中考数学易错题数与式

合集下载

中考数学易错题整理

中考数学易错题整理

易 错 题一、数与式1、已知a-b=1,b+c=2,则2a+2c+1= 。

2、当x 时,33-=-x x 。

3、若31=-xx ,则x x 1+= 。

4、9.30万精确到 位,有效数字有 个。

5、已知A 、B 、C 是数轴上的三点,点B 表示1,点C 表示-3,AB=2,则AC 的长度是 。

6、P 点表示2,那么在数轴上到P 点的距离等于3个单位长度的点所表示的数是 。

7、实数a,b 在数轴对应的点A 、B 表示如图,化简a a a b 244-++-||的结果为( ) A 、22a b --B 、22+-b aC 、2-bD 、2+b9. 已知函数式32+-=x y ,当自变量增加1时,函数值( )A 、增加1B 、减少1C 、增加2D 、减少210、某种商品的标价为120元,若以标价的90%出售,仍相对进价获利20%,则该商品的进价为_____元。

11.为使某项工程提前20天完成,需将原来的工作效率提高25%,则原计划完成的天数_____天12.若14+x 表示一个整数,则整数x 可取的值的个数是 。

13.如果一个三角形的三条边长分别为1,k ,3,化简3225102--+-k k k = 。

14.下列语句说法正确的是( )A .倒数等于本身的数有0B .算术平方根等于本身的数是±1和0C .立方根等于本身的数有±1和0D .相反数等于本身的数是±1 15.化简1b-可得( ) A .b B .b - C .b - D .b -- 二、方程16.022)34(22+-=--x x x x ,则x= 。

17.若关于x 的方程(m 2-1)x 2-2(m+2)x+1=0有实数根,则m 的取值范围是 。

18、若关于x 的分式方程131=---xx a x 无解,则a= 。

19、当x 时,分式1223+-x x 有意义;当x 时,分式x x --112的值等于零.20、已知31)3)(1(5-++=-++x Bx A x x x ,整式A 、B 的值分别为 .21.若关于x 的方程1151222--=+-+-x k x x k x x 有增根,求k 的值。

初三数学常见易错题解析

初三数学常见易错题解析

初三数学常见易错题解析一、整数运算整数运算是初中数学的基础,也是容易出错的部分。

下面是一些常见的易错题及其解析。

1. 题目:计算 7 × (-5)。

解析:在计算整数乘法时,要注意正负数的乘积规则。

两个数的符号相同则结果为正数,符号不同则结果为负数。

根据这个规则,计算 7 × (-5) 的结果应为 -35。

2. 题目:计算 7 ÷ (-5)。

解析:在计算整数除法时,也要注意正负数的除法规则。

被除数和除数的符号相同则结果为正数,符号不同则结果为负数。

根据这个规则,计算 7 ÷ (-5) 的结果应为 -2。

二、分数运算分数运算是初中数学中的重要部分,也容易出错。

下面是一些常见的易错题及其解析。

1. 题目:将 3/4 与 2/3 相加。

解析:相加分数时,首先需要找到两个分数的公共分母。

对于 3/4 和 2/3,其公共分母为 12。

然后,将两个分数的分子相加,保持分母不变,得到结果为 9/12。

最后,如果需要化简,可以将结果化简为 3/4。

2. 题目:将 1/3 与 2/5 相乘。

解析:相乘分数时,将两个分数的分子相乘,分母相乘,得到结果。

对于 1/3 与 2/5,相乘后得到结果 2/15。

三、代数运算代数运算是初中数学中的重要内容,也是容易出错的部分。

下面是一些常见的易错题及其解析。

1. 题目:求解方程:2x - 5 = 7。

解析:首先,将方程化简为 2x = 12。

然后,通过除法得出 x = 6 的解。

2. 题目:求解方程:3(x + 2) - 4 = 14。

解析:首先,根据分配律展开括号,得到 3x + 6 - 4 = 14,化简为3x + 2 = 14。

然后,通过移项得出 x = 4 的解。

四、几何运算几何运算是初中数学中的重要内容,也容易出错。

下面是一些常见的易错题及其解析。

1. 题目:已知平行四边形的两个内角之比为 2:3,求这两个角的度数。

解析:设两个角分别为 2x 度和 3x 度。

2021年春九年级数学中考复习《数与式》高频易错题型专题提升突破训练2(附答案)

2021年春九年级数学中考复习《数与式》高频易错题型专题提升突破训练2(附答案)

