高二数学(理)答题卡

合集下载

四川省成都市蓉城名校联盟2020-2021学年高二下学期期中联考数学(理)Word版含答案

四川省成都市蓉城名校联盟2020-2021学年高二下学期期中联考数学(理)Word版含答案

蓉城名校联盟2020~2021学年度下期高中2019级期中联考理科数学考试时间120分钟,满分150分注意事项:1.答题前,考生务必在答题卡上将自己的学校、姓名、班级、准考证号用0.5毫米黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的“条形码粘贴处”。

2.选择题使用2B 铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案;非选择题用0.5毫米黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效;在草稿纸上、试卷上答题无效。

3.考试结束后由监考老师将答题卡收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数f(x)=x 3+1,当自变量x 由1变为2时,函数f(x)的平均变化率为 A.3 B.5 C.7 D.92.已知空间两点A(2,1,1),B(3,2,1),下列选项中的a 与AB 共线的是 A.a =(1,0,1) B.a =(2,1,1) C.a =(2,-2,0) D.a =(2,2,0)3.已知向量a =(1,2,0),b =(0,2,1),a ,b 的夹角为θ,则sinθ= A.35 B.45 C.-35 D.-454.已知函数f(x)的导数是f'(x),且f'(3)=1,则()()h 0f 3f 3h lim h→-+=A.1B.-1C.3D.-3 5.下列关于空间向量的四个命题中正确的是 A.若空间向量a ,b 满足|a|=|b|,则a =bB.若{a ,b ,c}为空间中一组基底,则{a +b ,a -b ,c}可构成空间另一组基底C.若11OC OA OB 24=+,则A 、B 、C 三点一定共线 D.已知A ,B ,C 三点不共线,若111OD OA OB OC 234=++,则A ,B ,C ,D 四点一定共面6.已知函数f(x)的导数是f'(x),且满足f(x)=f'(2π)cosx +2x ,则f(0)=A.0B.1C.2D.4 7.定积分()1x1e1dx -+⎰的值为A.e -1e +1 B.e +1e +1 C.e -1e +2 D.e -1e8.已知R 上可导函数f(x)的图象如图所示,则不等式(x -3)f'(x)>0的解集为A.(-2,2)∪(3,+∞)B.(-∞,-3)∪(3,+∞)C.(-∞,-2)∪(3,+∞)D.(-∞,-2)∪(2,+∞)9.如图,在三棱锥S -ABC 中,点E ,F 分别是SA ,BC 的中点,点G 在棱EF 上,且满足EG 1GF 2=,若SA a SB b SC c ===,,,则SG =A.13a -12b +16c B.13a +16b +16c C.16a -13b +12c D.13a -16b +12c 10.如图,在四棱锥S -ABCD 中,侧面SCD 是等边三角形,底面ABCD 是直角梯形,∠BCD =2π,AD =CD =4,BC =8,侧面SCD ⊥底面ABCD ,点M 是SD 的中点,则直线SC 与AM 所成角的余弦值是A.-5B.5C.-9510D.951011.已知函数f(x)是定义域R上的可导函数,其导函数为f'(x),且满足f(x)>f'(x)恒成立,则下列不等式一定正确的是A.5f(ln2)>2f(ln5)B.6f(ln3)<3f(ln6)C.5f(ln5)<2f(ln2)D.3f(ln3)>6f(n6)12.已知函数f(x)=e x-1+ax2+1的图象在x=1处的切线与直线x+3y-1=0垂直,若对任意的x∈R,不等式f(x)-kx≥0恒成立,则实数k的最大值为A.1B.2C.3D.4二、填空题:本题共4小题,每小题5分,共20分。

