第一节微分方程的基本概念

合集下载

高等数学第七章第一节微分方程的基本概念课件.ppt

高等数学第七章第一节微分方程的基本概念课件.ppt
解: 如图所示, 点 P(x, y) 处的法线方程为
令 Y = 0 , 得 Q 点的横坐标
即 yy 2x 0
y P
Qo xx
引例1 通解:
dy dx
2x
y x1 2
引例2
y x2 C
d2y dx2
0.4
s t0 0 ,
ds dt
t0 20
s 0.2t 2 C1t C2
特解: y x2 1
s 0.2t 2 20t
例1. 验证函数 是微分方程
(C1 , C2为常数 )
的解, 并求满足初始条件
x
t0
A, dx
dt
t00
的特解 .
解:
k 2 (C1 sin kt C2 cos kt ) 这说明 x C1 cos kt C2 sin kt 是方程的解 .
是两个独立的任意常数, 故它是方程的通解.
利用初始条件易得:
故所求特解为
x Acos k t
例2. 已知曲线上点 P(x, y) 处的法线与 x 轴交点为 Q 且线段 PQ 被 y 轴平分, 求所满足的微分方程 .
微分方程的基本概念
含未内容)
分类 偏微分方程
方程中所含未知函数导数的最高阶数叫做微分方程 的阶.
一般地 , n 阶常微分方程的形式是
F (x, y, y,, y(n) ) 0
或 y(n) f (x, y, y,, y(n1) ) ( n 阶显式微分方程)
微分方程的解 — 使方程成为恒等式的函数.
通解 — 解中所含独立的任意常数的个数与方程 的阶数相同.
特解 — 不含任意常数的解, 其图形称为积分曲线.
定解条件 — 确定通解中任意常数的条件.

军队文职人员招聘考试《专业科目(数学1)》辅导书-高等数学-第8章 常微分方程【圣才出品】

军队文职人员招聘考试《专业科目(数学1)》辅导书-高等数学-第8章 常微分方程【圣才出品】
求微分方程 y f x, y 满足初值条件 y xx0 y0 的特解的问题,叫做一阶微
分方程的初值问题,记作
y f x, y
y
xБайду номын сангаасx0
y0
1 1
4.特解 确定了通解中的任意常数以后,就得到微分方程的特解。
5.积分曲线
微分方程的解的图形是一条曲线,叫做微分方程的积分曲线,初值问题(1-1)的几何
1 / 16
圣才电子书 十万种考研考证电子书、题库视频学习平台

(1)如果微分方程是一阶的,通常用来确定任意常数的条件是
y xx0 y0
(2)如果微分方程是二阶的,通常用来确定任意常数的条件是
y xx0 y0, y xx0 y0
上述这种条件称为初值条件。
3.初值问题
意义,就是求微分方程的通过点(x0,y0)的那条积分曲线,二阶微分方程的初值问题
y f x, y, y
y
x x0
y0, y
x x0
y 0
的几何意义,是求微分方程的通过点(x0,y0)且在该点处的切线斜率为 y0 的那条积
2 / 16
圣才电子书

分曲线。
十万种考研考证电子书、题库视频学习平台
②在非齐次的情形下,令
x X h, y Y k
其中 h 及 k 是待定的常数,则
dY aX bY ah bk c dX a1X b1Y a1h b1k c1
如果方程组
ah bk c 0 a1h b1k c1 0
a
的系数行列式
b 0 ,即 a1 b1 ,则可以定出 h 及 k 使它们满足上述方程
(1)齐次线性方程
dy P(x) y 0 dx
的通解

