电离层闪烁和降雨衰落同时发生

合集下载

环境对电磁波的影响

环境对电磁波的影响

环境对电磁波的影响环境对电磁波的影响闪烁与折射大气折射、大气闪烁、电离层闪烁和电离层产生的法拉第旋转对电波传播都有不同程度的影响,会造成衰减和起伏。

一、大气折射大气折射率随着高度增加,并随着大气密度减小而减小,电波射线因传播路径上的折射率随着高度变化而产生弯曲,波束上翘一个角度增量。

而且这一偏移量还因传播途中大气折射率的变化而随时变化。

大气折射率的变动对穿越大气的电波起到一个凹透镜的作用,使电波产生微小的散焦衰减,衰减量与频率无关,在仰角大于5°时,散焦衰减小于0.2dB。

此外,因大气湍流引起的大气指数的变化,使电波向各个方向上散射,导致波前到达大口面天线时振幅和相位不均匀分布,引起散射衰减,这类损耗较校二、大气闪烁大气折射率的不规则变化,引起信号电波的强度变化,叫做大气闪烁。

这种闪烁的衰落周期为数十秒。

2~100 GHz的大气闪烁是由于大气折射率的不规则性使电波聚焦与散焦,与频率无关。

三、电离层闪烁电离层中不均匀体的发生和发展,造成了穿过其中电波的散射,使得电磁能量在时空中重新分布,造成电波信号的幅度、相位、到达角、极化状态等发生短期不规则的变化。

观测数据表明,电离层闪烁发生的频率和强度与时间、地区太阳活动有关、衰落强度还与工作频率有关。

当频率高于1GHz时影响一般大大减轻,卫星移动通信系统的工作频率一般较低,电离层闪烁效应必须考虑,但即使是工作在C波段的系统,在地磁低纬度的地区也会发现电离层闪烁的影响。

赤道区或低纬度区指地磁赤道以及其南北20°以内的区域,20~50°为中纬度区,地磁50°以上为高纬度区。

在特定的条件下,更高的频段也能记录到电离层闪烁。

例如日本冲绳记录到12GHz卫星信号最大3dB值的电离层闪烁事件。

我国处于世界上两个电离层赤道异常区域之一。

电离层闪烁影响的频率和地域都较宽,不易解决。

对闪烁深度大的地区,用编码、交织、重发等技术,来克服衰落,其他地区可以用增加储备余量的方法克服电离层的闪烁。

卫星通信课件第4章卫星链路设计

卫星通信课件第4章卫星链路设计
为规划适当的链路裕量,需要计算对一给定时间百分 比预测的降雨衰减
预估计雨衰减的方法
➢ 物理方法:路径衰减是路径沿线上遇到的雨点所造成的单 个降雨衰减增量的一个积分;
➢ 预测模型:计算雨中有效路径长度Leff的半经验近似方法, 在这个有效路径上假设降雨率不变。
预测模型主要有三个步骤:
➢确定所关心的时间百分比内的降雨强度;
• 温带纬度范围内仰角接近30o的路径上于30GHz频率附近的云 层衰减的典型值在1dB~2dB之间;
大气损耗和噪声La
太阳噪声、宇宙噪声 地球噪声、人为噪声
N0
接收天线指向损失[LRP]
1 星地传输方程
接收功率通量密度
➢全向天线下
通量密度
Pfd
PT
4 d 2
, (W/m2 )
➢方向性天线下
• 通量密度
Pfd
PTGT
4 d 2
, (W/m2 )
Pfd EIPR 10log(4 d 2 ), (dBW/m2 )
平方频率变化法则
A(E2 ) csc(E2 )
假设同一条路径上在f1 GHz和f2 GHz频率上测得的衰减为A(f1 )和
A(f2
)则它们有如下近似关系:A( A(
f1) f2)
( (
f1)2 f2 )2
这个公式建立起了长期统计值之间的联系,它不能用于链路上的短
期频率变化或是靠近任何共振吸收线的频率。
• 从雨衰产生的机理可以得到雨衰减大小与雨滴半径和波长比 值有密切的关系,当电波的波长可以和雨滴的尺寸相比拟时 ,将引起雨滴共振,产生最大的雨衰。
2 传播效应——与水汽凝结有关
雨衰估计
降雨率超过R的百分比时间 100