甘肃省白银市2014-2015学年高二上学期期末考试数学(理)试题 Word版无答案

甘肃省白银市2014-2015学年高二上学期期末考试数学(理)试题 Word版无答案

高二上学期期末考试数学(理)试题一.选择题(12560''⨯=)1. ABC △中,已知2()()a c a c b bc +-=+,则A =( ) A.030 B.060 C.0120 D.01502. 设n S 是等差数列{}n a 的前n 项和,已知355,9a a ==,则7S 等于( ) A .13 B .35 C .49 D .633. 若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1b B .a 2>b 2 C.a c 2+1>bc 2+1 D .a |c |>b |c | 4. “02=-x x ”是“1=x ”的( )A .充分而不必要条件 B.必要而不充分条件 C .充要条件 D.既不充分也不必要条件 5. 下列说法错误..的是( ). A .如果命题“p ⌝”与命题“p 或q ”都是真命题,那么命题q 一定是真命题. B. 命题“若0a =,则0ab =”的否命题是:“若0a ≠,则0ab ≠”C .命题p :042,0200<+-∈∃x x R x ,则042,:2≥+-∈∀⌝x x R x pD .特称命题 “R x ∈∃,使2240x x -+-=”是真命题.6.椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A .14 B .12C . 2D .47. 空间直角坐标系中A (1,2,3),B (-1,0,5),C (3,0,4),D (4,1,3),则直线AB 与CD的位置关系是( )A .平行B .垂直C .相交但不垂直D .无法确定8. 双曲线的一个焦点(4,0)F 到渐近线的距离为2,则双曲线的离心率是( )A.B.C. D. 439. 若抛物线22(0)y px p =>上一点M 到焦点F 的距离为2p ,则M 点的横坐标为( )A. pB. 2pC.32p D. 52p 10. 如图,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为AB 、B 1C 的中点,设1,,AB a AD b AA c ===若MN xa yb zc =++ ,则( )A.111,,234x y z === B. 11,,122x y z === C. 111,,222x y z === D. 11,,32x y z =-==11. 椭圆221259x y +=上一点M 到焦点1F 的距离为2,N 是1MF 的中点,则ON 等于( ) A .2B .4C .6D .3212. 如图所示,直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC ,AB ⊥AC ,M 是CC 1的中点, Q 是B C 的中点,P 是A 1B 1的中点,则直线PQ 与AM 所成的角为( ) A.π6 B.π4 C.π3 D.π2二.填空题(4520''⨯=)13. 如果直线y x =与抛物线24y x =交于A ,B 两点,那么线段AB 的中点坐标是_________14. 若实数x ,y 满足约束条件 02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则y x z -=的最小值是________15. 已知lg lg 1x y +=, 则yx 25+的最小值是 . 16. 若P 点是椭圆22195x y +=上任意一点,F 为椭圆的一个焦点,则|PF|的最大值是 .会宁一中2014-2015学年度第一学期期末考试高二数学(理)答题卡一、选择题:本大题共12小题,每小题5分,共60分。

甘肃省武威第五中学2014-2015学年高二11月月考数学(理)试题

甘肃省武威第五中学2014-2015学年高二11月月考数学(理)试题

甘肃省武威第五中学2014-2015学年高二11月月考数学(理)试题一、选择题(每小题5分,共60分)1、一个命题与他们的逆命题、否命题、逆否命题这4个命题中 ( )A 、真命题与假命题的个数相同B 、真命题的个数一定是奇数C 、真命题的个数一定是偶数D 、真命题的个数可能是奇数,也可能是偶数2、下列命题中是真命题的是 ( ) ①“若x2+y2≠0,则x ,y 不全为零”的否命题 ②“正多边形都相似”的逆命题 ③“若m>0,则x 2+x -m=0有实根”的逆否命题④“若x -3是有理数,则x 是 无理数”的逆否命题A 、①②③④B 、①③④C 、②③④D 、①④3、设集合M={x| x>2},P={x|x<3},那么“x ∈M,或x ∈P ”是“x ∈M ∩P ”的 ( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条4、“0x >0>”成立的( ) A 、充分不必要条件. B 、必要不充分条件. C 、充要条件. D 、既不充分也不必要条件.5、“()24x k k Z ππ=+∈”是“tan 1x =”成立的 ( )A 、充分不必要条件.B 、必要不充分条件.C 、充分条件.D 、既不充分也不必要条件.6、不等式2230x x --<成立的一个必要不充分条件是( )A 、-1<x<3B 、0<x<3C 、-2<x<3D 、-2<x<17.若命题“p q ∧”为假,且“p ⌝”为假,则( ) A .p 或q 为假 B .q 假 C .q 真 D .不能判断q的真假 8.在△ABC 中,“︒>30A ”是“21sin >A ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.有下列四个命题:①“若0x y += , 则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1q ≤ ,则220x x q ++=有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题;其中真命题为( )A .①②B .②③C .①③D .③④10.设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件 C .充要条件 D .既不充分也不必要条件11.下列命题中,真命题是 ( ).A .∃m ∈R ,使函数f(x)=x2+mx(x ∈R)是偶函数B .∃m ∈R ,使函数f(x)=x2+mx(x ∈R)是奇函数C .∀m ∈R ,函数f(x)=x2+mx(x ∈R)都是偶函数D .∀m ∈R ,函数f(x)=x2+mx(x ∈R)都是奇函数12、不等式2230x x --<成立的一个必要不充分条件是( )A 、-1<x<3B 、0<x<3C 、-2<x<3D 、-2<x<1 二、填空题(每道题5分,共20分)13设集合(){}(){}(){}0,,02,,,,≤-+=>+-=∈∈=n y x y x B m y x y x A R y R x y x u ,那么点P (2,3)()B C A u ⋂∈的充要条件是14、命题“若a =-1,则2a =1”的逆否命题是15.已知α、β是不同的两个平面,直线βα⊂⊂b a 直线,,命题b a p 与:无公共点; 命题βα//:q , 则q p 是的 条件。

