复变函数习题解答
《复变函数》(西安交大)习题解答--第1章习题

2
2
22
z ( 3 )2 ( 5 )2 34 ,z 位于第四象限,故
2
2
2
arg z arctg 5 , ••Argz arctg 5 2k••••(k 0,1,2,)
3
3
3) z 26 7i 7 13i
2i
2
•Re(z) 7 , ••Im(z) 13, •• z 7 13i,
13
a r gz a r c t2g, ••A r g z a r c t2g 2k••••(k 0,1,2,)
3
3
2) z i 3i(1 i) 3 5 i
2
22
Re(z) 3 , ••Im(z) 5 , •• z 3 5 i,
4) i 8 4i 21 i .
解:1) 1 3 2i 3 2 i 3 2i 13 13 13
Re(z) 3 , ••Im(z) 2 , z 3 2 i ,
13
13
13 13
z
( 3 )2 ( 2)2
ቤተ መጻሕፍቲ ባይዱ13
,
z 位于第四象限,故
13 13
4. 证明
1) z 2 z z ;
2) z1 z2 z1 z2 ;
3) z1 z2 z1 z2 ;
4)
z1 z2
z1 z2
•, •z 2
0;
5) z z ;
6) Re(z) 1 (z z) , Im(z) 1 (z z ) .
2
2i
复变函数西安交大习题解答第1章习题复变函数习题答案复变函数习题复变函数习题集下载复变函数复变函数与积分变换复变函数第四版答案复变函数第四版复变函数第四版pdf复变函数奇点
数学物理方法习题解答(完整版)

数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
复变函数部分习题解答分析(复拉)

∂u ∂y 2
= 2vvy = −vx 两式相乘并整理得 (4v 2 + 1)vx vy = 0. 由以上
ux = vy = 6xy ⇒ u = 3x2 y + D(y ) (4) 将(3),(4)代入(0)式,得 u =
3x2 y − y 3 + C, v = 3xy 2 − x3 + C .
chz =
ez +e−z 2
1 = 0, e2z + 1 = 0. 2z = Ln(−1) = ln | − 1| + i arg(−1) + 2kπi, z = (k + 2 )πi.
作业卷(三) 一 判断题 1.设 C 为 f (z ) 的解析域 D 内的一条简单正向闭曲线, 则 |z | < 2 内解析, C 取 |z | = 1, 则
的解为 z =
分析:两边同乘以 eiz , 得e2iz = 1. 两边取自然对数, 得 2iz = Ln1 = ln |1| + i arg(1) + 2kπi = 2kπi, z =
条件.
分析:f (z ) 在该点解析, 则 f (z ) 在该点的某一个邻域内可导, 在该点当然连续。填必要.
分析: 解析的充要条件. ux =
复变函数部分习题解答分析
作业卷(一) 一 判断题 1.复数 7 + 6i > 1 + 3i. ×. 两个复数, 只有都是实数时, 才可比较大小. 2.若 z 为纯虚数,则 z = z ¯. √ . 按书上定义, 纯虚数指 yi, y = 0, 若 z = yi , 则 z ¯ = −yi. 3.函数 w = arg(z ) 在 z = −3 处不连续. √ . 当 z 从下方 → −3时, w = arg(z ) 的极限为 −π ; 当 z 从上方 → −3 时, w = arg(z ) 的极限为 π . 4. f (z ) = u + iv 在 z0 = x0 + iy0 点连续的充分必要条件是 u(x, y ), v (x, y ) 在(x0 , y0 ) 点连续. √ . Th1.4.3. 5.参数方程 z = t2 + ti ( t 为实参数)所表示的曲线是抛物线 y = x2 . ×. x = y 2 . 二 填空题 1.若等式 i(5 − 7i) = (x + i)(y − i) 成立,则 x= 2.方程 Im(i − z ¯) = 3 表示的曲线是 3.方程z 3 + 27 = 0的根为 4.复变函数 w =
复变函数_习题集(含答案)

22.用留数定理计算积分 .
