图所示:40.如图所示,△ABC是等腰直角三角形,点D在BC上,将△ABD按逆时针旋转至△AFE的位置,问:(1)此旋转的旋转中心是哪一个点?(2)此旋转的角度为多少度?(3)若点M为AB的中点,则旋转后点M转到了什么位置?解析:(1)点A;(2)45°;(3)AF的中点。

小学五年级数学下册 1.图形的变换(第2课时)旋转平移练习题(含答案) 新人教版

小学五年级数学下册 1.图形的变换(第2课时)旋转平移练习题(含答案) 新人教版

图形的变换(第2课时)旋转平移
1. 下列图形中,由通过平移得到的是()
A.
B.
C.
2.拉开抽屉的运动是_____,螺旋桨的运动是_____.
A.平移 B.旋转 C.既是平移又是旋转.
3.火车在笔直的轨道上行驶,是()
A.旋转
B.平移
C.轴对称
4. 看图填空.
(1)□由位置A向_____平移_____格到位置B.
(2)由位置C向_____平移_____格到位置
D.
5. 是平移的在括号里画△,是旋转的在括号里画○.
拨算盘珠是_____,拧水龙头是_____.
6. 月球的运行方式是()
A.平移
B.旋转
C.平移加旋转
7.图形经过旋转和平移后的图形的形状_____,位置_____.
8. 下列运动形式不是平移的是()
A.传动带上的化肥
B.电梯上人的升降
C.海关钟楼指针的运动
D.小火车在平直的铁轨上运动
9. 电梯上下运行,属于_____现象,车轮的转动属于_____现象.
10. 电风扇所做的运动属于()
A.平移
B.旋转
C.平移和旋转
D.无法确定
答案
1.C
2.A;B
3.B
4.(1)右 5 (2)下 4
5. △○
6.C
7.不变变动
8.C
9.平移旋转
10.B。

2019年七年级数学下册单元测试题-第二章《图形的变换》完整题(含答案)

2019年七年级数学下册单元测试题-第二章《图形的变换》完整题(含答案)

2019年七年级下册数学单元测试题第二章图形的变换一、选择题1.在5×5的方格纸中,将图(1)中的图形 N平移后的位置如图(2)所示,那么正确的平移方法是()A.先向下移动1 格,再向左移动1格B.先向下移动1 格,再向左移动2格C.先向下移动2格,再向左移动 1格D.先向下移动2格,再向左移动 2格答案:C2.观察下面图案,在 A.B、C、D四幅图案中,能通过图1平移得到的是()图1 A. B. C. D.答案:C3.如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A.30°B.50°B.90°D.100°答案:D4.将一圆形纸片对折后再对折,得到右图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()答案:C5.下列图案是几种名车的标志,在这几个图案中,是轴对称图形的有( ) A .1个B .2个C .3个D .4个答案:C6.在下图右侧的四个三角形中不能由△ABC 经过旋转或平移得到的是 ( )答案:B7.如图,用放大镜将图形放大,这属于( ) A .相似变换B .平移变换C .对称变换D .旋转变换答案:A8.下列现象属于旋转的是( ) A .吊机起吊物体的运动 B .汽车的行驶 C .小树在风中“东倒西歪”D .镜子中的人像答案:C9.如图所示,AC 与BD 互相平分于点0,要使△AOB 与△C0D 重合,则△AOB 至少绕点O 旋转( ) A .60°B .30°C .180°D .不确定答案:C10.如图,四边形ABCD 是正方形,E 点在边DC 上,F 点在线段CB的延长线上,且∠ABCDEAF=90°,则△ADE变化到△ABF是通过下列的()A.绕A点顺时针旋转l80°B.绕A点顺时针旋转90°C.绕A点逆时针旋转90°D.绕A点逆时针旋转l80°答案:B11.如图所示,在图①中,Rt△OAB绕其直角顶点0每次旋转90°,旋转3次得到右边的图形,在图②中,四边形OABC绕0点每次旋转120°,旋转2次得到右边的图形.以下四个图形中,不能通过上述方式得到的是()答案:D12.将某图形先向左平移3个单位,再向右平移4个单位,则相当于()A.原图形向左平移l个单位B.把原图形向左平移7个单位C.把原图形向右平移l个单位D.把原图形向右平移7个单位答案:C13.如图所示,矩形ABCD沿着AE折叠,使D点落在BC边上的F点处,若∠BAF=50°,则∠EAF的度数为()A.50°B.45°C.40°D.20°答案:D14.将一个正方形纸片依次按图①、图②方式对折,然后沿图③中的虚线裁剪,最后将图④的纸再展开铺平,所看到的图案是()答案:D二、填空题15.如图,线段A′B°是线段AB经一次旋转变换得到的,旋转的角度是 .解析:130°16.请在下面这一组图形符号中找出它们所蕴含的规律,后在横线上的空白处填上恰当的图形.解析:17.在如图所示的方格纸中,已知 AD由△ABC经相似变换所得的像,那么ADEF的每条边都扩大到原来的倍解析:218.△ABC经平移变换后,点A平移了5 cm,则点B平移了 cm.解析:519.全等图形________是相似图形,但相似图形________是全等图形(填“一定”或“不一定”).解析:一定、不一定20.如图,△ABO按逆时针旋转变换到△CDO,在这个变换中,旋转中心是_____,•BO 变换到了_______,∠C是由______旋转变换得到的.解析:点O,DO, ∠A21.解析:王(轴对称图形都可以)22.如图,∠DEF 是∠ABC 经过平移得到的,若∠ABC=30°,则∠DEF= .解析:30°23.如图,是某煤气公司的商标图案,外层可以视为利用图形的 设计而成的,内层可以视为利用图形的 设计而成的.解析:旋转变换,轴对称变换24.从l2:40到13:10,钟表的分针转动的角度是 ,时针转动的角度是 . 解析:180°,l5°25.如图所示,已知DE ∥BC ,△ADE 是△ABC 经相似变换后的像,若图形缩小12,而BC=4,∠B=50°,则DE= ,∠D= .解析:2,50°26.等边三角形ABC 绕着它的中心,至少旋转 度才能与其本身重合. 解析:12027.如图,由三角形ABC 平移得到的三角形有 个.解析:5三、解答题28.如图,请你用三种方法把左边的小正方形分别平移到右边的三个图形中,使它成为轴对称图形.解析:如图:29.如图请用三种方法,在已知图案上再添上一个小正方形后,使其成为轴对称图形,并画出对称轴.解析:略.30.如图所示,有一条小船,(1)若把小船平移,使点A 平移到点B ,请你在图中画出平移后的小船;方方方(2)若该小船先从点A 航行到达岸边l 的点P 处补给后再航行到点B ,但要求航程最短,试在图中画出点P 的位置.解析:略31.如图所示的四个图形是不是轴对称图形(不考虑颜色)?如果是,请画出它的对称轴.这四个图形能不能经过旋转与自身重合?如果能,在图中标出旋转中心,并说明分别需要旋转多少度?解析:轴对称图形:①③④,画图略;①②③④都是能经过旋转与自身重合,旋转中心都是中间一点,旋转角度分别为90°,60°,90°,72° 32.如图所示,△ABC 经相似变换后所得的像是△DEF . (1)线段AB 与DE ,AC 与DF ,BC 与EF 的大小关系如何? (2)∠A 与∠D ,∠B8与∠E ,∠C 与∠F 的大小关系如何? (3)变换后所得的图形周长是原图形周长的多少倍?解析:(1)AB=12DE ,AC=12DF ,BC=12EF ;(2)∠A=∠D ,∠B=∠E ,∠C=∠F ;(3)2倍 33.如图昕示.把图形数字“4”上的点A 平移到了点B ,请你作出平移后的图形数字4.解析:图略34.如图所示,△ABC沿射线OP方向平移一定的距离后成为△DEF,找出图中存在的平行且相等的线段和全等三角形.解析:AD,BE,CF互相平行且相等;AB与DE,BC与EF,AC与DF平行且相等;△ABC≌△DEF35.如图,将图中左上角的小旗先向右移动五格,再向下移动四格,画出移动后的像.解析:图略36.如图所示,草原上两个居民点A,B在河流l的同旁,一汽车从A出发到B,途中需到河边加水,汽车在哪一点加水可使行驶的路程最短?在图中画出该点.解析:作点A关于直线l的对称点A′,连结A′B交直线l于点P,则点P即是要找的那一点37.画出图中图形的对称轴,并给予必要的作图说明.解析:略38.如图是蝴蝶的部分示意图,请你在方格中画出另一半.解析:图略39.请你用正方形、三角形、圆设计一个有具体形象的轴对称图形并给你的作品取一个适当的名字.解析:略40.如图所示的轴对称图形的对称轴都不止一条,请把它们都画出来.解析:略。