甘肃省武威市第六中学2013-2014学年高二下学期期中考试数学(理)试题(选修2-2)

甘肃省武威市第六中学2013-2014学年高二下学期期中考试数学(理)试题(选修2-2)

甘肃省武威市第六中学2013-2014学年高二下学期期中考试数学(理)试题(选修2-2)1.i 是虚数单位,复数ii--131的虚部是 ( ) A .1-B .i -C .2-D .i 2-2.设p 12)(23+++=mx x x x f 在),(+∞-∞内单调递增,q 34≥m ,则p 是q 的( ) A .充分不必要条件 B .必要不充分条 C .充分必要条件 D .既不充分也不必要条件3.若7++=a a P ,43+++=a a Q )0(≥a ,则P ,Q 的大小关系为( ) A .Q P > B .Q P = C .Q P <D .由a 的取值确定4.从2、4、6、8、10五个数字中任取2个作为一个分数的分子与分母,则可组成分数值不同的分数个数为( )A .20B .18C .10D .9 5.函数x x x y sin cos -=在下列哪个区间内是增函数( ) A .)23,2(ππ B .)2,(ππ C .)25,23(ππ D .)3,2(ππ 6.已知函数a x x x f +-=12)(3,其中16≥a ,则下列说法正确的是 ( )A .)(x f 有且仅有一个零点B .)(x f 至少有两个零点C .)(x f 最多有两个零点D .)(x f 一定有三个零点 7.函数在142+=x xy 定义域内 ( )A .有最大值2,无最小值B .无最大值,有最小值-2C .有最大值2,最小值-2D .无最值8.若0>a ,0>b ,且函数224)(23+--=bx ax x x f 在1=x 处有极值,则ab 的最大值等于( )A.2B.3C.6D.9 9.若22221231111,,,x S x dx S dx S e dx x===⎰⎰⎰则123,,S S S 的大小关系为 ( )A .123S S S <<B .213S S S <<C .231S S S <<D .321S S S << 10.已知x x x f sin 2sin 21)(+=,那么)('x f 是( ) A .仅有最小值的奇函数 B .既有最大值,又有最小值的偶函数 C .仅有最大值的偶函数 D .非奇非偶函数11.设函数)(x f 在R 上可导,其导函数为)('x f ,且函数)()1('x f x y -=的图象如图所示,则下列结论中一定成立的是 ( ) A .函数)(x f 有极大值)2(f 和极小值)1(f B .函数)(x f 有极大值)2(-f 和极小值)1(f C .函数)(x f 有极大值)2(f 和极小值)2(-f D .函数)(x f 有极大值)2(-f 和极小值)2(f 12.已知函数=y )(x f 是定义在R 上的奇函数,且当)0,(-∞∈x 时不等式0)()('<+x xf x f 成立,若)3(33.03.0f a =,)3(log )3(log ππf b =,)91(log )91(log 33f c =,则c b a ,,的大小关系是 ( )A .c b a >>B .a b c >>C .c a b >>D .b c a >>二、填空题(本题共20分,每小题5分)武威六中2013~2014学年度第二学期高二数学(理)《选修2-2》模块学习终结性检测试卷答题卡一、选择题(本大题共12小题。

县级中学2009-2010学年度高二数学竞赛(理科)

县级中学2009-2010学年度高二数学竞赛(理科)