高等数学第十一章课件.ppt

高等数学第十一章课件.ppt

这类方程的特点是经过适当的变换,可以将方程
右边分解成只含 x 的函数与只含 y 的函数的乘积,而左 边是关于 y 的一阶导数.具体解法如下:
(1) 分离变量 将方程写成 1 dy f (x)dx 的形式
g( y)
(2) 两 端 积 分
1 g( y)
dy
f
(x)dx
设积分后得
G( y) F(x) C ; 则 G( y) F(x) C 称为隐式通解,隐式解有时可以
知 u 0, 取 u( x) x, 则 y2 xerx ,
得齐次方程的通解为 y (C1 C2x)erx;
3.有一对共轭复根 ( 0)
特征根为 r1 i , r2 i ,
y1 e( i ) x , y2 e( i )x ,
重新组合
1
y1
( 2
y1
y2 )
ex cos x,
y py qy f1(x) f2 (x)
的特解.
定理 4 若 Y 是线性齐次方程 y py qy 0 的
通解, y 是线性非齐次方程 y py qy f (x) 的一个
解,则Y y 是 y py qy f (x) 的通解.
设非齐方程特解为
代入原方程
综上讨论
注意 上述结论可推广到n阶常系数非齐次线性 微分方程(k是重根次数).
第二节 一阶微分方程
一、可分离变量的微分方程 二、齐次方程 三、一阶线性微分方程 四、伯努利方程
一、可分离变量的微分方程
一阶微分方程的一般形式为
F(x, y, y) 0 或 dy f (x, y) dx
形如
dy f (x)g( y)(g( y) 0) dx
的一阶微分方程,称为可分离变量的微分方程.

高等数学11单元第八章常微分方程

高等数学11单元第八章常微分方程

授课11单元教案第一节微分方程的基本概念教学过程一、引入新课初等数学中就有各种各样的方程:线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。

这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后求取方程的解。

方程的定义:含有未知数的的等式。

它表达了未知量所必须满足的某种条件。

根据对未知量所施行的数学运算的不同,我们可以将方程分成许多不同的类型来研究。

引例1二、新授课1、微分方程的定义:含有未知函数的导数或微分的方程,称为微分方程如果未知函数是一元函数的微分方程称为常微分方程式;如果未知函数是多元函数的微分方程式称为偏微分方程。

例如,22;d yx y x dx=+=dx 和是常微分方程dyzxy x∂=∂是偏微分方程. 微分方程中未知函数的最高阶导数的阶数,称为微分方程式的阶。

一阶微分方程的一般形式为 (,,)0F x y y '= 例如:2354()0y x y x '+-=,2()20dy dyx y x dx dx-+=都是一阶微分方程。

二阶微分方程的一般形式为 (,,,)0F x y y y '''= 例如:222sin 0d y dyyx dx dx-+=,2223()(2)y k y '''=+都是二阶微分方程。

类似可写出n 阶微分方程的一般形式 ()(,,,,)0n F x y y y y '''=。

其中F 是n +2个变量的函数。

这里必须指出,在方程()(,,,,)0n F x y y y y '''=中,()n y 必须出现,而,,,x y y '(1),n y y -''等变量可以不出现。

例如()()n y f x =也是n 阶微分方程。

例1 .指出下列方程中哪些是微分方程,并说明它们的阶数:122222222(1) 0; (2) 2;(3) sin 0; (4) 3;(5) '''3; (6) ;(7) '''(')0. t dy y dx y y x d yxdy y xdx y e dt yy y x dy dx x y xy y -==++=+=+==+-=2、微分方程的解能够满足微分方程的函数都称为微分方程的解 求微分方程的解的过程,称为解微分方程例如,函数3x 16是微分方程22d y x dx =的解。