2019年七年级数学下册单元测试题-第二章《图形的变换》测试版题(含标准答案)

2019年七年级数学下册单元测试题-第二章《图形的变换》测试版题(含标准答案)

2019年七年级下册数学单元测试题第二章图形的变换一、选择题1.如图所示的几张图中,相似图形是()A.①和②B.①和③C.①和④D.②和③答案:C2.当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知长方形ABCD,我们按如下步骤操作可以得到一个特定的角:(1)以点A所在直线为折痕,折叠纸片,使点B落在AD上,折痕与BC交于E;(2)将纸片展平后,再一次折叠纸片,以E所在直线为折痕,使点A落在BC上,折痕EF交AD于F.则∠AFE的度数为()A.60︒B.67.5︒C.72︒D.75︒解析:B3.如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子,我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行,跳行一次称为一步.已知点A 为己方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最小步数为()A.2步B.3步C.4步D.5步答案:B4.如图所示,将一张矩形的纸对折,然后用针尖在上面扎出“S”,再把它铺平,铺开后图形是()答案:A5.如图所示,△ABC平移后得到△DEF,若∠BNF=100°,则∠DEF的度数是() A.120°B.100°C.80°D.50°答案:C6.平移前有两条直线互相垂直,那么这两条直线平移后()A.互相平行B.互相垂直C.相交但不垂直D.无法确定答案:B7.如图所示,不能通过基本图形平移得到的是()答案:D8.下列生活现象中,属于相似变换的是()A.抽屉的拉开B.汽车刮雨器的运动C.荡秋千D.投影片的文字经投影变换到屏幕答案:D9.按照图①的排列规律,在d内应选②中的()答案:B10.下列各选项中,右边图形与左边图形成轴对称的图形是()A. B.C.D.答案:C11.如图,每个正方形均由边长为l的小正方形组成,则下列图形中的三角形(阴影部分)是△ABC经相似变换后得到的像是()答案:A12.下列基本图形中,经过平移、旋转或轴对称变换后,不能得到最右边图的是()答案:C13.如图,把边长为2的正方形的局部进行图①~图④的变换,拼成图⑤,那么图⑤的面积是()A.18 B.16 C.12 D.8答案:B14.下列现象中,不属于旋转变换的是()A.钟摆的运动 B.行驶中汽车车轮 C.方向盘的转动 D.电梯的升降运动答案:D15.如图,将四边形AEFG变换到四边形ABCD,其中E,G分别是AB,AD的中点,下列叙述不正确的是()A.这种变换是相似变换B.对应边扩大到原来的2倍C.各对应角度数不变D.面积扩大到原来的2倍答案:D16.从图形的几何性质考虑,下列图形中,有一个与其他三个不同,它是()A.B. C.D.答案:C17.如图所示的一些交通标志中,是轴对称图形的有().A. 1个B. 2个C.3个D.4个答案:B18.如图所示,绕旋转中心旋转60°后能与自身重合的是()答案:A二、填空题19.如图,把五边形ABCDO变换到五边形CDEFO,应用了哪种图形变换?请完整地叙述这个变换:解析:应用了旋转变换,五边形 CDBFO是由五边形ABCDO绕点 0接顺时针方向旋转90°得到的.20.如图,△ABO按逆时针旋转变换到△CDO,在这个变换中,旋转中心是_____,•BO 变换到了_______,∠C是由______旋转变换得到的.解析:点O ,DO, ∠A21.试找出如图所示的每个正多边形的对称轴的条数,并填下表格中.根据上表,请就一个正n 边形对称轴的条数作一猜想_________(用n 表示). 解析:3,4,5,6,7,8,n 条22.解析:王(轴对称图形都可以)23.如图,△A ′B ′C ′是△ABC 经旋转变换后的像, (1)旋转中心是 ,旋转角度是 ; (2)图中相等的线段:OA= ,OB= ,OC= ,AB= ,BC= ,CA= . (3)图中相等的角:∠CAB= ,∠BCA= ,∠AOA ′= = .解析: (3)∠C ′A ′B ′,∠B ′C ′A ′,∠BOB ′,∠COC ′ (1)0,60°;(2)OA ′,OB ′,OC ′,A ′B ′,B ′C ′,C ′A ′;24.如图所示,△DEF 是△ABC 绕点O 旋转后得到的,则点C 的对应点是点 ,线段AB 的对应线段是线段 ,∠B 的对应角是 .解析:F ,DE ,∠E25.如图所示的四个两两相联的等圆.右边的三个圆可以看做是左边的圆经过 得到的.解析:平移26.从汽车的后视镜中看见某车车牌的后5位号码是,该车牌的后5位号码实际是.解析:BA62927.点A和点A′关于直线l成轴对称,则直线l和线段AA′的位置关系是:.解析:垂直且平分28.请写出是轴对称图形的英文字母(至少写出五个) .解析:A,C,E,H,K等三、解答题29.请你用正方形、三角形、•圆设计一个有具体形象的轴对称图形(例如下图的脸谱),并给你的作品取一个适当的名字.解析:略30.画出如图所示的轴对称图形的对称轴,并回答下列问题:(1)连结BD,则对称轴和线段BD有怎样的位置关系?(2)原图形中有哪些相等的角?哪些全等的三角形?(3)分别作出图形中点F、G的对称点.解析:如图所示,连结BD,作线段BD的垂直平分线m,直线m•就是所求的对称轴.(1)对称轴垂直平分线段BD;(2)原图形中相等的角有:∠B=∠D,∠BAC=∠DEC,∠BCA=∠DCE,∠CAE=∠CEA ,∠BCE=∠DCA ,∠BAE=∠DEA .全等的三角形有:△ABC 和△EDC ; (3)点F 、G 的对称点分别是F ′、G ′,如图所示.31. 将下列各图形的变换与变换的名称用线连起来:解析:略.32.如图所示,在方格纸中如何通过平移或旋转这两种变换,由图形A 得到图形B ,再由图形B 得到图形C?(对于平移变换要求回答出平移的方向和平移的距离;对于旋转变换要求回答出旋转中心、旋转方向和旋转角度)解析:将图形A 向上平移4个单位长度,得到图形B ;将图形B 以点P 1为旋转中心顺时针旋转90°,再向右平移4个单位长度得到图形C 或将图形B 向右平移4个单位长度,再以P 2为旋转中心顺时针旋转90°得到图形C 33.如图,在网格中有一个四边形图案ABCO .平移变换相似变换旋转变换轴对称变换(1)请你画出此图案绕点O顺时方向旋转90°,l80°,270°的图案,你会得到一个美丽的图案,千万不要将阴影位置涂错;(2)若网格中每个小正方形的边长为l,旋转后点A的对应点依次为A1,A2,A3,求四边形AA1A2A3的面积;解析:(1)图略;(2)3434.如图所示,图①和图②都是轴对称图形,依照①和②,把③,④也画成轴对称图形.解析:略35.如图所示,在方格纸上作下列相似变换:(1)把图①中三角形的每条边放大到原来的3倍;(2)把图②中H的每条边缩小到原来的12.解析:略36.图②、③、④、⑤分别由图①变换而成的,请你分析它们的形成过程.解析:由图①经过连续四次绕圆心顺时针旋转90°得到37.如图,将△ABC先向上平移5格得到△A′B′C′,再以直线MN为对称轴,将△A′B′C′作轴对称变换,得到△A″B″C″,作出△A′B′C′和△A″B″C″.解析:略38.如图所示是在镜子中看到的某时刻时钟的情况,请问此时实际是几点钟?解析:3:2539.如图所示,△ABC与△DEF是关于直线l的轴对称图形,请说出它们的对应线段和对应角.解析:AC和DE,AB和DF,BC和FE;∠A和∠D,∠C和∠E,∠B和∠F40.如图所示,图①,图②分别是6×6正方形网格上两个轴对称图形(阴影部分),其面积分别为S A,S B(网格中最小的正方形面积为l平方单位).请观察图形并解答下列问题:(1)填空:S A:S B的值是.(2)请你在图③的网格上画出一个面积为8个平方单位的轴对称图形.解析:(1)9:11;(2)略。

专题04图形的变换(第02期)2016年中考数学试题(无答案)

专题04图形的变换(第02期)2016年中考数学试题(无答案)