23.用留数定理计算积分 .
24.用留数定理计算积分 .
25.用留数定理计算积分 .
26.判断级数 的收敛性.
27.判断级数 的敛散性.
28.判断级数 的敛散性.
29.求幂级数 的收敛半径,并讨论它在收敛圆周上的敛散情况.
30.求幂级数 的收敛半径,并讨论它在收敛圆周上的敛散情况.
31.将 按 的幂展开,并指明收敛范围.
32.试将函数 分别在圆环域 和 内展开为洛朗级数.
33.试给出函数 在 处的泰勒展开式.
34.试将函数 分别在圆环域 内展开为洛朗级数.
35.试给出函数 在 处的泰勒展开式.
36.设 在区域 解析,证明在区域 内 满足下列等式
.
37.证明方程 的全部根均圆环 内.
故 ,即 在 上为 的上升函数.
(2)如果存在 及 使得 ,则有 .于是在 内 恒为常数,从而在 内 恒为常数.
39.证明:取 ,解析且连续到边界.
.
(根据Rouche定理)
故结论成立.
40.证明: 是调和函数.
使得 解析,
解析,
也是调和函数.
一、填空题1
(略)……
证明区域d上的调和函数我们有ixy上任何点处可微且满足cr条件
《复变函数》课程习题集
一、计算题
1.函数 在 平面上哪些点处可微?哪些点处解析?
2.试判断函数 在 平面上哪些点处可微?哪些点处解析?
3.试判断函数 在 平面上的哪些点处可微?哪些点处解析?
4.设函数 在区域 内解析, 在区域 内也解析,证明 必为常数.
14.计算积分 ,其中路径为(a)自原点到点 的直线段;(b)自原点沿虚轴到 ,再由 沿水平方向向右到 .
复变函数习题及解答

第一章 复变函数习题及解答1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数)(1)1-; (2)ππ2(cosisin )33-; (3)1cos isin αα-+;(4)1ie +; (5)i sin R e θ; (6)i +答案 (1)实部-1;虚部 2;辐角为4π2π,0,1,2,3k k +=±±;主辐角为4π3;原题即为代数形式;三角形式为4π4π2(cosisin )33+;指数形式为4πi 32e .(2)略为 5πi 35π5π2[cos sin ], 233i e +(3)略为 i arctan[tan(/2)][2sin()]2c e αα(4)略为 i;(cos1isin1)ee e +(5)略为:cos(sin )isin(sin )R R θθ+(6)该复数取两个值略为 i i isin ),arctan(1isin ),πarctan(1θθθθθθθθ+=+=+1.2 计算下列复数 1)()103i 1+-;2)()31i 1+-;答案 1)3512i 512+-;2)()13π/42k πi632e 0,1,2k +=;1.3计算下列复数(1 (2答案 (1(2)(/62/3)i n eππ+1.4 已知x 的实部和虚部.【解】令i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到2212()2i x p q xy +=-+,根据复数相等,所以即实部为 ,x ±虚部为 说明 已考虑根式函数是两个值,即为±值.1.5 如果 ||1,z =试证明对于任何复常数,a b 有||1az bbz a +=+【证明】 因为||1,11/z zz z z =∴=∴=,所以1.6 如果复数b a i +是实系数方程()01110=++++=--n n n n a z a z a z a z P 的根,则b a i -一定也是该方程的根.证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()()kkz z =,故由共轭复数性质有:()()z P z P =.则由已知()0i ≡+b a P .两端取共轭得 即()0i ≡-b a P .故b a i -也是()0=z P 之根.注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点.1.7 证明:2222121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 1.8 若 (1)(1)n n i i +=-,试求n 的值.