2021年春九年级数学中考复习《数与式》高频易错题型专题提升突破训练2(附答案)1.如图所示,用火柴拼成一排由6个三角形组成的图形,需要根火柴棒,小亮用2021根火柴棒,可以拼出个三角形.2.观察下面三行数:﹣2、4、﹣8、16、﹣32、64…①﹣5、1、﹣11、13、﹣35、61…②﹣、1、﹣2、4、﹣8、16…③按第①行数排列的规律,第①行第n个数是(用含n的式子表示);取每行数的第10个数,则这三个数的和为.3.观察下列式子:a1==﹣;a2==﹣;a3==﹣;a4==﹣;…,按此规律,计算a1+a2+a3+…+a2020=.4.若a2﹣=3,则a2+=;=.5.已知x=,则x4+2x3+x2+1=.6.已知x=2+,则代数式(7﹣4)x2+(2﹣)x﹣的值为.7.若﹣=5,则+=.8.已知ab=5,则a+b=.9.阅读材料:已知﹣=2,求+的值.解:(﹣)×(+)=(25﹣x)﹣(15﹣x)=10,∵﹣=2,∴+=5.则关于x的方程:﹣=2的解x=.10.已知x+y=6,xy=﹣3且x>y,则=.11.已知+=7,则+=.12.,则m5﹣2m4﹣2020m3+m2﹣2m﹣2021的值是.13.已知实数a、b、c满足;则=.14.计算:20202﹣4040×2019+20192=.15.若(2a+b)2=11,ab=1,则(2a﹣b)2的值是.16.a是不为1的有理数,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是,已知a1=3,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,以此类推,那么a1+a2+a3+…+a2020的值是.17.如图,长方形纸片的长为8,宽为6,从长方形纸片中剪去两个全等的小长方形卡片,那么余下的两块阴影部分的周长之和是.18.已知x2+2xy=﹣,xy﹣y2=﹣4,则2x2+5xy﹣y2的值为.19.把四张大小相同的长方形卡片(如图①)按图②、图③两种放法放在一个底面为长方形(长为m,宽为n)的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图②中阴影部分的周长为C1,图③中阴影部分的周长为C2,则C1﹣C2=.20.有四个完全相同的小长方形和两个完全相同的大长方形按如图位置摆放,按照图中所示尺寸,a=20,b=12,则小长方形的长与宽的差是.21.若整式(2x2+mx﹣12)﹣2(nx2﹣3x+8)的结果中不含x项,x2项,则m2+n2=.22.将四张边长各不相同的正方形纸片按如图方式放入矩形ABCD内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示.设右上角与左下角阴影部分的周长的差为l.若知道l的值,则不需测量就能知道周长的正方形的标号为.23.如果x+y=2020,那么代数式(1+)÷的值是.24.已知a2﹣2021ab+b2=0(ab≠0),则代数式+的值等于.25.如果a=b﹣3,那么代数式(﹣2b)•的值是.26.当a=2020时,代数式(﹣)÷的值是.27.已知﹣=3,则分式的值等于.28.已知2a2﹣3a﹣2=0,则a2+=,4a2﹣5﹣6a=.29.已知m=2﹣,则(+)÷+=.30.已知:a2﹣a+1=0,则代数式a3﹣a2﹣的值为.31.若b﹣a=,2a2+a=,则﹣a的值.32.若一个正数的平方根是m+3和2m﹣15,n的立方根是﹣2,则﹣n+2m的算术平方根是.33.﹣的立方根为,的平方根为.34.的算术平方根是;=,3的平方根是;的立方根是.参考答案1.解:观察图形的变化可知:由1个三角形组成的图形,需要2×1+1=3根火柴棒;由2个三角形组成的图形,需要2×2+1=5根火柴棒;由3个三角形组成的图形,需要2×3+1=7根火柴棒;…,发现规律:由n个三角形组成的图形,需要(2n+1)根火柴棒;因为2n+1=2021,所以n=1010,所以用2021根火柴棒,可以拼出1010个三角形.故答案为:13;1010.2.解:按第①行数排列的规律,第①行第n个数是(﹣2)n,故答案为:(﹣2)n;取每行数的第10个数,则这三个数的和为:(﹣2)10+(﹣2)10﹣3+×(﹣2)10=1024+1024﹣3+=1024+1021+256=2301.故答案为:2301.3.解:,,,,…,可得:,a1+a2+a3+…+a2020==,故答案为:.4.解:∵a2﹣=3,∴(a2﹣)2=9,即a4﹣2+=9,则a4+=11,∴(a2+)2=a4+2+=13,则a2+=(负值舍去),===1,故答案为:,1.5.解:∵x=,∴x4+2x3+x2+1=x2(x2+2x+1)+1=x2(x+1)2+1=()2×(+1)2+1=×+1=+1=+1=1+1=2,故答案为:2.6.解:∵x=2+,∴(7﹣4)x2+(2﹣)x﹣=(7﹣4)(2+)2+(2﹣)(2+)﹣=(7﹣4)(7+4)+(4﹣3)﹣=49﹣48+1﹣=2﹣.故答案为:2﹣.7.解:设=a,=b,∵﹣=5,∴a﹣b=5,∴(a﹣b)2=25,即a2﹣2ab+b2=25,∵a2+b2=x2+32+65﹣x2=97,∴97﹣2ab=25,∴ab=36,∵a+b===13,∴+=13.故答案为13.8.解:原式=a+b=+,∵ab=5,∴当a>0,b>0时,原式=2=2;当a<0,b<0时,原式=﹣2=﹣2;即a+b=±2.故答案为±2.9.