专题04 图形的变换一、选择题1.(2016上海市)如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是( )A .2(1)2y x =-+B .2(1)2y x =++C .21y x =+D .23y x =+2.(2016北京市)如图是某个几何体的三视图,该几何体是( )A .圆锥B .三棱锥C .圆柱D .三棱柱3.(2016北京市)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .4.(2016吉林省长春市)如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是( )A .B .C .D .5.(2016吉林省长春市)如图,在Rt △ABC 中,∠BAC =90°,将Rt △ABC 绕点C 按逆时针方向旋转48°得到Rt △A ′B ′C ′,点A 在边B ′C 上,则∠B ′的大小为( )A.42°B.48°C.52°D.58°6.(2016四川省凉山州)如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是()A.6B.4C.3D.27.(2016四川省凉山州)在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是()A.2个B.3个C.4个D.5个8.(2016四川省宜宾市)如图,立体图形的俯视图是()A.B.C.D.9.(2016四川省宜宾市)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A B.C.3D.10.(2016四川省巴中市)在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()A.B.C.D.11.(2016四川省巴中市)如图是一个由4个相同的长方体组成的立体图形,它的主视图是()A.B.C.D.12.(2016四川省广安市)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.13.(2016四川省成都市)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.14.(2016四川省成都市)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)15.(2016四川省攀枝花市)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.16.(2016四川省泸州市)下列图形中不是轴对称图形的是()A.B.C.D.17.(2016四川省泸州市)下列立体图形中,主视图是三角形的是()A.B.C.D.18.(2016四川省自贡市)如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是()A.B.C.D.19.(2016四川省资阳市)如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB EF=2,∠H=120°,则DN的长为()A B C D.20.(2016山东省临沂市)如图,一个空心圆柱体,其主视图正确的是()A.B.C.D.21.(2016山东省临沂市)如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是()A.0B.1C.2D.322.(2016山东省德州市)图中三视图对应的正三棱柱是()A .B .C .D .23.(2016山东省德州市)在矩形ABCD 中,AD =2AB =4,E 是AD 的中点,一块足够大的三角板的直角顶点与点E 重合,将三角板绕点E 旋转,三角板的两直角边分别交AB ,BC(或它们的延长线)于点M ,N ,设∠AEM =α(0°<α<90°),给出下列四个结论:①AM =CN ;②∠AME =∠BNE ;③BN ﹣AM =2;④S △EMN =22cos. 上述结论中正确的个数是( )A .1B .2C .3D .424.(2016山东省菏泽市)以下微信图标不是轴对称图形的是( )A .B .C .D .25.(2016山东省菏泽市)如图所示,该几何体的俯视图是( )A .B .C .D .26.(2016山东省菏泽市)如图,A ,B 的坐标为(2,0),(0,1),若将线段AB 平移至A 1B 1,则a +b 的值为( )A.2B.3C.4D.527.(2016江苏省宿迁市)下列四个几何体中,左视图为圆的几何体是()A.B.C.D.28.(2016江苏省宿迁市)如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2B C D.129.(2016江苏省无锡市)下列图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.30.(2016江苏省无锡市)如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A B.C.3D.31.(2016江苏省淮安市)下列图形是中心对称图形的是()A.B.C.D.32.(2016江西省)有两个完全相同的正方体,按下面如图方式摆放,其主视图是()A.B.C.D.33.(2016湖北省黄冈市)如图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是()A.B.C.D.34.(2016湖南省邵阳市)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.35.(2016甘肃省兰州市)如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A.B.C.D.36.(2016甘肃省兰州市)如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了()A.πcm B.2πcm C.3πcm D.5πcm37.(2016甘肃省白银市)下列图形中,是中心对称图形的是()A.B.C.D.38.(2016福建省福州市)如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A .B .C .D .39.(2016陕西省)如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是( )A .B .C .D .二、填空题 40.(2016上海市)如图,矩形ABCD 中,BC =2,将矩形ABCD 绕点D 顺时针旋转90°,点A 、C 分别落在点A ′、C ′处.如果点A ′、C ′、B 在同一条直线上,那么tan ∠ABA ′的值为 .41.(2016北京市)如图,小军、小珠之间的距离为2.7m ,他们在同一盏路灯下的影长分别为1.3m ,1.5m ,已知小军、小珠的身高分别为1.8m ,1.5m ,则路灯的高为 m .42.(2016四川省凉山州)将抛物线2y x =-先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为 .43.(2016四川省广安市)将点A (1,﹣3)沿x 轴向左平移3个单位长度,再沿y 轴向上平移5个单位长度后得到的点A ′的坐标为 .44.(2016四川省成都市)如图,面积为6的平行四边形纸片ABCD 中,AB =3,∠BAD =45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.45.(2016山东省临沂市)如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为.46.