2009-2010学年度高二数学竞赛(理科)一、选择题(本题共6小题,每小题6分,共计36分) 1.已知集合{}{}221,,20R A y y x x B x x x =+=+-∈=>,则下列结论正确的是( ) A .{}1,A B y y => B.{}2A B y y => C. {}21A B y y =-<< D. {}21A B y y y =<>- 或2.已知函数20()20x x f x x x +⎧=⎨-+>⎩,≤,,,则不等式2()f x x ≥的解集为( )A .[]11-,B .[]22-,C .[]21-,D .[]12-, 3. 已知函数x b x a x f cos sin )(-=(a 、b 为常数,0≠a ,R x ∈)在4π=x 处取得最小值,则函数)43(x f y -=π是( ) A .偶函数且它的图象关于点)0,(π对称 B .偶函数且它的图象关于点)0,23(π对称 C .奇函数且它的图象关于点)0,23(π对称D .奇函数且它的图象关于点)0,(π对称4. 已知︱OA ︱=1,︱OB ︱=3,OB OA ∙=0,点C 在∠AOB 内,且∠AOC =30°,设=m +n (m 、n ∈R ),则nm等于( ) A.31 B.3 C.33 D.3 5.已知函数()()1||xf x x R x =∈+ 时,则下列结论不.正确的是( ) A .x R ∀∈,等式()()0f x f x -+=恒成立B .(0,1)m ∃∈,使得方程|()|f x m =有两个不等实数根C .12,x x R ∀∈,若12x x ≠,则一定有12()()f x f x ≠D .(1,)k ∃∈+∞,使得函数()()g x f x kx =-在R 上有三个零点6.定义在R 上的函数()f x 的图象关于点3(,0)4-成中心对称,对任意的实数x 都有3()()2f x f x =-+且(1)1,f -=(0)2f =-,则(1)(2)(3)...(2010)f f f f ++++=( )A .2-B .1-C .0D .1二、填空题(本题共7小题,每小题9分,共计63分)7 .已知1cos 3α=,1cos()3αβ+=-,且,(0,)2παβ∈,则cos()αβ-= .8.设点P 是曲线32333x y x x =---上的一个动点,则以点P 为切点的切线中,斜率取得最小值时的切线方程是9.已知数列{a n },a 1=1,a n =a n-1+a n-2+…+a 1( 2≥n ),则该数列的前8项和为 .10.若椭圆+22a x )0(122>>=b a by 的左、右焦点分别为1F 、2F ,线段12F F 被抛物线bx y 22=的焦点分成5:3两段,则此椭圆的离心率为_____________11. 向量(1,0),(1,1)OA OB == ,O 为坐标原点,动点(,)P x y 满足0102OP OA OP OB ⎧≤⋅≤⎪⎨≤⋅≤⎪⎩, 则点(,)Q x y y +构成图形的面积为 .12.在数列{}n a 中,12a =,11(*)n n a a n N +=-∈ ,设n S 为数列{}n a 的前n 项和,则2008200920102S S S -+= .13.设()f x 是定义在R 上的函数,若(2007)2007f =,且对任意x ∈R ,满足:(2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则(2009)f 的个位数字是 .三、解答题:(本题共3小题,共计51分)14、(15分)设1F 、2F 分别是椭圆22154x y +=的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求21PF PF ⋅的最大值和最小值;(Ⅱ)是否存在过点A (5,0)的直线l 与椭圆交于不同的两点C 、D ,使得|F 2C|=|F 2D|?若存在,求直线l 的方程;若不存在,请说明理由.15. (18分)已知函数()ln()x f x e a =+,(a 为常数)是实数集R 上的奇函数,函数()()sin g x f x x λ=+是区间[]1,1-上的减函数.(1) 求a 的值;(2) 若2()1g x t t λ≤++在[1,1]x ∈-恒成立,求t 的取值范围; (3) 讨论关于x 的方程2ln 2()xx ex m f x =-+的根的个数.2009-2010学年度高二数学竞赛(理科)答案一、选择题 每题6分,总分36分AADBDC 6、解析:本题考查了函数的对称、奇偶性、周期性,综合性较强,函数()f x 关于点3(,0)4-对称,则有3()()2f x f x =---,又3()()2f x f x =-+,33()()22f x f x ∴+=--()y f x ∴=的图像关于y 轴对称;又 3()()2f x f x =-+,有3()()[(3)](3)2f x f x f x f x =-+=--+=+,∴ ()f x 是周期为3的偶函数.(1)(1)1,(2)(23)(1)1,(3)(0)2f f f f f f f ∴=-==-=-===-,(1)(2)(3)0f f f ∴++=,(1)(2)(3)(2009)(2010)0f f f f f ∴+++⋅⋅⋅++=,选C.二、填空题,每题9分,总分63分。

四川省成都市2022-2023学年高二上学期1月期末考试理科数学试题及答案

四川省成都市2022-2023学年高二上学期1月期末考试理科数学试题及答案

高二年级理科数学试题考试时间120分钟,满分150分注意事项:1.答题前,考生务必在答题卡上将自己的学校、姓名、班级、准考证号用0.5毫米黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的“条形码粘贴处”。

2.选择题使用2B 铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案;非选择题用0.5毫米黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效;在草稿纸上、试卷上答题无效。