解:∵(﹣)(+)=20﹣x﹣(4﹣x)=16,而﹣=2,∴+=8,∴2=10,即=5,两边平方得20﹣x=25,解得x=﹣5,经检验x=﹣5为原方程的解,∴原方程的解为x=﹣5.故答案为﹣5.10.解:∵x+y=6,xy=﹣3,x>y,∴x>0,y<0,∴x﹣y==4,=﹣+=×=×=4,故答案为:4.11.解:∵+=7,∴(+)(﹣)=7(﹣),∴x2﹣1﹣(x2+6)=7(﹣),∴﹣=1,∴,∴,解得:x2=10,∴+=+=1+2=3.故答案为:3.12.解:m===+1,原式=m5﹣2m4+m3﹣2021m3+m2﹣2m+1﹣2022=m3(m﹣1)2+(m﹣1)2﹣2021m3﹣2022=2021m3+2021﹣2021m3﹣2022=2021﹣2022=﹣1,故答案为:﹣1.13.解:设=k,则a+b=ck,b+c=ak,a+c=bk,故a+b+b+c+a+c=ck+ak+bk2(a+b+c)=k(a+b+c),当a+b+c=0时,a+b=﹣c,a+c=﹣b,b+c=﹣a,当a+b+c≠0时,k=2,故当a+b+c≠0时,==k3=23=8,当a+b+c=0时,==﹣1,故答案为:8或﹣1.14.解:20202﹣4040×2019+20192=20202﹣2×2020×2019+20192=(2020﹣2019)2=12=1.故答案为:1.15.解:∵(2a+b)2=4a2+4ab+b2=11,ab=1,∴4a2+b2=7,∴(2a﹣b)2=4a2﹣4ab+b2=7﹣4=3.故答案为:3.16.解:∵a1=3,∴a2==﹣,a3==,a4==3,…∵2020÷3=673…1.∴a2020与a1相同,为3.∴a1+a2+a3+…+a2020的值是:(﹣++3)×673+3=.故答案为:.17.解:设两个全等的小长方形卡片的长为a,宽为b,上面的长方形周长:2(8﹣a+6﹣a)=(28﹣4a),下面的长方形周长:2(a+6﹣b)=12+2a﹣2b,两式联立,总周长为:(28﹣4a)+(12+2a﹣2b)=28﹣4a+12+2a﹣2b=40﹣2(a+b),∵a+b=8,∴余下的两块阴影部分的周长之和是40﹣2(a+b)=40﹣2×8=24.故答案为:24.18.解:∵x2+2xy=﹣,xy﹣y2=﹣4,∴2x2+5xy﹣y2=2(x2+2xy)+(xy﹣y2)=2×(﹣)+(﹣4)=﹣1+(﹣4)=﹣5,故答案为:﹣5.19.解:设小长方形的长为acm,宽为bcm,大长方形的宽为n,长为m,∴②阴影周长为:2(n+m)=2n+2m,∴③下面的周长为:2(n﹣a+m﹣a),上面的总周长为:2(m﹣2b+n﹣2b),∴总周长为:2(n﹣a+m﹣a)+2(m﹣2b+n﹣2b)=4n﹣4a+4m﹣8b,又∵a+2b=m,∴4m+4n﹣4(a+2b)=4n,∴C1﹣C2=2n+2m﹣4n=2m﹣2n,故答案为2m﹣2n.20.解:设小长方形的长为x,宽为y,根据题意得:a+y﹣x=b+x﹣y,即2x﹣2y=a﹣b,整理得:x﹣y=,当a=20,b=12时,==4,∴小长方形的长与宽的差是4,故答案为:4.21.解:(2x2+mx﹣12)﹣2(nx2﹣3x+8)=2x2+mx﹣12﹣2nx2+6x﹣16=(2﹣2n)x2+(m+6)x﹣28,∵结果中不含x项,x2项,∴2﹣2n=0,m+6=0,解得n=1,m=﹣6,∴m2+n2=36+1=37.故答案为:37.22.解:设①、②、③、④四个正方形的边长分别为a、b、c、d,由题意得,(a+d﹣b﹣c+b+a+d﹣b+b﹣c+c+c)﹣(a﹣d+a﹣d+d+d)=l,整理得,2d=l,则知道l的值,则不需测量就能知道正方形④的周长,故答案为④.23.解:==x+y,∵x+y=2020,∴原式=2020,故答案为:2020.24.解:∵a2﹣2021ab+b2=0,∴a2+b2=2021ab,则原式=+===2021,故答案为:2021.25.解:原式=(﹣)•=•=a﹣b,∵a=b﹣3,∴a﹣b=﹣3,则原式=﹣3.故答案为:﹣3.26.解:(﹣)÷=•=a+1,当a=2020时,原式=2020+1=2021,故答案为:2021.27.解:因为﹣=3,所以y﹣x=3xy,则分式==﹣.故答案为:﹣.28.解:∵2a2﹣3a﹣2=0,∴2a2﹣2=3a,∴a2﹣1=a,除以a得:a﹣=,∴两边平方得:(a﹣)2=a2+﹣2a=,∴a2+=+2=,∵2a2﹣3a﹣2=0,∴2a2﹣3a=2,∴两边乘以2得:4a2﹣6a=4,∴4a2﹣5﹣6a=4﹣5=﹣1,故答案为:,﹣1.29.解:(+)÷+=•+=•+=+==,当m=2﹣时,原式===1﹣,故答案为:1﹣.30.解:∵a2﹣a+1=0,∴a2﹣a=﹣1,a﹣1+=0,即a+=1,则原式=a(a2﹣a)﹣=﹣a﹣=﹣(a+)=﹣1,故答案为:﹣1.31.解:∵b﹣a=,2a2+a=,∴b=+a,2a2=﹣a,∴﹣a=﹣==(分式的分子和分母都乘以2)===,故答案为:.32.解:∵一个正数的两个平方根分别是m+3和2m﹣15,∴(m+3)+(2m﹣15)=0,解得:m=4,∵n的立方根是﹣2,∴n=﹣8,把m=4,n=﹣8代入﹣n+2m=8+8=16,∵42=16,∴16的算术平方根是4,即﹣n+2m的算术平方根是4.故答案为:4.33.解:﹣的立方根为﹣,=4的平方根为±2.故答案为:﹣,±2.34.解:∵=9,9的算术平方根是3,∴的算术平方根是3;=﹣2,3的平方根是±;的立方根是=.故答案为3;﹣2;±;。