(2016山东省德州市)如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是.47.(2016山东省菏泽市)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m= .48.(2016江苏省淮安市)点A(3,﹣2)关于x轴对称的点的坐标是.49.(2016江苏省淮安市)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC 上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.50.(2016江西省)如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为.51.(2016湖北省黄冈市)如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP= .52.(2016湖南省邵阳市)将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是.53.(2016甘肃省白银市)将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC= cm.三、解答题54.(2016四川省凉山州)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.55.(2016四川省巴中市)如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.(1)画出将△ABC向右平移2个单位得到△A1B1C1;(2)画出将△ABC绕点O顺时针方向旋转90°得到的△A2B2C2;(3)求△A1B1C1与△A2B2C2重合部分的面积.56.(2016四川省广安市)在数学活动课上,老师要求学生在5×5的正方形ABCD网格中(小正方形的边长为1)画直角三角形,要求三个顶点都在格点上,而且三边与AB或AD都不平行.画四种图形,并直接写出其周长(所画图象相似的只算一种).57.(2016四川省成都市)如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH 上,且DH=CH,连结BD.(1)求证:B D=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.58.(2016四川省攀枝花市)如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B(0,3),C(0,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.59.(2016四川省资阳市)在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE 的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:A C=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.60.(2016四川省资阳市)已知抛物线与x轴交于A(6,0)、B(54,0)两点,与y轴交于点C,过抛物线上点M(1,3)作MN⊥x轴于点N,连接OM.(1)求此抛物线的解析式;(2)如图1,将△OMN沿x轴向右平移t个单位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′与直线AC 分别交于点E 、F .①当点F 为M ′O ′的中点时,求t 的值;②如图2,若直线M ′N ′与抛物线相交于点G ,过点G 作GH ∥M ′O ′交AC 于点H ,试确定线段EH 是否存在最大值?若存在,求出它的最大值及此时t 的值;若不存在,请说明理由.61.(2016山东省菏泽市)在平面直角坐标系xOy 中,抛物线22y ax bx =++过B (﹣2,6),C (2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D ,求△BCD 的面积;(3)若直线12y x =-向上平移b 个单位所得的直线与抛物线段BDC (包括端点B 、C )部分有两个交点,求b 的取值范围.62.(2016江苏省宿迁市)已知△ABC 是等腰直角三角形,AC =BC =2,D 是边AB 上一动点(A 、B 两点除外),将△CAD 绕点C 按逆时针方向旋转角α得到△CEF ,其中点E 是点A 的对应点,点F 是点D 的对应点.(1)如图1,当α=90°时,G 是边AB 上一点,且BG =AD ,连接GF .求证:GF ∥AC ;(2)如图2,当90°≤α≤180°时,AE 与DF 相交于点M .①当点M 与点C 、D 不重合时,连接CM ,求∠CMD 的度数;②设D 为边AB 的中点,当α从90°变化到180°时,求点M 运动的路径长.63.(2016江苏省宿迁市)如图,在平面直角坐标系xOy 中,将二次函数21y x =-的图象M 沿x 轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N .(1)求N 的函数表达式;(2)设点P (m ,n )是以点C (1,4)为圆心、1为半径的圆上一动点,二次函数的图象M 与x 轴相交于两点A 、B ,求22PA PB +的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M 与N 所围成封闭图形内(包括边界)整点的个数.64.(2016江西省)(1)解方程组:21x y x y y -=⎧⎨-=+⎩; (2)如图,Rt △ABC 中,∠ACB =90°,将Rt △ABC 向下翻折,使点A 与点C 重合,折痕为DE .求证:D E ∥BC .65.(2016江西省)如图,将正n 边形绕点A 顺时针旋转60°后,发现旋转前后两图形有另一交点O ,连接AO ,我们称AO 为“叠弦”;再将“叠弦”AO 所在的直线绕点A 逆时针旋转60°后,交旋转前的图形于点P ,连接PO ,我们称∠OAB 为“叠弦角”,△AOP 为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;(2)如图2,求证:∠OAB=∠OAE′.【归纳猜想】(3)图1、图2中的“叠弦角”的度数分别为,;(4)图n中,“叠弦三角形”等边三角形(填“是”或“不是”)(5)图n中,“叠弦角”的度数为(用含n的式子表示)66.(2016甘肃省兰州市)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A1)在反比例函数kyx=的图象上.(1)求反比例函数kyx=的表达式;(2)在x轴的负半轴上存在一点P,使得S△AOP=12S△AOB,求点P的坐标;(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.67.(2016甘肃省白银市)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.68.(2016福建省福州市)如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM 沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.69.(2016陕西省)如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形.(保留作图痕迹,不写作法)70.(2016陕西省)如图,在平面直角坐标系中,点O为坐标原点,抛物线25 y ax bx=++经过点M(1,3)和N(3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.。