第一节 微分方程的基本概念

第一节 微分方程的基本概念

(用来确定任意常数的条件): 4、初始条件 用来确定任意常数的条件): 一阶微分方程的初始条件是 y x = x 0 = y 0 , 二阶微分方程的初始条件是
y
x = x0
= y0 , y ′
x = x0
′ = y0 ,
求微分方程满足初始条件的解的问题. 5、初值问题:求微分方程满足初始条件的解的问题. 一阶: 一阶
3、n 阶微分方程的一般形式为 F(x, y, y′, …, y(n)) = 0, ′ , 是自变量, 是未知函数。 其中 x 是自变量, y 是未知函数。 例如 mv′(t) = mg – m v ′′ ( t ) ′
二、微分方程的解
代入微分方程后使其成为恒等式的函数。 代入微分方程后使其成为恒等式的函数。 1、微分方程的解: 微分方程的解:
有 将 y,y′ 及 y″ 代入原方程的左边, , ′ ″ 代入原方程的左边, (5e – x - xe - x) + 2(- 4e – x + xe - x) + 3e – x – xe – x = 0, , 满足原方程, 即函数 y = 3e – x – xe – x 满足原方程, 所以该函数是 所给二阶微分方程的解. 所给二阶微分方程的解
1 1 x y′ − y = e , 2 2
y =e ∫
− P( x)dx
C + Q( x)e∫ P( x)dxdx. ∫

1 1 x P ( x ) = − , Q( x ) = e , 2 2
1 x 则 − ∫ P ( x )dx = ∫ dx = , e − ∫ P ( x )dx 2 2 x x − 1 x 2 ∫ P ( x )dx Q( x )e dx = ∫ e e dx = e 2 , ∫ 2

高等数学基础第十一章

高等数学基础第十一章

形如 y'' +py' qy f (x)
(11-2)
的方程(其中p,q为常数),称为二阶常系数非齐次线性微分方
程。称 y'' +py' qy 0为方程(11-2)所对应的齐次方程。
定理11.2 (非齐次线性方程解的结构) 若 yp是线性非齐次方程(2)的 某个特解, yc 为对应的齐次线性方程的通解,则 y yp yc 为
以 s t
t0 0
,ds
dt
t0 0
。代入上式得
C1 C2=0
所以
s t 1 gt2
2
二、微分方程的基本概念
定义11.1 凡表示未知函数、未知函数的导数与自变量之间的关系 的方程称为微分方程。未知函数是一元函数的微分方程称为常微 分方程,未知函数是多元函数的微分方程称为偏微分方程。 微分方程中出现的未知函数的最高阶导数的阶数称为微分方程的阶
把初始条件y x0 2 代入上式,得C 2
所以方程的特解为
y (x2 2)ex2
第三节 可降阶的高阶微分方程
一、y(n) f (x) 型的微分方程
例1 求微分方程 y 2x sinx 的通解。

因为 y 2x sinx,所以
y' x2 cosx C1
y
1 3
x3
sinx
C1x
x3
1 5
x5 )
+
C2
例4 求微分方程(1 ex ) y'' y' 0 的通解。

设 y' p(x) ,代入方程,得
(1 ex ) p' p 0
分离变量得
dp p

第一节 微分方程的基本概念

第一节 微分方程的基本概念

第一节 微分方程的基本概念教学目的: 理解微分方程的概念,理解微分方程的通解的概念,区分特解与通解。

教学重点:微分方程的概念 通解的概念教学难点:区分特解与通解教学时数:2教学内容:一、 两个引例例1:一条曲线过点()0,1,且在该曲线任意点(,)M x y 处的切线斜率都为2x ,求该曲线的方程。

解: 设所求曲线方程为()y f x =根据题意和导数的几何意义,得2dy x dx= 且当0x =时,1y =。

例2:一质量为m 的物体只受重力作用由距地面h 米处开始下落,试求物体下落的运动方程。

解 :设物体下落距离s 与时间t 的关系为 ()s s t =依题意和二阶导数的物理意义,得g td s d 22=(其中g 为重力加速度) 且当0t =时,0s =且0v =。

以上所列举两例的方程中,都含有未知函数的导数,它们都是微分方程。

二、基本概念定义 含有未知函数导数(或微分)的方程,称为微分方程。

定义 微分方程中出现的未知函数的导数的最高阶数,称为微分方程的阶。

能使微分方程变成恒等式的函数,称为微分方程的解。

求微分方程解的过程叫做解微分方程。

如果微分方程的解中含有任意常数,且独立的任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解。

在通解中若使任意常数取某定值,或利用附加条件求出任意常数应取的值,所得的解叫做微分方程的特解。

为了得到满足要求的特解,必须根据要求对微分方程附加一定条件,这些条件叫做初始条件。

例如,例1的初始条件记为01x y ==;例2的初始条件记为000,0t t ds s dt ==== 评注:⑴.在微分方程中,自变量和未知函数可以不出现,但未知函数的导数或微分必须出现.⑵一般情况下,如果微分方程是一阶的,其初始条件是00x x y y ==;如果是二阶的,其初始条件是00x x y y ==,00x x y y =''=,其中0,0,0x y y '都是给定的值。