3.考试结束后由监考老师将答题卡收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.过点(0,2)-,且与已知直线0x y +=垂直的直线方程为 A .20x y +-= B .20x y --= C .20x y ++=D .20x y -+=2.若一个圆的标准方程为221)4x y +(-=,则此圆的圆心与半径分别是 A .1,0)4(-; B .1,0)2(; C .0,1)4(-;D .0,1)2(;3.将某选手的得分去掉1个最高分,去掉1个最低分,剩余分数的平均分为91,现场作的分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则x = A .2 B .3 C .4D .54.某校为了了解高二学生的身高情况,打算在高二年级12个班中抽取3个班,再按每个班男女生比例抽取样本,正确的抽样方法是 A .简单随机抽样 B .先用分层抽样,再用随机数表法 C .分层抽样D .先用抽签法,再用分层抽样 5.若x ∈R ,则“44x -<<”是“22x x <”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知命题*1:2p x x x∀∈+R ,…,则p ⌝为 A .*00012x x x ∃∈+R ,… B .*00012x x x ∃∈+<R , C .*00012x x x ∃∉+<R ,D .12x x x∀∈+<R , 7.下列命题正确的是A .若0a b <<,则11a b<B .若ac bc >,则a b >C .若a b >,c d >,则a c b d ->-D .若22ac bc >,则a b >8.已知双曲线的上、下焦点分别为120,5)0,5)F F ((-,,P 是双曲线上一点且满足126||PF ||PF ||-=,则双曲线的标准方程为A .221169x y -=B .221916x y -=C .221169y x -=D .221916y x -=9.已知O e 的圆心是坐标原点O 0y --=截得的弦长为6,则O e 的方程为A .224x y +=B .228x y +=C .2212x y +=D .22216x y +=10.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a b ,分别为39,27,则输出的a = A .1 B .3 C .5D .711.若两个正实数x y ,满足311x y+=,则3x y +的最小值为A .6B .9C .12D .1512.直线l 过抛物线220)y px p =(>的焦点F ,且交抛物线于P ,Q 两点,由P ,Q 分别向准线引垂线PR ,QS ,垂足分别为R ,S ,如果2|4|PF |QF |==,,M 为RS 的中点,则|MF |=A .BC .D .2二、填空题:本题共4小题,每小题5分,共20分。

[推荐学习]高二数学下学期期中试题理

[推荐学习]高二数学下学期期中试题理

四川省绵阳市南山中学2017-2018学年高二数学下学期期中试题理本试卷分试题卷和答题卡两部分,其中试题卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,共4页;答题卡共4页.满分100分,考试时间100分钟.第Ⅰ卷(选择题,共48分)一、选择题:本大题共12小题,每小题4分,共48分。

在每小题给出的四个选项中,只有一项是符合题目要求的,把它选出来填涂在答题卡上。

1. 已知命题p :“x R ∀∈, 20x > ”,则p ⌝ 是( )A. x R ∀∈, 20x ≤B. 0x R ∃∈, 200x >C. 0x R ∃∈, 200x <D. 0x R ∃∈, 200x ≤2.对于空间任意一点O 和不共线得三点A 、B 、C ,有如下关系:213161++= ,则( )A. 四点O 、A 、B 、C 必共面B. 四点P 、A 、B 、C 必共面C. 四点O 、P 、B 、C 必共面D. 五点O 、P 、A 、B 、C 必共面3.已知p :5≠+y x ,q :3≠x 或2≠y ,则p 是q 的( ) A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.在某次学科知识竞赛中(总分100分),若参赛学生成绩ξ服从N (80, σ2)(σ>0),若ξ在(70,90)内的概率为0.8,则落在[90,100]内的概率为( )A. 0.05B. 0.1C. 0.15D. 0.25.设函数()⎩⎨⎧≤<≤≤=21,110,2x x x x f , 则定积分()dx x f ⎰20等于( )A. 83B. 2C. 43D. 136.设函数()f x 在R 上可导,其导函数f ′(x ),且函数()f x 在x =﹣2处取得极小值,则函数y =xf ′(x )的图象可能是( )A. B. C. D.7.袋中有大小完全相同的2个白球和3个黄球,逐个不放回地摸出两球,设“第一次摸得白球”为事件A ,“摸得的两球同色”为事件B ,则()P B A 为( )A.110B. 15C. 14D. 258.有3位男生, 3位女生和1位老师站在一起照相,要求老师必须站中间,与老师相邻的不能同时为男生或女生,则这样的排法种数是( )A. 144B. 216C. 288D. 432 9.记()()()()77221071112x a x a x a a x ++⋅⋅⋅+++++=+,则0126a a a a ++++的值为( )A. 2187B. 2188C. 127D. 12810.四棱柱1111A B C D A B C D -中, 1160A AB A AD DAB ∠=∠=∠=︒,1A A AB AD ==,则1CC 与1DB 所成角为( )A. 30︒B. 45︒C. 60︒D. 90︒11.已知()f x 为定义在()0,+∞上的可导函数,且()()'f x xf x >恒成立,则不等式()210x f f x x ⎛⎫-> ⎪⎝⎭的解集为( )A. ()1,+∞B. (),1-∞C. ()2,+∞D. (),2-∞ 12.当0>x 时,函数()a x k y -=()1>k 的图象总在曲线xe xy 2=的上方,则实数a 的最大整数值为( )A. -1B. -2C. -3D. 0第Ⅱ卷(非选择题,共52分)二、填空题:本大题共4小题,每小题3分,共12分。