【解】 因为222244444444(1)2(cos sin )2(cos sin )(1)2(cos sin )2(cos sin )n nnnn n n n n n n n i i i i i i ππππππππ+=+=+-=-=- 所以 44sin sin n n ππ=- 即为4sin 0n π=所以4,4,(0,1,2,)n k n k k ππ===±±1.9将下列复数表为sin ,cos θθ的幂的形式 (1) cos5θ; (2)sin5θ答案 53244235(1) cos 10cos sin 5cos sin (2) 5cos sin 10cos sin sin θθθθθθθθθθ-+-+1.10 证明:如果 w 是1的n 次方根中的一个复数根,但是1≠w 即不是主根,则必有1.11 对于复数,k k αβ,证明复数形式的柯西(Cauchy)不等式:22221111||(||||)||||n n nnk k k k k kk k k k αβαβαβ====≤≤∑∑∑∑ 成立。
复变函数综合练习题及答案

1复变函数综合练习题及答案第一部分 习题一. 判断下列命题是否正确,如正确, 在题后括号内填√,否则填⨯.(共20题) 1. 在复数范围内31有唯一值1.( ) 2. 设z=x+iy , 则=z z 22y x +.()3. 设,2321i z -=则.32arg π=z ( ) 4. z cos =ω是有界函数.( ) 5. 方程1=ze 有唯一解z=0.( ) 6.设函数z g z f (),()在0z 处可导,则)()(z g z f 在点0z 处必可导.()7.设函数),(),()(y x iv y x u z f +=在00iy x z +=处可导,则)(00,0)()(y x yui y v z f ∂∂-∂∂='.( )8. 设函数)(z f 在区域D 内一阶可导,则)(z f 在D 内二阶导数必存在. ( ) 9.设函数)(z f 在0z 处可导, 则)(z f 在0z 处必解析.( ) 10. 设函数)(z f 在区域D 内可导, 则)(z f 在D 内必解析.()11. 设),(),,(y x v y x u 都是区域D 内的调和函数,则),(),()(y x iv y x u z f +=是D 内的解析函数.( ) 12. 设n 为自然数,r 为正实数,则0)(00=-⎰=-r z z n z z dz.()13. 设)(z f 为连续函数,则⎰⎰'=1)()]([)(t t cdt t z t z f dz z f ,其中10,),(t t t z z =分别为曲线c 的起点,终点对应的t 值.( )214. 设函数)(z f 在区域D 内解析,c 是D 内的任意闭曲线,则0)(=⎰cdz z f .( )15. 设函数)(z f 在单连通区域D 内解析, c 是D 内的闭曲线,则对于c D z ∈0有)(2)(00z if dz z z z f cπ=-⎰. ( )16. 设幂级数∑+∞=0n n nz c在R z ≤(R 为正实数)内收敛,则R 为此级数的收敛半径. ( )17. 设函数)(z f 在区域D 内解析,D z ∈0,则n n n z z n z fz f )(!)()(000)(-=∑+∞=. ( )18. 设级数n n nz z c)(0-∑+∞-∞=在园环域)(0R r R z z r <<-<内收敛于函数)(z f ,则它是)(z f 在此环域内的罗朗级数.( ) 19. 设0z 是)(z f 的孤立奇点,如果∞=→)(lim 0z f z z ,则0z 是)(z f 的极点.()20. 设函数)(z f 在圆周1<z 内解析,0=z 为其唯一零点,则⎰==1].0),([Re 2)(z z f s i z f dzπ ( )二. 单项选择题.(请把题后结果中唯一正确的答案题号填入空白处,共20题)1. 设复数3)22(i z -=,则z 的模和幅角的主值分别为____________.A. 45,8πB. 4,24πC. 47,22π2.)Re(1z z -<是__________区域.A. 有界区域B. 单连通区域C. 多连通区域3.下列命题中, 正确的是_____________. A. 零的幅角为零B. 仅存在一个z 使z z-=1C.iz z i=14.在复数域内,下列数中为实数的是__________.A. i cosB. 2)1(i -C.38-35.设i z +=1,则=)Im(sin z _________.A. sin1ch1B. cos1sh1C. cos1ch16.函数)(z f =2z 将区域Re(z)<1映射成___________.A. 412v u -<B. 412v u -≤C. 214v u -<7.