卫星通信系统中的干扰分析及解决措施

卫星通信系统中的干扰分析及解决措施

1 卫星通信系统概述1.1 卫星通信系统的工作原理在卫星信号传输过程中,我们主要依靠人造地球卫星作为中转站,同时连接建造在地面上的多个地面站进行传输。

因此,空间和地面构成了卫星信号传输系统的两个主要部分。

太空是指人造地球通信卫星,地球是指我们著名的地球站。

在卫星信号的整个传输过程中,人造地球卫星主要作为接收和传输信号的转运站。

卫星信号传输系统实际上是依靠卫星站接收来自地球的无线信号,然后将其转发到另一个地面站,可以在相距很远的不同地方实现信号传输和通信。

1.2 卫星通信系统的研究分析随着当今社会的飞速发展,我国的通信技术水平不断提高。

在这种情况下,卫星通信系统也得到了很大的改进。

但是,信号在实际传输过程中会受到各种因素的影响,从而对通信传输质量产生很大的影响。

因此,卫星通信要想得到更好的发展,就必须加强对通信信号传输的研究,提高日常通信的质量,确保信号传输的安全。

2 卫星通信常见的干扰及原因分析2.1 自然现象干扰卫星通信的自然干扰主要包括以下形式:雨(雪)衰、日凌、电离层闪烁和卫星蚀。

所谓雨(雪)衰,是指通信电波在传输过程中,如果遭遇了降雨降雪的天气,就会对电波有一定的吸收和散射作用,会使得电波有所衰减,从而形成雨(雪)衰。

日凌往往出现在每年春分和秋分前后,当卫星处于太阳和地球之间时,地球站天线在面对卫星时也会对准太阳。

由于太阳形成的大量辐射噪声,会影响正常的卫星通信信号接收,这种干涉被称为日凌干涉。

电离层闪烁是指在电波穿越电离层的时候,受电离层结构不均的影响,信号的振幅、相位等都会受到一定的影响,会产生不规则的变化,从而形成电离层闪烁。

卫星蚀多发生于春季和秋季,因为在春季和秋季的一些时间内,卫星是处于地球和太阳所在直线的末端的,这时卫星进入了地球的阴影区,阳光被地球遮挡,从而不能进行太阳能电池的供电,只能依靠蓄电池或燃料来对卫星进行供电。

上述几种自然干扰往往是无法避免的,但是我们仍可以采取一些措施,在最大程度上降低其对卫星通信的影响。

卫星通信系统的干扰类型及应对措施

卫星通信系统的干扰类型及应对措施

Telecom Power Technology运营探讨 2022年1月25日第39卷第2期137 Telecom Power TechnologyJan. 25, 2022, Vol.39 No.2王焕娟:卫星通信系统的干扰类型及应对措施输的信号和数据进行预处理,从信号空间将内容转移至观察空间,针对性选择通信系统所传输的特征信号和数据,并对这些特征信号和数据给予甄别,以达到有效识别卫星干扰的目的。

2 卫星通信系统的常见自然干扰2.1 环境中的干扰卫星通信系统常见的自然干扰主要包括日凌、雨衰、电离层闪烁,这部分干扰无法避免,只能通过一些有效措施来减少对卫生通信系统造成的影响。

日凌一般是指太阳、卫星在春分、秋分的中午将会与地球处于同一条直线上,这样就会诱发太阳产生巨大的噪声源,不同程度上干扰了卫星通信系统所接收的信号,甚至还有可能导致卫星信号接收中断。

该情况每年会出现两次,一次大概要持续6天。

雨衰则是因为电波穿过降雨区域时,电波能量将会被雨粒吸收,并且对电波产生散射,两者结合在一起就会诱发电波衰减,进而产生一定程度的无线电干扰。

针对雨衰现象对卫星通信系统运行产生的干扰,可以选择在上行站采用高纠错编码、加大发射机功率、优化上行功率控制手段、站指分级技术等方式来弥补由上行链路中雨、云、雪、雾等天气导致的卫星上行信号衰减现象[4]。