01第一节微分方程的基本概念

01第一节微分方程的基本概念

第六章微分方程对自然界的深刻研究是数学最富饶的源泉.------ - 傅里叶微积分研究的对象是函数关系,但在实际问题中,往往很难直接得到所研究的变量之间的函数关系,却比较容易建立起这些变量与它们的导数或微分之间的联系,从而得到一个关于未知函数的导数或微分的方程,即微分方程 .通过求解这种方程,同样可以找到指定未知量之间的函数关系.因此,微分方程是数学联系实际,并应用于实际的重要途径和桥梁,是各个学科进行科学研究的强有力的工具.如果说“数学是一门理性思维的科学, 是研究、了解和知晓现实世界的工具”,那么微分方程就是显示数学的这种威力和价值的一种体现 . 现实世界中的许多实际问题都可以抽象为微分方程问题 . 例如,物体的冷却、人口的增长、琴弦的振动、电磁波的传播等,都可以归结为微分方程问题 . 这时微分方程也称为所研究问题的数学模型 .微分方程是一门独立的数学学科,有完整的理论体系.本章我们主要介绍微分方程的一些基本概念,几种常用的微分方程的求解方法及线性微分方程解的理论.第一节微分方程的基本概念一般地,含有未知函数及未知函数的导数或微分的方程称为微分方程.微分方程中出现的未知函数的最高阶导数的阶数称为微分方程的阶.在物理学、力学、经济管理科学等领域我们可以看到许多表述自然定律和运行机理的微分方程的例子 .分布图示★ 引言★ 微分方程的概念★例 1★ 微分方程解的概念★例 3★ 内容小结★习题 6-1★例 2★例 4内容要点一、微分方程的概念我们把未知函数为一元函数的微分方程称为常微分方程 . 类似地,未知函数为多元函数的微分方程称为偏微分方程,本章我们只讨论常微分方程. 常微分方程的一般形式是:F (x, y, y , y, y(n ) ) 0,(1.5)其中 x 为自变量,y y( x) 是未知函数.如果能从方程(1.5)中解出最高阶导数,就得到微分方程y (n) f ( x, y, y ,, y( n 1) ).(1.6)以后我们讨论的微分方程组主要是形如(1.6)的微分方程,并且假设 (1.6)式右端的函数 f 在所讨论的范围内连续.如果方程 (1.6)可表为如下形式:y(n )a1 ( x) y (n 1)a n 1 (x) y a n (x) y g( x)(1.7)则称方程(1.7) 为n阶线性微分方程.其中a1 ( x), a2(x),, a n (x) 和g (x)均为自变量x 的已知函数 .不能表示成形如(1.7)式的微分方程,统称为非线性微分方程.在研究实际问题时,首先要建立属于该问题的微分方程,然后找出满足该微分方程的函数(即解微分方程),就是说,把这个函数代入微分方程能使方程称为恒等式,我们称这个函数为该微分方程的解 . 更确切地说,设函数y(x) 在区间 I上有 n 阶连续导数,如果在区间 I 上,有F ( x, ( x),( x),(x) ,( n ) ( x))0,则称函数 y(x) 为微分方程(1.5)在区间 I上的解 .二、微分方程的解微分方程的解可能含有也可能不含有任意常数.一般地,微分方程的不含有任意常数的解称为微分方程的特解 . 含有相互独立的任意常数,且任意常数的个数与微分方程的阶数相等的解称为微分方程的通解(一般解). 所谓通解的意思是指,当其中的任意常数取遍所有实数时,就可以得到微分方程的所有解(至多有个别例外).注:这里所说的相互独立的任意常数,是指它们不能通过合并而使得通解中的任意常数的个数减少 .许多实际问题都要求寻找满足某些附加条件的解,此时,这类附加条件就可以用来确定通解中的任意常数,这类附加条件称为初始条件,也称为定解条件 . 例如,条件 (1.2)和 (1.4)分别是微分方程(1.1) 和 (1.3)的初始条件 .带有初始条件的微分方程称为微分方程的初值问题 .微分方程的解的图形是一条曲线,称为微分方程的积分曲线 .例题选讲微分方程的概念例 1( E01)设一物体的温度为100℃,将其放置在空气温度为20℃的环境中冷却 . 根据冷却定律:物体温度的变化率与物体和当时空气温度之差成正比,设物体的温度 T 与时间t 的函数关系为T T (t ) ,则可建立起函数T (t ) 满足的微分方程dT(1)k(T 20)dt其中 k (k0) 为比例常数.这就是物体冷却的数学模型.根据题意, T T(t) 还需满足条件T |t 0 100.(2)例 2( E02)设一质量为m的物体只受重力的作用由静止开始自由垂直降落. 