函数)(z f =z 在0=z 处____________. A. 连续 B. 可导C. 解析8. 下列函数中为解析函数的是_____________.A. )(z f =iy x -2B.)(z f =xshy i xchy cos sin + C.)(z f =3332y i x -9. 设函数),(),()(y x iv y x u z f +=且),(y x u 是区域D 内的调和函数,则当),(y x v 在D 内是_____________时, )(z f 在D 内解析.A. 可导函数B. 调和函数C. 共轭调和函数10. 设0z 是闭曲线c 内一点, n 为自然数,则⎰-cn z z dz)(0=________________. A. 0B. i π2C. 0或i π211. 积分dz z zz ⎰=-22)1(sin =_______________. A. 1cos B. i π21cos C. i π2sin112. 下列积分中,其积分值不为零的是___________________. A.⎰=-23z dz z zB. 1sin z zdz z =⎰C.⎰=15z zdz ze 13. 复数项级数∑+∞=13n nnz 的收敛范围是________________.A. 1≤zB.1<zC.1>z14. 设函数)(z f 在多连域D 内解析,210,,c c c 均为D 内闭曲线且210c c c ⋃⋃组成4复合闭路Γ且D D ⊂Γ,则___________________. A. 0)()()(21=++⎰⎰⎰c c c dz z f dz z f dz z fB. 0)(=⎰Γdz z fC.⎰⎰⎰-=21)()()(c c c dz z f dz z f dz z f15.函数)(z f =221ze z-在z=0的展开式是_______________________. A. 泰勒级数B. 罗朗级数C. 都不是16. 0=z 是4)(zshzz f =的极点的阶数是_____________. A. 1B. 3C. 417. 0=z 是411)(zez f z-=的____________________. A. 本性奇点B. 极点C. 可去奇点18. 设)(z f 在环域)0(0R r R z z r <<<-<内解析,则n n nz z cz f )()(0∑+∞-∞=-=,其中系数n c =______________________.A.!)(0)(n z fn , ,2,1,0=nB.!)(0)(n z fn ,,2,1,0±±=nC.,,2,1,0,)()(2110 ±±=-⎰+n d z f i c n ζζζπc 为环域内绕0z 的任意闭曲线. 19. 设函数)(z f =1-ze z,则]2),([Re i z f s π=__________________. A. 0B. 1C. i π2 20. 设函数)(z f =)1(cos -z e z z,则积分⎰=1)(z dz z f =________________.5A. i π2B. ]0),([Re 2z f s i πC. .2,0,]),([231i z zz f ik k kππ±=∑=三. 填空题 (共14题)1. 复数方程31i e z-=的解为____________________________________. 2. 设i z 22-=,则z arg =_____________,z ln =___________________________. 3.411<++-z z 表示的区域是___________________________________.4. 设,sin )(z z z f =则由)(z f 所确定的 ),(y x u =____________________,),(y x v =_______________________.5. 设函数)(z f =⎩⎨⎧=≠+-0,00,sin z z A e z z 在0=z 处连续,则常数A=____________.6. 设函数)(z f =ζζζζd z z ⎰=-++22173,则)1(+'i f =________________________.若)(z f =ζζζζd z z ⎰=-+2353,则)(i f ''=________________________. 7. 设函数)(z f 在单连域D 内解析,G(z )是它的一个原函数,且D z z ∈10,,则⎰1)(z z dz z f =_______________________.8. 