实际上,电离层闪烁主要是因为电离层结构上的随机时变性和不均匀性有可能使电波穿越电离层时信号的相位、振幅及到达角等出现短周期性改变,进而诱发了电离层闪烁现象。

通常情况下,解决电离层闪烁现象的对策包括两点,一是提高电离层闪烁衰落储备余量,二是选择编码分级或时间分级。

2.2 空间上的干扰空间上的干扰主要包括邻星干扰,邻星干扰又包括了上行邻星干扰和下行邻星干扰。

其中上行邻星干扰主要是因为天线对星错误进而将信号错误发射至相邻卫星或者因为天线旁瓣增益过高而对邻星产生了一定的干扰。

为了使上行邻星干扰问题得到有效解决,就需要保证天线对星准确,严禁选择口径过小或旁瓣指标超高的天线。

卫星通信系统中的干扰因素及解决措施

卫星通信系统中的干扰因素及解决措施

· 211 · 2023年3月10日第40卷第5期运营维护技术DOI:10.19399/j.cnki.tpt.2023.05.067卫星通信系统中的干扰因素及解决措施赵向乾(河北远东通信系统工程有限公司,河北 石家庄 050200)摘要:我国经济正处于快速发展的重要时期,各领域对于卫星通信质量提出了更高的要求,因此将卫星通信系统作为研究对象,叙述其基础分类,分析其应用优势,对常见的干扰类型做简要概述,并从相关干扰因素出发,提出较为具体的解决措施,旨在为更多卫星通信相关单位提供参考,提升卫星通信质量,助推我国各个领域的可持续发展。

关键词:卫星通信系统;通信干扰;解决措施Interference in Satellite Communication System and SolutionsZHAO Xiangqian(Hebei Far East Communication System Engineering Co., Ltd., Shijiazhuang 050200, China)Abstract: China ’s economy is in an important period of rapid development, and various fields have put forward higher standards for communication quality, which requires in-depth research. This paper takes satellite communication system as the research object, briefly describes its basic classification, analyzes its application advantages, and briefly summarizes common types of concentrated interference. Finally, starting from the analysis of ground environment, natural environment, equipment failure, space and other interference factors, it provides specific measures to solve the interference factors of satellite communication system, aiming to provide more units related to satellite communication with thinking direction and improve the quality of satellite communication, promote sustainable development in all fields of China.Keywords: satellite communication system; interference of communication; solution1 卫星通信系统基础分类卫星通信系统在进行具体划分的过程中,根据其运行特性可以分为近地轨道(Low Earth Orbit ,LEO )卫星通信系统、中地球轨道(Middle Earth Orbit ,MEO )卫星通信系统以及地球同步轨道(Geosynchronous Eearth Orbit ,GEO )卫星通信系统。

国外QV频段通信卫星发展态势分析

国外QV频段通信卫星发展态势分析

国外Q/V频段通信卫星发展态势分析原晋谦1 罗一丹2 高薇薇1(1 中国空间技术研究院通信卫星事业部,2中国长城工业集团有限公司)近年来,大容量、高速率的服务需求牵引着通信卫星系统与技术的快速发展,Q/V束定向性好、干扰源少等特性,发展前景被广泛看好,从军事领域逐渐向商业应用转移,技术试验、产品研发步伐加快,已成为下一代超高通量卫星系统的重要使能技术,引发了激烈的国际竞争。

1 Q/V频段通信概述Q/V频段位于无线电频谱的极高频(EHF)30~300GHz区域,工作于该频段的电磁波属于毫米波的范畴,其中Q频段对应则对应50~75GHz,是卫星通信领域有待开发的一段频谱资源[1]。

技术优势一是与传统卫星通信频段相比,Q/V频段波长短(4~9.1mm),在相同增益要求条件下更易于实现星上载荷设备的小型、轻量化与高密度设计[2],从而节省星上质量和空间资源,并降低系统成本。

二是在相同发射功率下,Q/V频段波束较窄、增益高,利于在高通量卫星系统的用户链路进行多波束设计、实现较高的频率复用因子,以提升容量;波束旁瓣小、定向性强,被截听概率低、保密性高。

三是Q/V频段可用带宽超过10GHz,远超C、Ku、Ka等传统频段,利于开展宽带通信业务;且由于频段高、干扰源少,信号传输更加稳定可靠。

四是相对于特高频(UHF)和超高频(SHF)频段,电离层闪烁和多径衰落对Q/V频段的电磁波影响小,近地/低空核爆炸的大气离子化、折射率变化、尘埃、污染等虽然会引起短暂衰减,但很快可恢复通信。