[必刷题]2024二年级数学下册图形变换专项专题训练(含答案)

[必刷题]2024二年级数学下册图形变换专项专题训练(含答案)

[必刷题]2024二年级数学下册图形变换专项专题训练(含答案)试题部分一、选择题:1. 下列哪个图形经过一次平移后,能与原来的图形重合?()A. 正方形B. 长方形C. 三角形D. 椭圆形2. 将一个长方形向右平移3格,再向下平移2格,下列哪个选项表示这个长方形的新位置?()A. (3, 2)B. (2, 3)C. (3, 2)D. (2, 3)3. 下列哪个图形经过旋转90度后,能与原来的图形重合?()A. 正方形B. 长方形C. 三角形D. 半圆形4. 一个图形向右旋转90度,再向上平移2格,下列哪个选项表示这个图形的新位置?()A. (2, 90)B. (90, 2)C. (2, 90)D. (90, 2)5. 下列哪个图形既是轴对称图形,也是中心对称图形?()A. 正方形B. 长方形C. 三角形D. 梯形6. 一个图形沿着某条直线对折,两侧完全重合,这个图形是()A. 轴对称图形B. 中心对称图形C. 平移图形D. 旋转图形7. 将一个正方形绕其中心点旋转180度,下列哪个选项表示这个正方形的新位置?()A. (0, 0)B. (1, 1)C. (1, 1)D. (2, 2)8. 下列哪个图形经过旋转180度后,能与原来的图形重合?()A. 等边三角形B. 等腰三角形C. 矩形D. 梯形9. 一个图形向上平移3格,再向左平移2格,下列哪个选项表示这个图形的新位置?()A. (3, 2)B. (3, 2)C. (2, 3)D. (2, 3)10. 下列哪个图形不是轴对称图形?()A. 正方形B. 长方形C. 圆形D. 梯形二、判断题:1. 旋转是将一个图形绕某一点转动一个角度的图形变换。

()2. 平移是将一个图形上的所有点按照某个方向作相同距离的移动。

()3. 所有的三角形都是轴对称图形。

()4. 一个图形经过旋转后,其大小和形状都不会改变。

()5. 中心对称图形的对称中心一定是图形上的一个点。

2021年中考数学九年级复习课时训练:《图形的变化》(二)

2021年中考数学九年级复习课时训练:《图形的变化》(二)