当a =________时,xyiarctgy x a z f ++=)ln()(22在区域x>0内解析. 9. 若z=a 为f(z )的m 阶极点,为g(z)的n 阶极点(m>n ),则z=a 为f(z)g(z)的__________阶极点,为)()(z g z f 的____________阶极点. 10. 函数)(z f =tgz 在z=0处的泰勒展开式的收敛半经为_________________. 11. 函数)(z f =zzsin 在z=0处的罗朗展开式的最小成立范围为_____________.612. 设∑+∞-∞==n nn z c z z 3sin ,则______________________,02==-c c .13. 积分dz zez z⎰=11=________________________.14. 留数__________]0,1[Re _,__________]0,1[Re 2sin sin =-=-z e s z e s z z . 四. 求解下列各题(共6题)1. 设函数)(z f =)(2323lxy x i y nx my +++在复平面可导,试确定常数l n m ,,并求)(z f '.2. 已知,33),(22y x y x u -=试求),(y x v 使),(),()(y x iv y x u z f +=为解析函数且满足i f =)0(.3. 试讨论定义于复平面内的函数2)(z z f =的可导性. 4. 试证22),(y x yy x u +=是在不包含原点的复平面内的调和函数, 并求),(y x v 使),(),()(y x iv y x u z f +=为解析函数且满足1)(=i f .5. 证明z e z f =)(在复平面内可导且zz e e =')(.6. 证明⎰⎩⎨⎧>==-c n n n i z z dz1,01,2)(0π,其中n 为正整数,c 是以0z 为圆心,半径为r 的圆周.五. 求下列积分 (共24题)1. 计算dz z c⎰sin ,其中c 是从原点沿x 轴至)0,1(0z ,然后由0z 沿直线x=1至)1,1(1z 的折线段.2.⎰+cdz z z )]Re(2[,其中c 是从点A(1,0)到点B(-1,0)的上半个圆周.73.⎰+-cdz z z)652(2, 其中c 为连接A(1,-1),B(0,0)的任意曲线.4.dz ze iz ⎰+π11. 5.dz z z i z ⎰=-++21)4)(1(122 6.dz z z zz ⎰=--ππ2)1(cos 2.7.⎰=-232)(sin z dz z zπ. 8.⎰-+=cz z dzI )2()1(2,其中c 为r r z ,=为不等于1,2的正常数. 9.⎰++=cz z dzI )1)(12(2,其中曲线c 分别为1)1=-i z2)23=+i z 10. 设c 为任意不通过z =0和z =1的闭曲线,求dz z z e cz⎰-3)1(. 11. 23cos sin [](2)zzz e z e I dz z z z ==+-⎰. 12.⎰=--2)1(12z dz z z z . 用留数定理计算下列各题.13. dz z z e z z⎰=-1302)(,其中0z 为10≠z 的任意复数.14. dz z e z z⎰=+222)1(π.815.⎰=-24)1(sin z dz z zπ. 16.dz z z zz ⎰=-+12)12)(2(sin π. 17.⎰=1z zdz tg π.18.dz z zz ⎰=22sin . 19.⎰=+-122521z dz z z . 20.dz z z z ⎰=+-14141. 21.dz iz z z ⎰=-+122521.22. dz z z z c ⎰++)4)(1(222,其中c 为实轴与上半圆周)0(3>=y z 所围的闭曲线.23. dz z z c ⎰++1142,其中c 同上.24.⎰++c dz z z )1)(9(122,其中c 为实轴与上半圆周)0(4>=y z 所围的闭曲线. 六. 求下列函数在奇点处的留数 (共8题)1.421)(z e z f z-=.2. 1sin )(-=z z z f .3.3)1(sin )(z zz f +=.94.224)1(1)(++=z z z f . 5.1)(-=z e z z f . 6.2)1()(-=z z e z f z. 7. 11)(23+--=z z z z f .8.z zz f sin 1)(+=. 七. 