技术劣势一是相对于低频段,Q/V频段面临大气衰减严重,因此在星地链路设计中,必须避开60GHz的衰减峰(可达15dB/km),35GHz、45GHz等衰减效应小的“大气窗口”可作首选。

二是雨衰效应显著,决定了系统所需的功率余量大,可用仰角小,可用性及建设成本高等。

雨衰抑制技术制约了星地链路的连续可用性,有待深入研究,这是Q/V频段投入商业应用的重要前提。

太阳活动对地球以及地球空间的影响

太阳活动对地球以及地球空间的影响

太阳活动对地球电网以及地球空间卫星的的影响摘要:众所周知,太阳的变化与我们的地球以及地球的空间环境都有密切的联系。

而空间天气复杂多变的源头也同样来自于太阳,为太阳的剧烈活动所驱动。

本文主要论述太阳的一些常见活动以及太阳活动而导致的空间天气效应对地球电网和对空间卫星系统的影响。

关键词:太阳活动、空间天气效应、电网、空间卫星系统引言太阳活动是指太阳大气中局部区域各种不同活动现象的总称。

包括太阳黑子,光斑,谱斑,太阳风,耀斑,日珥等。

而太阳活动区则是以黑子为主体的太阳活动现象汇聚的区域。

太阳活动对于地震、火山爆发、旱灾、水灾、人类心脏和神经系统的疾病,甚至交通事故都有关系。

空间天气是基于太阳活动的在太阳表面、行星际空间、磁层、电离层和热层中,某一时刻或短时段内的环境条件。

通常以表征空间环境状态的太阳电磁辐射、太阳风、磁层磁场、地球辐射带、电离层电子密度、太阳耀斑、磁暴、磁层亚暴、电离层暴、电离层突然骚扰等空间天气现象来描述。

它们的状态可能影响空间和地面的技术系统性能与可靠性, 危及人类的生命和健康,恶劣的空间天气可引起电网的崩溃及卫星运行、通信的障碍, 造成多方面的经济损失。

地球表面是人类赖以生存和发展的场所。

作为太阳系中的地球,在它的整个历史上始终受到太阳光和热的作用,它们与地球内部动力所引起的各种现象之间相互作用,驱动着地球表层的演化。

当地球的大气圈河水圈形成以后,以太阳能为动力的太阳这台发动机驱动着大气和大洋环流,形成风、云、雨、雪。

河流出现了,开始流入大洋,山脉受到剥蚀。

这一切都在塑造和改变着地表的环境,影响着地球的生物圈,使地球的气候、生物以及地球化学循环趋于多样化。

地球空间环境是指地球大气层以外存在的中性气体、电离层气体、等离子体和各种能量的带电粒子;引力场、磁场和电场;Y射线、X射线、紫外线、可见光至无线电波等电磁辐射;宇宙尘、微流星及人为造成的空间碎片和垃圾等等。

地球空间环境具有十分复杂的空间结构和随时间变化特征,并与太阳活动密切相关。

卫星通信常见的干扰分析及抗扰措施

卫星通信常见的干扰分析及抗扰措施

2020年第08期75卫星通信常见的干扰分析及抗扰措施杨贯荣32369部队,北京 100042摘要:随着卫星通信技术的发展,卫星应用日益凸现其独特的优势。

卫星干扰一方面会给卫星业务的正常开展造成巨大危害;另一方面,由于卫星应用往往具有国际性、战略性和全局性,卫星干扰还可能造成无法估量的国际影响和社会影响。

文章归纳梳理了常见的卫星通信干扰类型,并提出解决措施。

关键词:卫星通信;干扰分析;抗扰措施中图分类号:TN927.20 引言与其他通信手段相比,卫星通信有极高的性价比,因此得到了迅速推广与应用。

但卫星通信受设备本身客观因素、社会因素、自然环境和人为因素的影响,会存在各种干扰,影响系统传输质量和稳定性。

下面总结几种常见干扰及处理措施。

1 常见的干扰类型1.1 地面干扰1.1.1 杂波干扰理想的卫星通信系统是无干扰的载波信号传输,但在实际中,由于设备本身制造原因、器件制造工艺差别,使载波信号中串入一些无用的杂波或谐波,导致杂散指标不达标,影响通信效果;也有的地球站中频设备或射频设备经过长时间运行,频率、功率稳定度等技术指标发生变化,出现频率偏移、功率增大的现象[1]。