高二上学期期末考试数学(理)试题及答案

高二上学期期末考试数学(理)试题及答案

N MD 1C 1B 1A 1DCA学年第一学期高二年级期末质量抽测 数 学 试 卷(理科)(满分150分,考试时间 120分钟)考生须知: 1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。

2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。

3. 答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。

请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。

4. 修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。

保持答题卡整洁,不要折叠、折皱、破损。

不得在答题卡上做任何标记。

5. 考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。

第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.)(1)抛物线210y x =的焦点到准线的距离为(A )52(C )5 (C )10 (D )20 (2)过点(2,1)-且倾斜角为060的直线方程为(A) 10y --=( B) 330y --=( C)10y -+=( D)330y -+=(3)若命题p 是真命题,命题q 是假命题,则下列命题一定是真命题的是(A)p q ∧ (B )()p q ⌝∨ (C)()p q ⌝∧ (D )()()p q ⌝∨⌝(4)已知平面α和直线,a b ,若//a α,则“b a ⊥”是“b α⊥”的(A)充分而不必要条件 ( B )必要而不充分条件 ( C)充分必要条件 (D)既不充分也不必要条件 (5)如图,在正方体1111ABCD A B C D -中,点,M N 分别是面对角线111A B B D 与的中点,若1,,,DA DC DD ===a b c 则MN =CA 1俯视图侧(左)视图正(主)视图(A)1()2+-c b a ( B) 1()2+-a b c ( C) 1()2-a c ( D) 1()2-c a(6)已知双曲线22221(0,0)x y a b a b-=>>(A) y =( B) y x = ( C) 12y x =± ( D) 2y x =± (7)某三棱锥的三视图如图所示,则该三棱锥的表面积是(A )2+ ( B)2( C)4+ ( D)4(8)从点(2,1)P -向圆222220x y mx y m +--+=作切线,当切线长最短时m 的值为(A )1- (B )0 (C )1 (D )2(9)已知点12,F F 是椭圆22:14x C y +=的焦点,点M 在椭圆C 上且满足1223MF MF += 则12MF F ∆的面积为(A)3(B) 2(C ) 1 (D) 2 (10) 如图,在棱长为1的正方体1111ABCD A B C D -中,点M 是左侧面11ADD A 上的一个动点,满足11BC BM ⋅=,则1BC 与BM 的夹角的最大值为 (A) 30︒ ( B) 45︒ ( C ) 60︒ ( D) 75︒P D 1C 1B 1A 1D C BAD 1C 1B 1A 1D第Ⅱ卷(非选择题 共100分)二、填空题(本大题共6小题,每小题5分,共30分)(11)若命题2:R,220p x x x ∃∈++>,则:p ⌝ . (12) 已知(1,3,1)=-a ,(1,1,3)=--b ,则-=a b ______________.(13)若直线()110a x y +++=与直线220x ay ++=平行,则a 的值为____ .(14)如图,在长方体ABCD -A 1B 1C 1D 1中,设 11AD AA ==, 2AB =,P 是11C D 的中点,则11B C A P 与所成角的大小为____________, 11BC A P ⋅=___________.(15)已知P 是抛物线28y x =上的一点,过点P 向其准线作垂线交于点E ,定点(2,5)A ,则PA PE +的最小值为_________;此时点P 的坐标为_________ .(16)已知直线:10l kx y -+=()k ∈R .若存在实数k ,使直线l 与曲线C 交于,A B 两点,且||||AB k =,则称曲线C 具有性质P .给定下列三条曲线方程: ① y x =-; ② 2220x y y +-=; ③ 2(1)y x =+. 其中,具有性质P 的曲线的序号是________________ .三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.) (17)(本小题满分14分)已知圆22:2410C x y x y +--+=. (I)求过点(3,1)M 的圆C 的切线方程;(II)若直线:40l ax y -+=与圆C 相交于,A B 两点,且弦AB的长为a 的值.(18)(本小题满分14分)在直平行六面体1111ABCD A B C D -中,底面ABCD 是菱形,60DAB ∠=︒,ACBD O =,11AB AA ==.(I)求证:111//OC AB D 平面;N MDCBAP(II)求证:1111AB D ACC A ⊥平面平面; (III)求三棱锥111A AB D -的体积. (19)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>,且经过点(0,1)A -.