将下列函数在指定区域内展成泰勒级数或罗朗级数 (共10题)1.)2()1(1)(22z z z z f --=110<-<z2.13232)(2+--=z z zz f231<+z 3.1)(-=z e z f z+∞<-<10z4. 21)(2--=z z z f1)1<z ,2). 1<z <2,3). 2<∞<z5.)1(1)(2z z z f -=110<-<z 6.z z f cos )(=+∞<-πz 7.2)1(1)(z z f +=1<z8.zzz f sin 1)(+=π<<z 0 (写出不为零的前四项)9.)1(cos )(2-=z e z z z f+∞<<z 0 (写出不为零的前三项)1010. zz z f sin )(=π<<z 0 (写出不为零的前三项)11第二部分解答一、判断题.(共20题)1. ×2. √3. ×4. ×5. ×6. ×7. √8. √9. × 10. √ 11. × 12. × 13. √ 14. × 15. √ 16. × 17. × 18. √ 19. √ 20. √二、单项选择题.(共20题)1. A.2. B.3. C.4. A.5. B.6. A.7. A.8. B.9. C. 10. C. 11. B. 12. C. 13. A. 14. B. 15. B. 16. B. 17. A. 18. C. 19. C. 20. B.三、填空题 1.,210)(235(2ln ±±=++,,k k i ππ) 2.47π ,i 472ln 23π+ 3. 13422<+y x 4. xshy y xchy x cos sin - , xchy y xchy x sin cos +5. 16. i ππ2612+- ,π36-7.)()(01z G z G -8.21 9.n m + ,n m -10.2π 11. π<<z 01212. 1 ,-61 13.i π14. 0 ,1四、求解下列各题1. 由题意得⎪⎩⎪⎨⎧+=+=2323),(),(lxyx y x v ynx my y x u利用yv nxy x u ∂∂==∂∂2 ,得l n =222233ly x xvnx my y u --=∂∂-=+=∂∂,得3-=n ,3-=l ,1=m 则 )33(6)(22y x i xy xvi x u z f -+-=∂∂+∂∂='23iz =2. 由于x xu y v 6=∂∂=∂∂ 所以 ⎰+==)(66),(x xy xdy y x v ϕ,)(6x y xvϕ'+=∂∂ 又由yux v ∂∂-=∂∂,即y x y 6)(6='+ϕ 所以 0)(='x ϕ,C x =)(ϕ(C 为常数)故 c xy y x v +=6),(,ci z i c xy y x z f +=++-=2223)6(33)(将条件 i f =)0(代入可得1=C ,因此,满足条件i f =)0(的函数i z z f +=23)(3. 由题意知⎩⎨⎧=+=0),(),(22y x v y x y x u ,由于1302=∂∂==∂∂y v x x u ,02=∂∂-==∂∂x v y y u 可得⎩⎨⎧==00y x 由函数可导条件知,2)(z z f =仅在0=z 处可导。
复变函数经典习题及答案
于是 z 2i 9i
3
cos
π 2
2kπ
π i sin 2
2kπ
,
2
2
k 0,1
故z132来自223
2
2
i
,
z2
3 2
2 2 3 2 i. 2
3
例5 满足下列条件的点组成何种图形?是不是区 域?若是区域请指出是单连通区域还是多连通区域.
(1) Im (z) 0;
解 Im (z) 0是实数轴,不是区域.
使C1和C2也在C内,且C1与C2互不相交,互不包含,
据复合闭路定理有
y
ez
C z(1 z)3 dz
C1
ez z(1
z)3dz
ez C2 z(1 z)3 dz
C1
C
•
O 1x C2
30
而积分
C1
ez z(1
z)3dz即为2)的结果2i,
而积分
C2
ez z(1
z)3dz
即为3)的结果
x
y
x
y
由于 f (z) 解析,所以 u v , u v x y y x
即 2bxy 2cxy b c,
3ay2 bx2 3x2 cy2 3a c,b 3 故 a 1, b 3, c 3.
11
例5 研究 f (z) z Re z 的可导性.
解 设 z0 x0 iy0 为 z 平面上任意一定点,
1( x iy), 9
于是 w u iv 1 x 1 iy u 1 x, v 1 y
99
9
9
u2 v2 1 ( x2 y2) 1 表示 w 平面上的圆.