1.1.2 电磁干扰目前的电磁干扰主要由于广播电视发射设备增多,功率增大,地面上存在雷达、载波等信号,以及陆地微波通信系统同频信号相互干扰。

另外,工业、科研、医疗使用的检测仪器越来越多,频率也越来越高,有些接近卫星通信的载波频率,高压线路、高铁和轻轨电气化等设备在使用中产生干扰信号,这些信号如果存在于卫星地球站周围,就会对卫星通信系统产生干扰。

还有的地球站建在飞机的航线上,当飞机飞越地球站天线主波束时,由于要阻挡一部分电磁波,使电磁能量发生散射,在一定程度上会对通信产生影响;也有地球站设备接地电阻过高,未达到规定指标,一些中频电缆屏蔽性差导致信号串入也会产生电磁干扰。

1.1.3 互调干扰当卫星通信链路采用单载波工作状态时,不会产生互调干扰;当通信链路中有2个或多个不同频率的载波信号时,会产生谐波和组合频率分量,一些与载波信号相近的组合频率分量就会形成干扰;也有一些上行发射功率过大,把卫星转发器推至非线性工作区,使下行互调特性恶化,造成干扰[2]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ITU-R P.531-9建议书卫星业务和系统设计中需要的电离层传播数据和预测方法(ITU-R 218/3号研究课题)(1978-1990-1992-1994-1997-1999-2001-2003-2005-2007年)范围ITU-R P.531建议书介绍了一种在0.1至12GHz频率范围内在地对空路径上评价电离层传播效应的方法。

当信号通过电离层时,可能在地对空路径上发生以下效应:- 由于在路径上的地球磁场内电磁波与离子化媒质发生交互作用而导致的极化的旋转(法拉第旋转);- 由于在路径上积累的总电子含量(TEC)而导致的信号成组延迟;- 由于电离层的小规模不规则结构而导致的幅度和相位的迅速变化(闪烁);- 由于衍射而导致的到达方向的明显变化;- 由于非线性极化旋转和时延而导致的多普勒效应。

本建议书所述的数据和方法适用于在附件1所述的各有效范围内所进行的卫星系统规划工作。

国际电联无线电通信全会,考虑到a)电离层对至少12 GHz以下频率的传播有显著的影响;b)对3 GHz以下频率的非对地静止卫星轨道业务影响尤为显著;c)已经给出了经验数据和/或提出了建模方法,可用于预测卫星系统规划所需的电离层传播参数;d)电离层作用有可能影响综合业务数字网(ISDN)以及包括空间飞行器在内的其他无线电系统的设计和性能指标;e)已经发现这些数据和方法在传播现象自然变异性范围内可适用于卫星系统规划,建议1附件1中给出的数据和提出的方法在各自适用的范围内适用于规划卫星系统。

附件 11 引言本附件涉及电离层传播对地—空路径的影响。

从系统设计的角度来说,电离层效应可以归为以下几类:a)卫星移动业务(MSS)传输路径上积聚的电子总容量(TEC)渗透电离层可引起MSS载波的极化旋转(法拉第旋转)和信号时延,并且因为折射效应引起到达方向的变化;b)电离层的局部随机性,也就是通常所说的电离层不规则性,将进一步引起超量和随机的旋转以及信号时延,这些只能用随机术语进行描述;c)因为与旋转和时延相关的电子密度与频率的关系是非线性的,并且由于链路在局部不规则的电离层中的显著移入和移出产生的多普勒效应,a)和b)会进一步导致MSS载波的散射和群速度失真;d)此外,电离层的局部不规则性如聚焦或散焦的棱镜也会引起电波的会聚或发散。

这些效应通常被称为闪烁,将引起MSS信号的幅度、相位和到达角的变化。

因为电离层物理特性复杂,上面提到的受电离层效应影响的系统参数不总是能用简单的分析公式简洁地表述。

相关数据将以表格和/或图片的方式表达,并辅以进一步描述或限定性说明,在实际使用中这是最好的表述。

在考虑传播效应对3 GHz以下频率的MSS系统设计的影响时,必须认识到:e)与§f)和h)带来的影响相比,通常认为水汽现象对空—地传播路径的影响较小;f)自然表面或人为障碍物影响和/或在较低仰角情况下带来的近地表面多径效应通常比较严重;g)近地表面多径效应在各个地点的影响是不同的,因此在MSS系统设计中考虑全球范围内传播因素时,该效应不占主导地位;h)在全球范围内进行MSS系统设计时,电离层效应是需要考虑的最重要的传播因素。