根据牛顿第二定律:物体所受的力 F 等于物体的质量m与物体运动的加速度成正比,即 F m ,若取物体降落的铅垂线为x 轴,其正向朝下,物体下落的起点为原点,并设开始下落的时间是 t 0 ,物体下落的距离x 与时间 t 的函数关系为x x(t) ,则可建立起函数x(t) 满足的微分方程d 2 xgdt 2其中 g 为重力加速度常数. 这就是自由落体运动的数学模型 .根据题意, x x(t ) 还需满足条件x(0) 0, dx0. dt t 0微分方程的解例 3( E03)验证函数x C1 coskt C2sin kt 是微分方程d 2x k 2 x0(k0)dt 2的通解 ,并求该微分方程满足初值条件x |t0A, dx|t 0 0 的特解.dt解求出题设函数的一阶及二阶导数:dxC 2 k coskt ,(1)C1k sin ktdtd 2x k 2 (C1 k cos kt C1 k sin kt ).dt 2把它们代入题设微分方程, 得k 2 (C1 coskt C2 sin kt)k 2 (C1 coskt C2 sin kt) 0因此题设函数是微分方程的解. 又题设函数含有两个相互独立的任意常数, 而题设微分方程是二阶微分方程, 所以题设函数是微分方程的通解.将初值条件 x |t 0 A 代入通解 x C 1 coskt C 2 sin kt 中得 , 得C 1A;将初值条件dx|t 0 0 代入( 1), 得dtC 20,于是 , 所求的特解为x A c o skt .例 4 验证函数 y ( x 2C) sin x (C 为任意常数 ) 是方程dy2x sin xycot xdx的通解 , 并求满足初始条件y |0的特解 .x2解 要验证一个函数是否是方程的通解,只要将函数代入方程,看是否恒等,再看函数式中所含的独立的任意常数的个数是否与方程的阶数相同 .将 y (x 2C ) sin x 求一阶导数 ,得dy 2xsin x(x 2 C ) cos x,dx把 y 和dy代入方程左边得 dxdy ycot x 2xsin x 2 x sin x ( x 2 C ) cos x (x 2C ) sin xcot x 2 x sin x 0.dx因方程两边恒等 ,且 y 中含有一个任意常数 ,故 y( x 2 C) sin x 是题设方程的通解 .将初始条件 y x0 代入通解 y (x2C) sin x 中,222得 0C C. 442从而所求特解为y x2s i n .4x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章 微分方程一、 学时分配:讲课学时:14 习题学时:2 共 16 学时二、 基本内容:1.微分方程的基本概念 2.可分离变量的微分方程 3.齐次方程 4.一阶线性微分方程 5.全微分方程 6.可降阶的高阶微分方程 7.高阶线性微分方程 8.一阶常系数齐次线性微分方程 9. 一阶常系数非齐次线性微分方程三、 教学要求:1.理解并掌握微分方程的基本概念,主要包括微分方程的阶,微分方程 的通解、特解及微分方程的初始条件等.2.熟练掌握可分离变量的微分方程的解法.3.熟练掌握齐次微分方程的解法4.掌握一阶线性微分方程的形式,熟练掌握其解法;掌握利用变量代换解微分方程的方法;了解贝努利方程的形式及解法5.掌握全微分方程成立的充要条件,掌握全微分方程的解法,会用观察法找积分因子6.掌握)()(x f y n =、),(///y x f y =、),(///y y f y =三种高阶微分方程的解法,即降阶法,理解降阶法的思想7.掌握二阶线性方程解的结构,齐次线性方程的通解,非齐线性方程的特解及通解的形式8.掌握二阶常系数齐次线性微分方程的特征方程,特征根,及对应于特征根的三种情况,通解的三种不同形式9.掌握自由项为x m e x P x f λ)()(=和x m m e x x Q x x P x f λωω]sin )(cos )([)(+=的二阶常系数非齐次线性微分方程特解的方法四、重点难点:1.重点:2.难点:第一节 微分方程的基本概念教学目的:理解并掌握微分方程的基本概念,主要包括微分方程的阶,微分方程 的通解、特解及微分方程的初始条件等.教学重点:常微分方程的基本概念,常微分方程的通解、特解及初始条件教学难点:微分方程的通解概念的理解教学内容:一、 两个实例1.一条曲线通过点(1,2),且在该曲线上任一点),(y x M 处的切线的斜率为2x ,求这条曲线的方程。