2021年中考数学九年级复习课时训练:《图形的变化》(二)1.如图,△ABC中,点D在BC边上,将点D分别以AB、AC为对称轴,画出对称点E、F,并连接AE、AF.根据图中标示的角度,可得∠EAF的度数为()A.108 B.115 C.122 D.1302.下列说法:①如果两个三角形全等,则它们必是关于某条直线成轴对称的图形;②等腰三角形的高、中线、角平分线互相重合;③若三角形一个外角的平分线平行于三角形的一边,则这个三角形为等腰三角形;④等腰三角形顶角的外角是底角的二倍;⑤等腰三角形两腰上的中线长相等.其中正确的共有()A.5个B.4个C.3个D.2个3.如图所示,平放在正立镜子前的桌面上的数码“21085”在镜子中的像是()A.21085 B.28015 C.58012 D.510824.如图,△AOB是以边长为2的等边三角形,则点A关于x轴的对称点的坐标为()A.(﹣1,)B.(﹣1,)C.(1,)D.(1,)5.平面直角坐标系中,已知点P(a,3)在第四象限,则点P关于直线x=2对称的点的坐标是()A.(a,1)B.(﹣a+2,3)C.(﹣a+4,3)D.(﹣a,3)6.如图,在小方格中画与△ABC成轴对称的三角形(不与△ABC重合),这样的三角形能画出()A.1个B.2个C.3个D.4个7.下列图案中,可以看作是轴对称图形的是()A.B.C.D.8.将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN为折痕,若正方形EFGH与五边形MCNGF的面积之比为4:5,则的值为()A.B.C.D.9.如图,已知点P(0,3),等腰直角△ABC中,∠BAC=90°,AB=AC,BC=2,BC边在x 轴上滑动时,PA+PB的最小值是()A.+2 B.C.5 D.210.如图1,在矩形纸片ABCD中,AB=83,AD=10,点E是CD的中点.将这张纸片依次折叠两次:第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落在B′处,折痕为HG,连接HE.①∠DME=2∠ANM;②MH=HN;③∠AMN=∠GHN;④△B′GE≌△BGN,以上说法正确的有()个.A.1个B.2个C.3个D.4个11.如图,把边长为的正方形的局部进行图①﹣图④的变换,拼成图⑤,则图⑤的面积是()A.8 B.12 C.16 D.1812.已知等边△ABC中AD⊥BC,AD=12,若点P在线段AD上运动,当AP+BP的值最小时,AP的长为()A.4 B.8 C.10 D.1213.如图是6级台阶侧面示意图,如果要在台阶上铺红地毯,那么地毯长度至少需要()A.8米B.5米C.4米D.3米14.如图,将三角形ABE向右平移1cm得到三角形DCF,如果三角形ABE的周长是10cm,那么四边形ABFD的周长是()A.12cm B.16cm C.18cm D.20cm15.在平面直角坐标系中,线段CF是由线段AB平移得到的,点A(﹣2,3)的对应点为C (1,2),则点B(a,b)的对应点F的坐标为()A.(a+3,b+1)B.(a+3,b﹣1)C.(a﹣3,b+1)D.(a﹣3,b﹣1)16.下列四个图形中,不能通过基本图形平移得到的是()A.B.C.D.17.国旗上的四个小五角星,通过怎样的移动可以相互得到()A.轴对称B.平移C.旋转D.平移和旋转18.如图,Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC绕点A 顺时针旋转到B 位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P 1顺时针旋转到位置②,可得到点P 2,此时AP 2=2+;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=3+;…按此规律继续旋转,直到点P 2018为止,则AP 2018等于( )A .2016+673B .2017+673C .2018+673D .2019+67319.下列图形中,旋转120°后可以和原图形重合的是( )A .正七边形B .正方形C .正五边形D .正三角形20.在平面直角坐标系xOy 中,点A (4,3),点B 为x 轴正半轴上一点,将△AOB 绕其一顶点旋转180°,连接其余四个顶点得到一个四边形,若该四边形是一个轴对称图形,则满足条件的点有( )A .5个B .4个C .3个D .2个21.下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .22.如图,⊙M 的半径为2,圆心M 的坐标为(3,4),点P 是⊙M 上的任意一点,PA ⊥PB ,且PA 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为( )A.3 B.4 C.5 D.623.如图,等边△OAB的顶点O为坐标原点,AB∥x轴,OA=2,将等边△OAB绕原点O顺时针旋转105°至△OCD的位置,则点D的坐标为()A.(2,﹣2)B.(,)C.(,)D.(,﹣)24.如图所示的风车图案可以看做是由一个直角三角形通过五次旋转得到的,那么每次需要旋转的最小角度为()A.60°B.72°C.90°D.180°25.平面直角坐标系xOy中,点P(a,b)经过某种变换后得到的对应点P′(2a﹣1,2b+1).已知A,B,C是不共线的三个点,它们经过这种变换后,得到的对应点分别为A',B',C'.若△ABC的面积为S1,△A'B'C'的面积为S2,则用等式表示S1与S2的关系为()A.S1=S2B.S1=S2C.S1=2S2D.S1=4S2参考答案1.解:连接AD,∵D点分别以AB、AC为对称轴,画出对称点E、F,∴∠EAB=∠BAD,∠FAC=∠CAD,∵∠B=61°,∠C=54°,∴∠BAC=∠BAD+∠DAC=180°﹣61°﹣54°=65°,∴∠EAF=2∠BAC=130°,故选:D.2.解:①如果两个三角形全等,则它们必是关于某条直线成轴对称的图形,错误.②等腰三角形的高、中线、角平分线互相重合,错误.③若三角形一个外角的平分线平行于三角形的一边,则这个三角形为等腰三角形,正确.