人教版九年级数学中考常错易错题第一讲数与式、方程与不等式(组)(2021年整理)

人教版九年级数学中考常错易错题第一讲数与式、方程与不等式(组)(2021年整理)

(完整)人教版九年级数学中考常错易错题第一讲数与式、方程与不等式(组)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)人教版九年级数学中考常错易错题第一讲数与式、方程与不等式(组)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)人教版九年级数学中考常错易错题第一讲数与式、方程与不等式(组)(word版可编辑修改)的全部内容。

中考常错易错题第一讲数与式、方程与不等式(组)明确目标﹒定位考点中考定位实数、二次根式,最简二次根式、同类二次根式;代数式、整式;整式的混合运算;乘法公式;因式分解.一元一次方程、二元一次方程组和一元二次方程的解法及应用;不等式及不等式组的解法及其不等式的应用。

一元一次方程、二元一次方程组和一元二次方程的解法及应用;不等式及不等式组的解法及其不等式的应用的相关错题及常错题。

归纳总结﹒思维升华1、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=—a,则a≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

2、科学记数法和近似数1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字.2、科学记数法把一个数写做n a 10⨯±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。

备战2024中考数学考试易错01 数与式(原卷版)

备战2024中考数学考试易错01 数与式(原卷版)

易错01数与式易错点一:错误理解实数的有关概念一、实数的分类:.正有理数有理数零有限小数和无限循环小数.负有理数实数正无理数无理数无限不循环小数负无理数二、绝对值:一个数的绝对值就是表示这个数的点与原点的距离,0a 。

零的绝对值是它本身,也可看成它的相反数,若a a ,则0a ;若a a ,则0a 。

三、相反数:只有符号不同的两个数叫做互为相反数四、倒数:如果a 与b 互为倒数,则有1ab ,反之亦成立易错提醒:(1)需要牢记与三者有关的概念以及相关概念之间的的包含与被包含的关系才能避免出错;(2)几个特殊值注意:0的相反数还是0;0没有倒数,1的倒数是1,-1的倒数是-1;一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值还是0.例1.2023的倒数的相反数是()A .2023B .2023C .12023D .12023易错警示:有理数、无理数以及实数的有关概念容易理解错误,相反数、倒数、绝对值的意义概念容易混淆。

选择题考得比较多。

例210 ;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数;其中正确的个数有()A .2个B .3个C .4个D .5个变式1.下列实数:0.22, 0.0102030405062其中有理数有个,无理数有个.变式2.已知a 的倒数是3 ,b 的绝对值是最小的正整数,且a b ,求a b 的相反数.变式3.若实数a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,求2212()12a b cd m m 的值.变式4.请把下列各数填在相应的集合里:0,103,0.12,2 , 3 ,π, 3.14 ,0.010010001…正数集合:{…}负数集合:{…}有理数集合:{…}无理数集合:{…}1.下列各组数中,互为相反数的是()A .32 与3(2)B .23 与2(3)-C .25 与5(2)D .(3) 与|3|2.已知a3 b ,则a 与b 的关系是()A .互为相反数B .相等C .互为倒数D .互为负倒数3.下列说法:①互为相反数的两数和为0;②互为相反数的两数商为1 ;③若x y a a,则x y ;④若ax ay ,则x y .其中正确的结论有()A .1个B .2个C .3个D .4个4.下列说法中,正确的是()A .实数可分为正实数和负实数BC .绝对值最小的实数是0D .无理数包括正无理数,零和负无理数5.在单元复习课上,老师要求写出几个与实数有关的结论,小明同学写了以下5个:①任何无理数都是无限不循环小数;②立方根等于它本身的数是1 和0;③在1和3这4个;④2是分数,是有理数;⑤由四舍五入得到的近似数7.30表示大于或等于7.295,而小于7.305的数.其中正确的有(填序号).6.给出下列说法:①0是最小的整数;②有理数不是正数就是负数;③正整数、负整数、正分数、负分数统称有理数;④非负数就是正数;⑤无限小数不都是有理数;⑥正数中没有最小的数,负数中没有最大的数.其中正确的说法是.7.请把下列各数填入相应的集合中12,5.2,0,2 ,227,22 ,53,0.030030003 非负数集合:{…}分数集合:{…}无理数集合:{…}8.已知m 的绝对值是1n ,的绝对值是4.求m n 的最大值.易错点二:运算顺序错误实数运算:在实数范围内,可以进行加、减、乘、除、乘方及开方运算,而且有理数的运算法则和运算律在实数范围内仍然成立易错提醒:在有理数混合运算中不注意运算导致计算错误,所以要牢记运算顺序避免出错:①先算乘方,再算乘除,最后算加减;②有括号先算括号里面的,再算括号外面的;先算小括号,再算中括号,后算大括号.例3 1.817 ,计算 的结果是()A .100B .181.7C .181.7D .0.01817易错警示:关于实数的运算,要掌握好与实数的有关概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。

2023年中考数学《代数式和方程中常见的易错问题》重点知识及例题解析

2023年中考数学《代数式和方程中常见的易错问题》重点知识及例题解析

2023年中考数学《代数式和方程中常见的易错问题》重点知识及例题解析◆题型一:直线定点和代数式的值和某字母无关一次函数y=mx+m-1过定点【解析】一次函数过定点问题和整式中和某字母取值无关是同一类题:一次函数过定点实质上指的是和m的取值无关。