解:设曲线方程为)(x y y =.由导数的几何意义可知函数)(x y y =满足x dxdy 2= (1) 同时还满足以下条件:1=x 时,2=y (2)把(1)式两端积分,得⎰=xdx y 2 即 C x y +=2 (3)其中C 是任意常数。

把条件(2)代入(3)式,得1=C ,由此解出C 并代入(3)式,得到所求曲线方程:12+=x y (4)2.列车在平直线路上以20s m /的速度行驶;当制动时列车获得加速度2/4.0s m -.问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶了多少路程?解 设列车开始制动后t 秒时行驶了s 米。

根据题意,反映制动阶段列车运动规律的函数)(t s s =满足:4.022-=dts d (5) 此外,还满足条件:0=t 时,20,0===dtds v s (6) (5)式两端积分一次得: 14.0C t dtds v +-==(7) 再积分一次得 2122.0C t C t s ++-= (8)其中21,C C 都是任意常数。

把条件“0=t 时20=v ”和“0=t 时0=s ”分别代入(7)式和(8)式,得0 ,2021==C C把21,C C 的值代入(7)及(8)式得,204.0+-=t v (9)t t s 202.02+-= (10)在(9)式中令0=v ,得到列车从开始制动到完全停止所需的时间:)(504.020s t ==。

再把5=t 代入(10)式,得到列车在制动阶段行驶的路程).(5005020502.02m s =⨯+⨯-=上述两个例子中的关系式(1)和(5)都含有未知函数的导数,它们都是微分方程。

二、 微分方程的基本概念一般地,凡表示未知函数、未知函数的导数与自变量之间的关系到的方程,叫做微分方程。

未知函数是一元函数的方程叫做常微分方程;未知函数是多元函数的方程,叫做偏微分方程。

本章只讨论常微分方程。

微分方程中所出现的求知函数的最高阶导数的阶数,叫做微分方程的阶。

例如,方程(1)是一阶微分方程;方程(5)是二阶微分方程方程。

又如,方程()x y y y y y 2sin 5121044=+'-''+'''-是四阶微分方程。

一般地,n 阶微分方程的形式是,0),,,,()(='n y y y x F (11)其中F 是个2+n 变量的函数。

这里必须指出,在方程(11)中,)(n y 是必须出现的,而 )1(,,,,-'n y y y x 等变量则可以不出现。

例如n 阶微分方程01)(=+n y中,除)(n y外,其他变量都没有出现。

如果能从方程(11)中解出最高阶导数,得微分方程).,,',,()1()(-=n n y y y x f y (12)以后我们讨论的微分方程都是已解出最高阶导数的方程或能解出最高阶导数的方程,且(12)式右端的函数f 在所讨论的范围内连续。