2 背景因太阳辐射而产生的地球电离层由几个离子化区域组成。

从实际通信目的出发,电离层区域D、E、F 和电离区域顶端被认为有助于形成卫星和地面终端之间的TEC。

每个区域中的电离介质在空间上不均匀,在时间上也不稳定。

一般而言,电离背景与有序的昼夜、季节和为期11年的太阳活动周期的更替相关,并且强烈依赖于地理位置和地磁活动。

除电离背景之外,总是存在着被称为不规则性的高动态、小规模、非稳定的结构。

电离背景和不规则性都将使无线电波恶化,进一步地还会使得折射率由频率决定,也即介质色散。

3 电离背景引起的主要恶化许多效应,例如折射、散射和群时延,在幅度上和TEC存在直接的比例关系;考虑磁场经度分量对射线路径不同部分的加权后,法拉第旋转和TEC也存在近似的比例关系。

对于TEC的认知使得许多重要的电离层效应能够被定量地评估。

3.1 TECTEC以N T表示,可以用下面的公式求值:⎰= s eTssnN d)((1)其中:s:传播路径(m)n e:电子密度(el/m3)由于n e随着昼夜、季节和太阳活动周期变化,即使知道精确的传播路径,对N T进行评估也是困难的。

为建立模型,通常提供天顶路径上 1 m2截面面积内的TEC值。

该垂直柱状体的TEC在1016到1018 el/m2的范围内变化,峰值出现在一天中有阳光照射的时段。

为了对TEC进行评估,可以采取基于国际参考电离层(IRI)的步骤,或者采用更为灵活的、基于NeQuick的适用于倾斜角TEC评估的步骤。

所有的步骤将在下面提供。

3.1.1 基于IRI的方法标准的电离层月中值是COSPAR-URSI IRI-95。

在太阳活动为低强度到中等强度的情况下,通过数字方法可能得到选定一系列高度(最高 2 000 km)上任意地点、时间的电子容量值。

当太阳活动在高强度时,从IRI-95得到的电子容量值可能产生问题。

在很多场合,用峰值电子密度乘以300 km的等效层厚度评估电子容量就足够了。

3.1.2 基于NeQuick的方法本模型中给出的电子密度分布以一个连续函数表述,该函数所有的一阶空间导数也是连续的。

它由底部(在F2层峰值以下)和顶层(F2层峰值以上)两部分组成。

F2层的峰值高度由M(3000)F2以及foF2/foE比值计算得到(见ITU-R P.1239建议书)。

底部由代表了E、F1和F2层的不完全爱普斯坦层(semi-Epstein)描述。

顶层也是不完全爱普斯坦层,其高度由厚度参数决定。

NeQuick模型给出了沿任意地—星或卫星—地球路径的电子密度和TEC。

计算机程序和相关数据文件可由(国际电联)无线电通信局得到。

3.1.3模型精度由与无线电通信第3研究组相关的ITU-R 网站给出了用于评估NeQuick 和IRI 模型精度的文件以及超电离层的传播数据库。

3.2 法拉第旋转在电离层中传播时,由于地磁场的存在和等离子介质的各向异性,线极化波的极化平面将逐步旋转。

法拉第旋转的幅度θ,取决于无线电波的频率、磁场强度以及等离子区的电子密度:2141036.2f N B Tav -⨯=θ (2)其中: θ 为旋转角度(rad )B av 为平均地球磁场 (Wb m -2 或 Teslas ) N T 为总电子含量 (TEC )(电子 m -2)f 为频率(GHz )。