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)如果过点3(0,)5B 的直线与椭圆交于,M N 两点(,M N 点与A 点不重合),求证:AMN ∆为直角三角形.(20)(本小题满分14分)如图,在四棱锥P ABCD -中,PA ABCD ⊥底面,底面ABCD 为直角梯形,//,90,AD BC BAD ∠=︒22PA AD AB BC ====,过AD 的平面分别交PB PC ,于,M N 两点.(I )求证://MN BC ;(II )若,M N 分别为,PB PC 的中点,①求证:PB DN ⊥;②求二面角P DN A --的余弦值.(21)(本小题满分14分)抛物线22(0)y px p =>与直线1y x =+相切,112212(,),(,)()A x y B x y x x ≠是抛物线上两个动点,F 为抛物线的焦点,且8AF BF +=. (I ) 求p 的值;(II ) 线段AB 的垂直平分线l 与x 轴的交点是否为定点,若是,求出交点坐标,若不是,说明理由;(III )求直线l 的斜率的取值范围.高二年级期末质量抽测数学试卷参考答案及评分标准 (理科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目二、填空题(本大题共6小题,每小题5分,共30分)(11)2:,220p x x x ⌝∀∈++≤R(12) 6 (13)1或2- (14)60︒;1 (15)5;(2,4) (16)②③ 三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.) (17)(本小题满分14分)解:(I )圆C 的方程可化为22(1)(2)4x y -+-=,圆心(1,2)C ,半径是2.…2分①当切线斜率存在时,设切线方程为1(3)y k x -=-,即310kx y k --+=. ……3分因为2d ===,所以34k =. …………6分 ②当切线斜率不存在时,直线方程为3x =,与圆C 相切. ……… 7分所以过点(3,1)M 的圆C 的切线方程为3x =或3450x y --=. ………8分(II )因为弦AB 的长为所以点C 到直线l 的距离为11d ==. ……10分 即11d ==. …………12分所以34a =-. …………14分O 1ABCDA 1B 1C 1D 1O(18)(本小题满分14分)证明:(I) 如图,在直平行六面体1111ABCD A B C D -中,设11111AC B D O =,连接1AO .因为1111//AA CC AA CC =且,所以四边形11AAC C 是平行四边形.所以1111//AC AC AC AC =且. ……1分因为底面ABCD 是菱形, 所以1111//O C AO O C AO =且. 所以四边形11AOC O 是平行四边形.所以11//AO OC . ……2分 因为111AO AB D ⊂平面,111OC AB D ⊄平面所以111//OC AB D 平面. ……4分(II)因为11111AA A B C D ⊥平面,111111B D A B C D ⊂平面,所以111B D AA ⊥. ……5分 因为底面ABCD 是棱形,所以1111B D AC ⊥. ……6分 因为1111AA AC A =,所以1111B D ACC A ⊥平面. ……7分 因为1111B D AB D ⊂平面, ……8分 所以1111AB D ACC A ⊥平面平面. ……9分 (III)由题意可知,11111AA A B C D ⊥平面,所以1AA 为三棱锥111A A B D -的高. ……10分因为111111111111111332A AB D A A B D A B D V V S AA --∆==⋅=⨯⨯所以三棱锥111A AB D -. ……14分(19)(本小题满分14分)解:(Ⅰ)因为椭圆经过点(0,1)A -,e =, 所以1b =. ……1分由c e a ===,解得2a =. ……3分 所以椭圆C 的标准方程为2214x y +=. ……4分(Ⅱ)若过点3(0,)5的直线MN 的斜率不存在,此时,M N 两点中有一个点与A 点重合,不满足题目条件. ……5分若过点3(0,)5的直线MN 的斜率存在,设其斜率为k ,则MN 的方程为35y kx =+,由223514y kx x y ⎧=+⎪⎪⎨⎪+=⎪⎩可得222464(14)0525k x kx ++-=. ……7分设1122(,),(,)M x y N x y ,则122122245(14)64,25(14)0k x x k x x k ⎧+=-⎪+⎪⎪⋅=-⎨+⎪⎪∆>⎪⎩, ……9分 所以1212266()55(14)y y k x x k +=++=+, 221212122391009()52525(14)k y y k x x k x x k -+⋅=⋅+++=+. ……11分因为(0,1)A -,所以1122121212(,1)(,1)()1AM AN x y x y x x y y y y ⋅=+⋅+=++++22264100925(14)25(14)k k k -+=-+++26105(14)k ++=+所以AM AN ⊥,AMN ∆为直角三角形得证. ……14分(20)(本小题满分14分)证明:(I )因为底面ABCD 为直角梯形, 所以//BC AD .