由前面的例子我们看到,在研究某些实际问题时,首先要建立微分方程,然后找出满足微分方程的函数,就是说,找出这样的函数 ,把这函数代入微分方程能使该方程成为恒等式。

这个函数就叫做该微分方程的解。

确切地说,设函数)(x y ϕ=在区间I 上有n 阶连续导数,如果在区间I 上,(),0)](,),('),(,[≡x x x x F n ϕϕϕ那么函数)(x y ϕ=就叫做微分方程(11)在区间I 上的解。

例如,函数(3)和(4)都是微分方程(1)的解;函数(8)和(10)都是微分方程(5)的解。

如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解。

例如,函数(3)是方程(1)的解,它含有一个任意常数,而方程(1)是一阶的,所以函数(3)是方程(1)的通解。

又如,函数(8)是方程的解,它含有两个任意常数,而方程(5)是二阶的,所以函数(8)是方程(5)的通解。

由于通解中含有任意常数,所以它还不能完全确定地反映某一客观事物的规律性,必须确定这些常数的值。

为此,要根据问题的实际情况提出确定这些常数的条件。

例如,例1中的条件(2),例2中的条件(6),便是这样的条件。

设微分方程中的未知函数为)(x y y =,如果微分方程是一阶的,通常用来确定任意常数的条件是0x x =时,0y y =,或写成 00|y y x x ==其中0x ,0y 都是给定的值;如果微分方程是二阶的,通常用来确定任意常数的条件是:0x x =时,0y y =,0''y y =或写成 00|y y x x ==,0'|'0y y x x ==其中0x ,0y 和0'y 都是给定的值。

上述条件叫做初始条件。

确定了通解中的任意常数以后,就得到了微分方程的特解。

例如(4)式是方程(1)满足条件(2)的特解;(10)式是方程(5)满足条件(6)的特解。

求微分方程),(y x f y ='满足初始条件00|y y x x ==的特解这样一个问题,叫做一阶微分方程的初值问题,记作⎩⎨⎧=='=.|),,(00y y y x f y x x (13) 微分方程的解的图形是一条曲线,叫做微分方程的积分曲线。

初值问题(13)的几何意义是求微分方程的通过点),(00y x 的那条积分曲线。

二阶微分方程的初值问题⎪⎩⎪⎨⎧'='='=''==0000|,|),,,(y y y y y y x f y x x x x 的几何意义是求微分方程的通过点),(00y x 且在该点处的切线斜率为0y '的那条积分曲线。

例3 验证:函数kt C kt C x sin cos 21+= (14)是微分方程0222=+x k dtx d (15) 的解。

解 求出所给函数(14)的导数,cos sin 21kt kC kt kC dtdx +-=)sin cos (sin cos 212221222kt C kt C k kt C k kt C k dtx d +-=--= 把 22dtx d 及 x 的表达式代入方程(15)得 )sin cos (212kt C kt C k +-+)sin cos (212kt C kt C k +0≡函数(14)及其导数代入方程(15)后成为一个恒等式,因此函数(14)是微分方程(15)的解。

例4 已知函数(14)当 0k ≠ 时是微分方程(15)的通解,求满足初始条件00|, 0t t dx x A dt ==== 的特解。

解 将条件“0t = 时,x A =”代入(14)式得1C A =。

将条件“0t = 时,0dx dt=”代入(16)式,得 20C =。

把12,C C 的值代入(14)式,就得所求的特解为 cos x A kt =。

小结与思考:本节讲述了微分方程的基本概念及一般形式,常微分方程的通解、特解及微分方程的初始问题微分方程的通解是否就是该方程的全部的解?作业:作业见作业本。

相关文档
最新文档