按照这种思路过可以解决很多的定点问题。

把一次函数解析式变形:y=m(x+1)-1,我们把(x+1)看作m的系数,若和m的取值无关,则系数(x+1)=0,即x=1,此时y=-1.因此,此一次函数过定点(-1,-1)。

1. 2022·江苏泰州·三模)小明经探究发现:不论字母系数m 取何值,函数()224365y x m x m =−+++的图像恒过一定点P ,则P 点坐标为______. 【答案】3,142⎛⎫− ⎪⎝⎭【分析】根据不论字母系数m 取何值图像恒过一定点P ,取值与m 无关,则字母m 的系数为0,进而可得答案.【详解】解:()224365y x m x m =−+++()224635y x x m x =+−++当46=0x +,即32x =−时,14y =, 所以无论字母系数m 取何值时,图像恒过一定点P 3,142⎛⎫− ⎪⎝⎭. 【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特点,解答本题的关键是明确题意,知道字母m 的系数为0时,才与m 的取值无关.2. 整式(ax 2+bx -1)-(4x 2+3x )的最后结果与x 的取值无关,求a ,b 的值。

解:由(1)(ax 2+bx-1)-(4x 2+3x )化简的结果是(a-4)x 2+(b-3)x-1,得a=4,b=3.1.(2022·重庆八中二模)对于五个整式,A :2x 2;B :x +1;C :﹣2x ;D :y 2;E :2x-y 有以下几个结论:①若y 为正整数,则多项式B ⋅C +A +B +E 的值一定是正数;②存在实数x ,y ,使得A+D+2E 的值为-2;③若关于x 的多项式M =3(A −B)+m ⋅B ⋅C (m 为常数)不含x 的一次项,则该多项式M 的值一定大于-3.上述结论中,正确的个数是( )A .0B .1C .2D .3 【答案】B【分析】根据整式的四则运算法则逐个运算即可判断.【详解】解:对于①:B ⋅C +A +B +E =(x +1)(−2x)+2x 2+x +1+2x −y =x −y +1,显然当x =−100,y =1时代入化简后的式子中结果为负数,故①错误;对于②:A +D +2E =2x 2+y 2+2(2x −y)=2x 2+y 2+4x −2y =−2时,整理得到:2(x +1)2+(y −1)2−1=0,显然当x =−1,y =2时代入化简后式子中满足,故②正确;对于③:M =3(A −B)+m ⋅B ⋅C =3(2x 2−x −1)+m(x +1)(−2x)=(6−2m)x 2−(3+2m)x −3, ∵不含x 的一次项,∴320m +=,解出m =−32,此时M =9x 2−3≥−3,即M 的值一定大于等于-3,故③错误;故选:B .【点睛】本题考查了整式的四则运算,属于基础题,熟练掌握整式的四则运算法则是解题的关键. 2.(2022·重庆市育才中学二模)已知多项式A =x 2+2y +m 和B =y 2−2x +n (m ,n 为常数),以下结论中正确的是( )①当2x =且m +n =1时,无论y 取何值,都有A +B ≥0;②当m =n =0时,A ×B 所得的结果中不含一次项;③当x y =时,一定有A ≥B ;④若m +n =2且A +B =0,则x y =;⑤若m =n ,A −B =−1且x ,y 为整数,则|x +y |=1.A .①②④B .①②⑤C .①④⑤D .③④⑤ 【答案】B【分析】主要是运用整式的运算法则及因式分解等知识对各项进行一一判断即可.【详解】①当2x =且m +n =1时,A+B=4+2y +m +y 2−4+n =y 2+2y +1=(y +1)2,∵无论y 取何值,总有(y +1)2≥0,∴无论y 取何值,都有A +B ≥0,故①正确;②当m =n =0时,A ×B =(x 2+2y )(y 2−2x )=x 2y 2−2x 3+2y 3−4xy ,∴A ×B 所得的结果中不含一次项;故②正确;③当x y =时,A −B =x 2+2y +m −(y 2−2x +n )=x 2+2x +m −x 2+2x −n =4x +m −n , 其结果与0无法比较大小,故③错误;④若m+n=2且A+B=0,则A+B=x2+2y+m+y2−2x+n=x2+y2+2y−2x+2=0,变形得:(x−1)2+(y+1)2=0,∴x=1,y=-1,∴x=-y,故④错误;⑤若m=n,A−B=−1且x,y为整数,则A−B=x2+2y+m−(y2−2x+n)=x2+2y−y2+2x=−1x2−y2+2x+2y+1=0变形得:(x+1)2−(y−1)2=−1,因式分解得:(x+y)(x−y+2)=−1,∵x,y为整数,则必有|x+y|=1.故⑤正确;故选:B【点睛】本题主要考查的是整式运算及因式分解的应用,解决本题的关键是熟练掌握运用乘法公式进行计算及因式分解.3.