因为,,BC ADNM AD ADNM ⊄⊂平面平面所以//BC ADNM 平面. ……2分 因为,BC PBC PBCADNM MN ⊂=平面平面平面,所以//MN BC . ……4分 (II )①因为,M N 分别为,PB PC 的中点,PA AB =,所以PB MA ⊥. ……5分 因为90,BAD ∠=︒ 所以DA AB ⊥.因为PA ABCD ⊥底面,所以DA PA ⊥. 因为PAAB A =,所以DA PAB ⊥平面. 所以PB DA ⊥. ……7分 因为AMDA A =,所以PB ADNM ⊥平面因为DN ADNM ⊂平面,所以PB DN ⊥. ……9分 ②如图,以A 为坐标原点,建立空间直角坐标系A xyz -. ……10分 则(0,0,0),(2,0,0),(2,1,0),(0,2,0),(0,0,2)A B C D P . ……11分由(II )可知,PB ADNM ⊥平面,所以ADNM 平面的法向量为(2,0,2)BP =-. ……12分 设平面PDN 的法向量为(,,)x y z =n 因为(2,1,2)PC =-,(0,2,2)PD =-, 所以00PC PD ⎧⋅=⎪⎨⋅=⎪⎩n n .即220220x y z y z +-=⎧⎨-=⎩.令2z =,则2y =,1x =. 所以(1,2,2)=n所以cos ,622BP BP BP⋅〈〉===n n n .所以二面角P DN A --的余弦值为6. ……14分(21)(本小题满分14分)解:(I )因为抛物线22(0)y px p =>与直线1y x =+相切,所以由221y px y x ⎧=⎨=+⎩ 得:2220(0)y py p p -+=>有两个相等实根. …2分即2484(2)0p p p p ∆=-=-=得:2p =为所求. ……4分 (II )法一:抛物线24y x =的准线1x =.且8AF BF +=,所以由定义得1228x x ++=,则126x x +=. ………5分 设直线AB 的垂直平分线l 与x 轴的交点(,0)C m . 由C 在AB 的垂直平分线上,从而AC BC =………6分即22221122()()x m y x m y -+=-+. 所以22221221()()x m x m y y ---=-.即12122112(2)()444()x x m x x x x x x +--=-=-- ………8分 因为12x x ≠,所以1224x x m +-=-. 又因为126x x +=,所以5m =, 所以点C 的坐标为(5,0).即直线AB 的垂直平分线l 与x 轴的交点为定点(5,0). ………10分 法二:由112212(,),(,)()A x y B x y x x ≠可知直线AB 的斜率存在,设直线AB 的方程为y kx m =+.由24y x y kx m⎧=⎨=+⎩可得222(24)0k x km x m +-+=. ………5分 所以12221224216160km x x k m x x k km -⎧+=⎪⎪⎪⋅=⎨⎪∆=-+>⎪⎪⎩. ………6分因为抛物线24y x =的准线1x =.且8AF BF +=,所以由定义得1228x x ++=,则126x x +=. ………7分 所以232km k +=.设线段AB 的中点为00(,)M x y . 则12003,32x x x y k m +===+. 所以(3,3)M k m +. ………8分 所以线段AB 的垂直平分线的方程为13(3)y k m x k--=--. ………9分 令0y =,可得2335x m mk =++=.即直线AB 的垂直平分线l 与x 轴的交点为定点(5,0). ………10分 (III )法一:设直线l 的斜率为1k ,由(II )可设直线l 方程为1(5)y k x =-.设AB 的中点00(,)M x y ,由12032x x x +==.可得0(3,)M y .因为直线l 过点0(3,)M y ,所以012y k =-.………11分 又因为点0(3,)M y 在抛物线24y x =的内部,所以2012y <.…12分 即21412k < ,则213k <.因为12x x ≠,则10k ≠. …13分 所以1k的取值范围为((0,3).………14分 法二:设直线l 的斜率为1k ,则11k k =-.由(II )可知223km k =-.因为16160km ∆=-+>,即1km <, …11分 所以2231k -<.所以213k >.即21113k >.所以2103k <<.…12分 因为12x x ≠,则10k ≠. …13分 所以1k的取值范围为((0,3).………14分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 2015年下期道南中学高2017级第三学月考试
理科数学答题卡
姓 名
准考证号
第I 卷 一、选择题(共60分,每题5分)
1
5 9 2
6 10 3
7 11 4 8
12
第II 卷 二、填空题(共20分,每题5分)
13 14
15 16
三、解答题
(17)10分
(19)12分



例 正确填涂 错误填涂 注意事项 1. 答题前,先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、座位号及科类名称。

2. 选择题部分必须使用2B 铅笔填涂;综合题部分必须使用0.5毫米的黑色签字笔书写,字体工整、笔迹清楚。

3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4. 保持答题卡面清洁,不要折叠、不要弄破。

(17续) (18)12分
考生条形码粘贴处 考生禁填:缺考考生由监考员填涂 右边的缺考标记。

相关文档
最新文档