θ的典型值如图1所示。

图1法拉第旋转作为TEC 和频率的函数法拉第旋转与频率的平方成反比,与电子密度和沿传播路径的地球磁场强度的乘积成正比。

给定频率上的中值呈现出非常规则的能够预测的每日的、季节性的、太阳活动循环的特性。

因此手动调节地球站天线的极化倾斜角可以对法拉第旋转中这些规则的部分进行补偿。

但是,在小时间范围内,由于地磁场风暴和相对较小范围内电离层骚扰的大规模移动,规则的特性可能发生较大的偏离。

这些偏离是不能提前预测的。

在位于赤道近点角峰值附近地点,强烈而快速波动的VHF 信号的法拉第旋转角度已经和强烈幅度闪烁、快速幅度闪烁分别结合。

线性天线的交叉极化鉴别能力XPD(dB),与法拉第角度θ相关:XPD=–20 log (tan θ) (3)3.3 群时延电离层中充电粒子的存在减缓了无线电信号在路径上的传播。

超过自由空间传播时间的时间延迟称为群时延,通常以t表示。

对MSS系统,它是必须考虑的重要因素。

它的数量由以下公式计算:t= 1.345 N T/f2⨯ 10–7 (4)其中:t:与真空中传播相比的时延(s)f:传播频率(Hz)N T:由倾斜的传播路径决定。

图2是对应射线路径上几个电子容量情况下,时延t和频率f的相对关系图。

图2不同电子容量时电离层时延和频率的关系当TEC在1016到1019 el/m2区间变化时,在1 600 MHz频带附近信号的群时延在大概0.5 ns到500 ns 区间变化。

图3示出在太阳活动相对较强的时期内,时延超过20 ns的日间小时的年百分比。

图31.6 GHz垂直入射情况下,时延超过20 ns的日间小时年平均百分比等值曲线(太阳黑子=140)3.4 散射当超电离层的信号占用很大的带宽时,传播时延(作为一个与频率相关的函数)将引入色散。

带宽范围内时延的差分与射线路径上电子密度的积分成正比。

当带宽固定时,相关的色散与频率的立方成反比。

因此,在VHF波段涵盖宽带传输的系统必须考虑色散的影响,而在UHF波段有可能需要考虑。

例如,如图4所示,在总的电子容量为5×1017 el/m2的情况下,信号脉冲宽度为1 μs,当频率为200 MHz时,差分时延为0.02 μs,而当频率为600 MHz时,差分时延仅为0.00074 μs(见图4)。

3.5 TEC变化速率在轨卫星观测到的TEC变化速率一部分源至射线路径方向的变化,一部分源至电离层自身的变化。

对于一颗高度22 000 km穿越极光区域的卫星,所观测到的TEC最大变化速率为0.7×1016 el/m2/s。

对导航目的,这样的变化速率对应于0.11 m/s的视在速率。

图4脉冲宽度τ(的信号)单向传播穿越电离层,在低到高的频谱范围内对应的时延差异4 不规则性引起的主要恶化 4.1闪烁对3 GHz 以下超电离层传播路径的信号,最严重的中断之一来自电离层闪烁。

电离密度规模较小的不规则结构引起的闪烁现象,主要机制表现为前向散射和衍射,它使得接收机端信号不再稳定,在幅度、相位和到达方向上产生波动。

闪烁的不同方面对系统性能的影响不同,这取决于系统的调制方式。

最通常使用的表征波动强度的参数是闪烁指数S 4由公式(5)定义:212224⎪⎪⎭⎫⎝⎛-=I I I S (5)其中I 是信号强度,〈〉表示平均。

散射指数S 4与波动强度峰—峰值相关。

准确的关系取决于强度的分布。

对于大范围内S 4的取值,Nakagami 分布最好地描述了强度分布。

当S 4趋近于1.0,分布趋近于瑞利分布。

偶尔S 4的值可能超过1而达到1.5,这应归于不规则性引起的电波会聚。

当取值小于0.6,S 4显示出与f –υ的稳固关系,在VHF 和UHF 波段的大多数宽频观测中,光谱指数υ的取值为1.5。

当S 4大于0.6,闪烁更强,光谱指数减小,这应归于瑞利衰减受到多次散射的强烈影响而引起闪烁的饱和。

表1依据经验提供了S 4和近似的峰—峰波动值P fluc (dB)方便的转化,这个关系能够近似地表示为:26.145.27S P fluc ⨯= (6)表1闪烁指数的经验性转换表4.2闪烁与地理、春(秋)分和太阳的相关性在地理上有两个强烈的闪烁区域,一个在高纬度区域,另一个在地磁赤道±20°的区域(如图5所示)。

相关文档
最新文档