(2022·江苏泰州·三模)小明经探究发现:不论字母系数m取何值,函数y=2x2+(4m−3)x+6m+5的图像恒过一定点P,则P点坐标为______.,14)【答案】(−32【分析】根据不论字母系数m取何值图像恒过一定点P,取值与m无关,则字母m的系数为0,进而可得答案.【详解】解:y=2x2+(4m−3)x+6m+5y=2x2+(4x+6)m−3x+5时,y=14,当4x+6=0,即x=−32,14).所以无论字母系数m取何值时,图像恒过一定点P(−32【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特点,解答本题的关键是明确题意,知道字母m的系数为0时,才与m的取值无关.4.(2021·河北唐山·一模)老师写出一个整式(ax2+bx-1)-(4x2+3x)(其中a、b为常数,且表示为系数),然后让同学给a 、b 赋予不同的数值进行计算,(1)甲同学给出了一组数据,最后计算的结果为2x 2-3x -1,则甲同学给出a 、b 的值分别是a =_______,b =_______;(2)乙同学给出了a =5,b =-1,请按照乙同学给出的数值化简整式;(3)丙同学给出一组数,计算的最后结果与x 的取值无关,请直接写出丙同学的计算结果. 【答案】(1)6、0(2)241x x −−(3)丙同学的计算结果是-1.【分析】(1)将所求式子化简,然后根据计算的结果为2x2-3x-1,即可得到a 、b 的值;(2)将a 、b 的值代入(1)中化简后的结果,即可解答本题;(3)根据(1)中化简后的结果和题意,可以写出丙同学的计算结果.【详解】(1)解:(ax2+bx-1)-(4x2+3x )=ax2+bx-1-4x2-3x=(a-4)x2+(b-3)x-1,∵甲同学给出了一组数据,最后计算的结果为2x2-3x-1,∴a-4=2,b-3=-3,解得a=6,b=0,故答案为:6,0;(2)解:由(1)(ax2+bx-1)-(4x2+3x )化简的结果是(a-4)x2+(b-3)x-1,∴当a=5,b=-1时,原式=(5-4)x2+(-1-3)x-1=x2-4x-1,即按照乙同学给出的数值化简整式结果是x2-4x-1;(3)解:由(1)(ax2+bx-1)-(4x2+3x )化简的结果是(a-4)x2+(b-3)x-1,∵丙同学给出一组数,计算的最后结果与x 的取值无关,∴原式=-1,即丙同学的计算结果是-1.【点睛】本题考查整式的加减,解答本题的关键是明确题意,计算出相应的结果.5.(2021·河北唐山·一模)定义:若A−B=m,则称A与B是关于m的关联数.例如:若A−B=2,则称A与B是关于2的关联数;(1)若3与a是关于2a的关联数,则a=__________.(2)若(x−1)2与x+1是关于-2的关联数,求x的值.(3)若M与N是关于m的关联数,M=2mn−n+3,N的值与m无关,求N的值.【答案】(1)1(2)x1=1,x2=2(3)2.5【分析】(1)直接利用关联数列出方程进行计算即可;(2)直接利用关联数列出方程进行计算即可;(3)直接利用关联数列出M-N=m的方程,将M=3mn+n+3代入,用m、n的式子表示出N,再利用N的值与m无关进行计算即可.(1)解:∵3与a是关于2a的关联数,∴3-a=2a,∴a=1,故答案为:1(2)解:(x−1)2−(x+1)=−2,整理得x2−3x+2=0则(x−2)(x−1)=0解得:x1=1,x2=2.∴x的值为1或2;(3)解:(2mn−n+3)−N=m,N=2mn−m−n+3=m(2n−1)−n+3,∵N的值与m无关,∴2n−1=0,∴n=0.5,∴N=2.5.【点睛】本题考查了新型定义题型,解一元一次方程、解一元二次方程,整式的值与字母无关,解题的关键是准确理解题干,列出方程,进行解答.6.(2021·浙江·杭州育才中学二模)已知多项式M=(2x2+3xy+2y)−2(x2+x+yx+1).(1)当|x−1|+(y−2)2=0,求M的值;(2)若多项式M与字母x的取值无关,求y的值.【答案】(1)M=2(2)y=2【分析】(1)先化简M,进而根据非负数的性质求得x,y的值,进而代入求解即可;(2)根据(1)中M的化简结果变形,令含x项的系数为0,进而求得y的值【详解】(1)解:M=(2x2+3xy+2y)−2(x2+x+yx+1)=2x2+3xy+2y−2x2−2x−2yx−2=xy+2y−2x−2|x−1|+(y−2)2=0∴x=1,y=2原式=1×2+2×2−2×1−2=2(2)∵M=xy+2y−2x−2=(y−2)x+2y−2与字母x的取值无关,∴y−2=0解得y=2【点睛】本题考查了整式加减化简求值,整式无关类型,掌握整式的加减运算是解题的关键.◆题型二:特殊代数式求值①若m,n是方程2x2−4x−7=0的两个根,则2m2−3m+n的值为【解析】一次代入无法求得结果,出现这种情况,我们可以从先代高次再代低次!把2m2=4m+7代入,原式=m+n+7,然后用韦达定理即可求值。