④等腰三角形顶角的外角是底角的二倍,正确.⑤等腰三角形两腰上的中线长相等,正确.故选:C.3.解:21085﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣51082故选:D.4.解:如图,过点A作AC⊥OB,∵△AOB是等边三角形,∴OA=OB,OC=BC,∠AOB=60°,∵OB=2,∴OA=2,∴OC=1,∴AC===,∴点A的坐标是(1,),∴点A关于x轴的对称点的坐标为(1,).故选:D.5.解:设P(a,3)关于直线x=2的对称点为P′(m,3),则有=2,∴m=4﹣a,∴P′(﹣a+4,3),故选:C.6.解:如下图所示:符合题意的有3个三角形.故选:C.7.解:A、不是轴对称图形.B、是轴对称图形.C、不是轴对称图形.D、不是轴对称图形.故选:B.8.解:如图,连接HF,直线HF与AD交于点P,∵正方形EFGH与五边形MCNGF的面积之比为4:5,设正方形EFGH与五边形MCNGF的面积为4x2,5x2,∴GF2=4x2,∴GF=2x,∴HF==2x,由折叠可知:正方形ABCD的面积为:4x2+4×5x2=24x2,∴PM2=24x2,∴PM=2x,∴FM=PH=(PM﹣HF)=(2x﹣2x)=(﹣)x,∴==.故选:A.9.解:如图所示,过P作x轴的平行线l,作点A关于l的对称点A',连接A'P,则AP=A'P,∴当A',P,B在同一直线上时,AP+BP的最小值等于线段BA'的长,过A作AD⊥BC于D,∴AD∥y轴,∵A′A∥y轴,∴A′、A、D三点共线,∵等腰直角△ABC中,∠BAC=90°,AB=AC,BC=2,∴AD=BD=1,P(0,3),∴A'D=AA'+AD=2×(3﹣1)+1=5,∴Rt△BA'D中,BA'===,∴PA+PB的最小值是.故选:B.10.解:由翻折可知,∠ANM=∠MNE,∠A=∠MEN=90°,∵∠DME+∠EMA=180°,∠EMA+∠ANE=180°,∴∠DME=∠ANE,∴∠DME=2∠ANM,故①正确,∵HG垂直平分EN,∴HG∥EM,∴HM=HN,∠GHN=∠NME,∵∠AMN=∠NME,∴∠AMN=∠GHN,故③正确,由翻折可知:EN=GN,GB′=GB,EB′=BN,∴△B′GE≌△BGN(SSS),故④正确,故选:D.11.解:观察图象可知图①②③④的面积都是3,图⑤的面积是①的面积的4倍.∴图⑤的面积为12,故选:B.12.解:如图,作BE⊥AC于点E,交AD于点P,∵△ABC是等边三角形,AD⊥BC,∴∠DAC=30°∴PE=AP当BP⊥AC时,AP+BP=PE+BP的值最小,此时,AP=AD=8.故选:B.13.解:∵六级台阶的高等于3米,六级台阶的长等于5米,∴要买地毯的长:3+5=8(米).故选:A.14.解:∵△ABE的周长=AB+BE+AE=10(cm),由平移的性质可知,BC=AD=EF=1(cm),AE=DF,∴四边形ABFD的周长=AB+BE+EF+DF+AD=10+1+1=12(cm).故选:A.15.解:由题意:点A(﹣2,3)的对应点为C(1,2),∴点C是由点A向右平移3个单位,向下平移应该单位得到,∴点B(a,b)的对应点F的坐标为(a+3,b﹣1),故选:B.16.解:选项A,C,D可以通过平移变换得到,选项B看图通过旋转变换得到,故选:B.17.解:四个小五角星通过旋转可以得到.故选:C.18.解:∵∠ACB=90°,∠B=30°,AC=1,∴AB=2,BC=,∴将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2,将位置①的三角形绕点P1顺时针旋转到位置②可得到点P2,此时AP2=2+,将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+,…∵2018÷3=672…2,∴AP2018=672(3+)+2+=2018+673,故选:C.19.解:∵正三角形的中心角为120°,∴正三角形旋转120°可以和原图形重合,故选:D.20.解:观察图象可知,满足条件的点B有5个.故选:A.21.解:根据中心对称图形,轴对称图形的定义可知选项A既是轴对称图形又是中心对称图形.故选:A.22.解:连接OP,∵PA⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3、MQ=4,∴OM=5,又∵MP′=2,∴OP′=3,∴AB=2OP′=6,故选:D.23.解:过D作DE⊥y轴于E,∴∠DEO=90°,∵△OAB是等边三角形,∴OA=OB=2,∠AOB=60°,∵AB∥x轴,∴AB⊥y轴于F,∴∠BOF=30°,∵将等边△OAB绕原点O顺时针旋转105°至△OCD的位置,∴∠BOD=105°,OD=OB=2,∴∠DOE=45°,∴OE=DE=OD=,∴点D的坐标为(,﹣),故选:D.24.解:观察图象可知,每次需要旋转的最小角度==60°,故选:A.25.解:由点P(a,b)经过变换后得到的对应点为P′(2a﹣1,2b+1)知,此变换是以点为中心、2:1的位似变换,则△ABC的面积与△A′B′C′的面积比为4:1,∴4S1=S2,∴S1=S2故选:B.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形变换练习题(二)
一填空题
1.四边形ABCD 为正方形,则ADF ∆绕点A 顺时针旋转 度可以得到ABE ∆;如果4AF cm =,7AB cm =,则DE = ;
2.长方形ABCD 的长为6cm ,宽为4cm ,O 是对称中心,则图中阴影部分的面积为 ;
3. 如图,三角形ABC 中,AB=AC ,∠A=40度,AB 的垂直平分线MN 交AC
于D ,连接BD ,∠DBC 等于_____度.
4. 如图所示的两个三角形关于某条直线对称,∠1=110°,∠2=46°,则x = . 5如图,在△ABC 中∠A=80°∠B=60°将△ABC 沿EF 对折,点C 落在C '处,如果∠1=50°,那么∠2= . 6.如图把大小相等的两个长方形拼成L 形图案,则∠FCA =______度。