2023年中考数学复习第一部分考点梳理第一章数与式第4节二次根式

2023年中考数学复习第一部分考点梳理第一章数与式第4节二次根式

1.4 二次根式1.下列二次根式是最简二次根式的是 (D ) A .√32 B .√43C .√1.5D .2√102.[易错题]√4的算术平方根是 (B ) A.±√2 B.√2C.±2D.23.下列等式正确的是 (A ) A .(√3)2=3 B .√(−3)2=-3C .√33=3D .(-√3)2=-3 4.计算:√5+12-1×√5+12= (B ) A.0 B.1 C.2 D.√5−12【解析】√5+12-1×√5+12=√5+1−22×√5+12=√5−12×√5+12=(√5)2−124=1. 5.实数a 在数轴上的位置如图所示,则√(a −4)2+√(a −11)2 化简后为(A )A.7B.-7C.2a -15D.无法确定【解析】由数轴可知5<a <10,∴√(a −4)2+√(a −11)2=a -4+11-a =7.6.[数学文化]已知三角形的三条边长分别为a ,b ,c ,为求其面积,中外数学家曾经进行过深入研究.古希腊的几何学家海伦(Heron)给出求其面积的海伦公式S =√p(p −a)(p −b)(p −c),其中p =12(a +b +c );我国南宋时期数学家秦九韶曾提出利用三角形的三边求其面积的秦九韶公式S =12√a 2b 2−(a 2+b 2−c 22)2.若一个三角形的三边长分别为2,3,4,则其面积是 (B ) A .3√158B .3√154C .3√152D .√152【解析】∵三角形的三边长分别为2,3,4,∴p =12×(2+3+4)=92,由海伦公式得S =√92×52×32×12=3√154;或由秦九韶公式得S =12√22×32−(22+32−422)2=3√154.7.(2022·合肥三十八中一模)函数y=√1−2x的自变量的取值范围是x≤12.8.(2021·天津)计算(√10+1)(√10-1)的结果等于9.9.若x=√2−12,则4x2+4x=1.解法1:直接代入求值;解法2:整体代入求值.10.[创新思维]在如图的方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为6√2.【解析】由题意可知,第一行三个数的乘积为3√2×2×√3=6√6,设第二行中间的数为x,第三行第一个数为y,则√3xy=6√6,解得xy=√6√3=6√2.11.化简:√12+14×√−643-15√13.解:原式=2√3+14×(-4)-15×√33=2√3-1-5√3=-1-3√3.12.已知x=2-√3,y=2+√3.(1)求x2+y2-3xy的值;(2)若x的整数部分是m,y的小数部分是n,求5m2-n的值.解:(1)∵x=2-√3,y=2+√3,∴x+y=4,xy=1,∴x2+y2-3xy=(x+y)2-5xy=42-5×1=11.(2)∵1<√3<2,∴0<2-√3<1,3<2+√3<4,∴m=0,n=2+√3-3=√3-1,∴5m2-n=5×02-(√3-1)=1-√3.13.(2021·湖南娄底)若2,5,m 是某三角形三边的长,则√(m −3)2+√(m −7)2等于 (D ) A.2m -10 B.10-2m C.10D.4【解析】由题意,得3<m <7,∴原式=m -3+7-m =4.14.设a =√7+√6,b =√7-√6,则a 2023b 2022的值是 √7+√6 .【解析】由题意,得ab =(√7+√6)(√7-√6)=1,∴a 2023b 2022=a ·(ab )2022=√7+√6. 15.先观察下列各式,然后回答问题:第1个等式:√32−12=√8×1; 第2个等式:√52−32=√8×2; 第3个等式:√72−52=√8×3; 第4个等式:√92−72=√8×4; …(1)第6个式子是 √132−112=√8×6 ;(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明. 解:(2)第n 个等式是√(2n +1)2−(2n −1)2= √8n .证明:左边=√(4n 2+4n +1)−(4n 2−4n +1)= √8n =右边,∴等式成立. 16.观察以下等式: 第1个等式:√1+13=2√13; 第2个等式:√2+14=3√14; 第3个等式:√3+15=4√15; 第4个等式:√4+16=5√16; 第5个等式:√5+17=6√17;……按照以上规律,解决下列问题:(1)写出第6个等式: √6+18=7√18; (不用化简)(2)写出你猜想的第n 个等式: √n +1n+2=(n +1)√1n+2 (n 为正整数,用含n 的式子表示),并证明; (3)利用(2)中的结论化简: √2021+12023×√2023. 解:(2)证明:左边=√n(n+2)+1n+2=√n 2+2n+1n+2=√(n+1)2n+2. ∵n 为正整数,∴n +1>0,∴左边=(n +1)√1n+2=右边,∴等式成立.(3)√2021+12023×√2023=2022√12023×√2023=2022.。

数与式(初中数学错误总结)

数与式(初中数学错误总结)

一、数与式易错点1:有理数、无理数及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。

以及绝对值与数的分数。

每年选择必考。

易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把握好符号关:;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出错。

易错点3:平方根、算术平方根、立方根的区别。

填空题必考。

易错点4:求分式值为零时学生易忽略分母不能为零。

易错点5:分式运算时要注意运算法则和符号的变化。

当分式的分子分母是多项式时要先因式分解。

因式分解到不能再分解为止。

注意计算方法,不能去分母,把分式化为最简分式。

填空题必考。

易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。

易错点7:计算第一题必考。

五个基本数的计算;0指数,三角函数、绝对值,负指数,二次根式的化简。

易错点8:科学记数法。

精确度,有效数字。

易错点9:代入求值要使式子有意义。

各种数式的计算方法要掌握,一定要注意计算顺序。

二、方程(组)与不等工(组)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。

易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。

(消元降次)主要陷阱是消除了一个带X公因式要回头检验!易错点3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。

易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。

易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。

易错点6:解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。

易错点7:不等式(组)的解集问题要先确定解集,确定解集的方法运用数轴。

易错点8:利用函数图像求不等式的解集和方程的解。

三、函数易错点1:各个待定系数表示的意义。

易错点2:熟练掌握各种函数解析式的求法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

29、若 1 <-1 ,则 a 取值范围是 __ ___.
a
30、小于 2 的整数有 _ ___ 个。
31、如果 |a|=2 ,那么 3a-5=__ ___ 。
32、 2 __ __ 分数(填“是”或“不是” ) 2
33Байду номын сангаас 16 的算术平方根是 _ _____ 。
34、当 m=__ ____时, m 2 有意义。 35、当 x_______时, |3-x|=x-3 。 36、已知有理数 a、b 满足 (a+2) 2+|2b-6|=0 ,则 a-b=______。 37、化简 (3.14 )2 =__ ___ 。
38、化简 (5 a) 1 =___ ___ 。 5a
39、使等式 ( x 4 )( 4 x ) x 4 4 x 成立的条件是 __ ___ 。
40、化简 ( 2x 3y)2 (3y 2x) 2 =_ __ 。
41、若 a2=2,则 a=_ _ ;若 ( a ) 4 2 ,则 a=__ __ 。
42、已知 (-3) 2=a2,则 a=_______。 43、6 与 4 的比例中项为 __________。
22 21
14、把 a
1 a
( a 不限定为正数)化简,结果为(

A、 a
B 、 a C 、- a D 、- a
15、若 a+|a|=0 ,则 (a 2)2 a2 等于( )
A、 2-2a B 、2a-2 C 、-2 D 、2
16、已知 2x 1 1 2x 0 ,则 x2 2x 1 的值( )
A、 1
则水流速度( )
A、2 千米 / 小时 B 、3 千米 / 小时 C 、6 千米 / 小时
7、“比 x 的相反数大 3 的数”可表示为(

A、-x-3 B 、-(x+3) C 、3-x
D
D 、不能 、x+3
8、有理数中,绝对值最小的数是(

A、-1 B 、 1
C
、0
9、若 |x|=x ,则 -x 一定是( )
44、已知实数 x 满足等式 x2 2x 1
x ,那么实数 x 的取值范围 1 2x
为____

45、已知整数 m 满足 (7 m)2 m 1,那么 m =______________。
22、因式分解: -4x 2+y2=
, x 2-x-6=
23、计算: a6÷a2=____ __ ,(-2) -4 =__ ____ , -2 2=____
。 __ 。
24、已知 A、 B、 C 是数轴上的三个点,点 B 表示 1,点 C表示 -3 ,
AB=2,则 AC的长度是 _________。
是( )
A、 -1 B 、0 C 、1
D
、8
12、两个有理数的和除以这两个有理数的积, 其商为 0,则这两个
有理数为( )
A、互为相反数 B 、互为倒数 C 、互为相反数且不为 0 D、有
一个为 0
13、下列计算哪个是正确的( )
A、 3 2 5
B
、2 5 2 5
C、 a 2 b2 a b
1
D、
22 21
18、a 是有理数,且 a 的平方等于 a 的立方,则 a 是_ _ 。
19、已知等式 3 1 x x 1 0 在实数范围内成立 , 那么 x 的值为
_____。 20、如果一个数的绝对值等于它的相反数,那么这个数一定是
_________。
21、已知 a-b=1, b+c=2, 则 2a+2c+1=_______。
A、互为相反数
B 、绝对值相等
C、是符号不同的数 D 、都是负数 5、有理数 a、b 在数轴上的位置如图所示,则化简 |a-b|-|a+b| 的 结果是( ) A、2a B 、2b C 、2a-2b D 、2a+b
b
Oa
6、轮船顺流航行时 m 千米 / 小时,逆流航行时 (m-6) 千米 / 小时,
25、P 点表示有理数 2,那么在数轴上到 P 点的距离等于 3 个单位
长度的点所表示的数是 _ _ 。 26 、在数轴上,到原点的距离等于
5 个单位长度的点共有
__________个。
27、比 -2.1 大而比 1 小的整数共有 ______个。 28、用简便方法计算: 1-2+3-4+5-6+ …+119-120=___ __ 。
中考数学基础易错题(代数部分一)
1、
1 2
的倒数的相反数是(
A、-2 B 、 2 C
) 、- 1
2
1
D、
2
2、 1 2 的相反数是(

A、 1 2 B 、 2 1 C 、 1 2 D 、 2 1
3、0.4 的算术平方根是( )
A、0.2 B 、± 0.2 C 、 10 D 、± 10
5
5
4、A、B 是数轴上原点两旁的点, 则它们表示的两个有理数是 ( )
B
、± 1
2
17、给出以下变形:
C 、1 2
D、 - 1 2
① a( x 1)2
2
ax 2
2ax a2
2;
② 31 (a b)
31
31 ;
ab
③ (x
3 )( y
3 )
1 ( x 3)( y
3) ;
2
24
④若 (2 a)2 9b2 ,则 2 a 3b ;
⑤若 xy 2y,则 x 2 ; 其中错误的是 _________(填序号)。
A、正数 B 、非正数 C 、负数 D
D、不存在 、非负数
10、如果 0<a<1,那么下列说法正确的是( )
A、 a2 比 a 大
B 、 a2 比 a 小
C、 a2 与 a 相等
D
、a2 与 a 的大小不能确定
11、数轴上,A 点表示 -1 ,现在 A 开始移动, 先向左移动 3 个单位,
再向右移动 9 个单位, 又向左移动 5 个单位, 这时, A 点表示的数
相关文档
最新文档