7.如图14,是一个旋转对称图形,要使它旋转后与自身重合,应将它绕中心逆时针方向旋转的度数至少为______度。

8.请写出一个既是轴对称,又是中心对称的几何图形名称: 二选择题
1、下列日常生活现象中,不属于平移的是
A 、飞机在跑道上加速滑行
B 、大楼电梯上上下下地迎送来客
C 、时钟上的秒针在不断地转动
D 、滑雪运动员在白茫茫的平坦雪地上滑翔 2.下列标志中,是旋转对称图形但不是轴对称的有
A 2个
B 3个
C 4个
D 5个
3.如右图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是 A. 60° B. 90° C. 72° D.120° 4.下列图形中,既是轴对称图形,又是中心对称图形的是
A .等边三角形
B .长方形
C .等腰梯形
D .平行四边形
5、如图,下面的四个图形中,由左图绕点O顺时针旋转90°后,向左平移一个单位得到的是
6.如图(4)所示,△ABC 平移后得到△DEF,已知∠B=35°,∠A=85°,则∠DFE =
A.60°
B.35°
C.120°
D.85°
7.下列说法正确的是
A.平移不改变图形的形状和大小,而旋转则变图形的形状和大小
B.平移和旋转的共同点是改变图形的位置
C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离
D.由平移得到的图形也一定可由旋转得到
8.如图,在△ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′
A
B C
D 1x
2
(4)
E F D C B A 第8题图
A '
B D A C
A
A ′ C B
B ′ 处,折痕为CD ,则A DB '∠= A 、40 B .30° C.20° D.10° 9.下列图形中,是中心对称图形的有
①正方形 ②长方形 ③等边三角形 ④线段 ⑤角 ⑥平行四边形 A. 5个 B. 2个 C. 3个 D. 4个
10.如右图所示,将边长为2的等边三角形沿BC 向右平移1得 到△DEF ,则四边形ABFD 的周长为
A. 6
B. 8
C. 10
D. 12
11.如右图,△ABC ≌△FDE ,AB=DF ,BC=ED ,AE=20,FC=10,则AF 长是
A .10cm ;
B .30cm ;
C .8cm ;
D .5cm
12.等腰三角形的底边长为6cm ,一腰上的中线把它分成周长差为3cm 的两个三角形,则它的腰长为 A .3cm 或9cm B .3cm C .9cm D .以上都不对
13、已知如图1所示的四张牌,若将其中一张牌旋转180°后得到图2.则旋转的牌是
14、如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕点B 顺时针转动一个角度到A 1BC 1的位置,使得点A 、B 、C 1在同一条直线上,那么这个角度等于 A.120° B.90° C. 60° D. 30°
15.以下图形中,既是轴对称图形,又是中心对称图形的是【 】
A .等边三角形
B .矩形
C .等腰梯形
D .平行四边形 16.如图,在△ABC 中,
70=∠CAB . 在同一平面内, 将△ABC 绕点A 旋 转到△//C AB 的位置, 使得AB CC ///, 则=∠/
BAB 【 】
A. 30
B. 35
C. 40
D.
50
17.如图,△A ′B ′C ′是由△ABC 经过变换得到的,则这个变换过程是【 】
A .平移
B .轴对称
C .旋转
D .平移后再轴对称
18.如图,将△ABC 绕点C 顺时针方向旋转40°得△A ’CB ’,若AC ⊥A’B’,则∠BAC 等于【 】 A .50° B .60° C .70° D .80°
19.如图所示,在折纸活动中,小明制作了一张ABC △纸片,点D E 、分别是边AB 、AC 上,将ABC △沿着DE 折叠压平,A 与'A 重合,若=70A ︒
∠,则1+2∠∠=【 】
A. 140︒
B. 130︒
C. 110︒
D. 70︒
20.如图所示,下列图案中,是轴对称图形的是( ) A.(1)(2)
B.(1)(3)(4)
B.C.(2)(3)
D.(1)(4)
21.下列英文字母属于轴对称图形的是( ) A 、N B 、S C 、L D 、E
A B C
图1 图2
C
B
A B ′A ′
C ′
22.下列图形中对称轴条数最多的是( )
A.正方形
B.长方形
C.等腰三角形
D.等腰梯形
E.等边三角形
F.角
G.线段
H.圆
I.正五角星
23.下面不是轴对称图形的是( )。

A 长方形
B 平行四边形
C 圆
D 半圆 24.将写有字“B ”的字条正对镜面,则镜中出现的会是( ) A 、 B 、 C 、 D 、
25.一个正三角形绕一点旋转一个角度后与自身重合,这个角度至少为( ) A 、0
60; B 、0
120; C 、0
90; D 、0
180; 三简答题
1.利用图中的网格线(最小的正方形的边长为1)画图: (1)将ABC ∆向右平移5个单位长度得到111C B A ∆; (2)作出ABC ∆关于x 轴对称的222C B A ∆; (3)作出ABC ∆关于原点O 对称的333ΔA B C ; (4)将ABC ∆绕点A 顺时针旋转90°得到44ΔAB C
2.如图,方格纸中的每个小正方形的边长均为1.
(1)观察图①、②中所画的“L”型图形,然后各补画一个小正方形,使图①中所成的图形是轴对称图形,图②中所成的图形是中心对称图形; (2)补画后,图①、②中的图形是不是正方体的表面展开图:(填“是”或“不是”)
答:①中的图形 ,②中的图形 .
3.如图,已知△ACE 是等腰直角三角形,∠ACE=90°,B 为AE 上一点,△ABC 经过旋转到达△EDC 的位置,问:(1)旋转中心是哪个点?旋转了多少度?(2)若已知∠ACB=20°,求∠CDE 、∠DEB 的度数.
4.如图:已知△ACE ≌△DBF ,CE=BF,AE=DF,AD=8,BC=2.(1)求AC 的长度;(2)试说明CE//BF.
y A
O x
B
C
B
5.如图,某居民小区有一长方形地,居民想在长方形地内修筑同样宽的两条小路,余下部分绿化,道路的宽为2米,则绿化的面积为多少平方米?
6.如图,在△ABC 中,∠C=90°,DE 垂直平分AB 交于AB 于点E ,并CB 于D,∠DAE 与∠DAC 的度数比为2:1,求∠B 的度数.
7..四边形ABCD 是正方形,△ADF 旋转一定角度后得到△ABE ,如图所示,如果AF=4,AB=7,求:(1)指出旋转中心和旋转角度(2)求DE 的长度(3)BE 与DF 的位置关系如何?
8. 如图,△ABC 中,∠BAC=1100,DE 、FG 分别为AB 、AC 的垂直平分线,E 、G 分别为垂足.
(1) 求∠DAF 的度数.
(2)如果BC ﹦10cm ,求△DAF 的周长.
9已知:如图,在△ABC 中,∠BAC=120°,以BC 为边向形外作等边三角形△BCD ,把△ABD 绕着点D 按顺时针方向旋转60°后得到△ECD ,若AB=3,AC=2,求∠BAD 的度数与AD 的长
10.如图,已知:△ABC 中,BC <AC ,AB 边上的垂直平分线DE 交AB 于D ,交AC 于E ,AC =9 cm ,△BCE 的周长为15 cm ,求BC 的长.
D
F
E
G A
B C
C
B
D
A
E。

相关文档
最新文档