81
9
6
复变函数—课后答案习题五解答
1 z ( z − 1) 1
2 2
在 z = 1 处有一个二级极点,这个函数又有下列洛朗展开式
z ( z − 1)
="+
1
( z − 1)
5
−
1
( z − 1)
4
+
1
( z − 1)
3
,| z − 1|> 1. , | z − 2 |> 1
−1 所以“ z = 1 又是 f (z ) 的本性奇点” ,又其中不含 (z − 2) 幂项,因此 Res ⎡ ⎣ f ( z ) ,1⎤ ⎦ = 0 ,这些说法对
m −1
ϕ (z ) + (z − z 0 )m ϕ ' (z ) = (z − z0 )m−1 [mϕ (z ) + (z − z0 )ϕ ' (z )]
故 z0 是 f ' (z ) 的 m-1 级零点。 3.验证: z = 解 由 ch
πi
2
是 ch z 的一级零点。
πi
2
= cos
π
2
= 0 , (ch z ) ' z = π i = sh
z → z0
lim
f ( z) f '( z ) = lim z → z 0 g '( z ) g ( z)
(或两端均为∞) 。
证
因 f ( z ) 和 g ( z ) 是 以 z0 为 零 点 的 两 个 不 恒 等 于 零 的 解 析 函 数 , 可 设 f ( z ) = ( z − z0 )ϕ ( z ) ,
习题五解答
1、下列函数有些什么奇点?如果是极点,指出它的级。 (1)
z ( z + 1)
复变函数习题及解答
(1);(2);(3);(4);(5);(6)答案(1)实部-1;虚部;模为2;辐角为;主辐角为;原题即为代数形式;三角形式为;指数形式为.(2)略为(3)略为(4)略为(5)略为:(6)该复数取两个值略为计算下列复数1);2);答案1);2);计算下列复数(1);(2);答案(1)(2)已知为实数,求复数的实部和虚部.【解】令,即为实数域(Real).平方得到,根据复数相等,所以即实部为虚部为说明已考虑根式函数是两个值,即为值.如果试证明对于任何复常数有【证明】因为,所以如果复数是实系数方程的根,则一定也是该方程的根.证因为,,…,均为实数,故,,…,.且,故由共轭复数性质有:.则由已知.两端取共轭得即.故也是之根.注此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点.证明:,并说明其几何意义.若,试求的值.【解】因为所以即为所以将下列复数表为的幂的形式(1);(2)答案证明:如果是1的n次方根中的一个复数根,但是即不是主根,则必有对于复数,证明复数形式的柯西(Cauchy)不等式:成立。
【证明】对任意n个复数,由三角不等式知再由关于实数的柯西不等式得,证毕。
证明成立.下列不等式在复数平面上表示怎样的点集1);2);3);4);5)(答 1)平面上由与所构成的宽度为1的铅直带形域;2)以为心,内半径为2,外半径为3的圆环域;3)顶点在原点,开度为的角形区域;4)宽度为的说平带形域,边界为,;5)以为心,为半径的圆之外部区域)指出下列关系表示的点之轨迹或范围;并说明是何种点集1)2)解 1)令,由知且即这样的点为平面上从点出发(但不含点)与实轴倾角为的射线.此射线所形成的点集既非开集,也非闭集.2)设,则原条件即为即由模的定义得化简得这是一椭圆,长半轴为,短半轴为,中心在原点,它是有界闭集(全部为边界点).描述下列不等式所确定的点集,并指出是区域还是闭区域,有界还是无界,单连通还是多(或复)连通.(1)(2)(3)(4)(5)(6)(7)(8)解(1)是以i为圆心、在以2为半径的圆外,3为半径的圆内的圆环,是有界闭区域、多连通.(图形略)(2)即是下半平面,无界单连通闭区域.(3)到3的距离比到2的距离大,因此,它是左半平面,去掉一点,是无界的多连通的区域.(4)在直线的上方,其中.无界单连通区域(5)即或是无界多连通区域(6)此不等是焦点在和初,长半轴为5/2的椭圆内部,为有界单连通闭区域).(7)这是半支双曲线:,部分是无界单连通区域.(8)不等式即,或,只有当,成立,因此,只代表复平面上一个点.已知映射,求(1) 圆周的象;(2)直线的象;(3)区域的象.答案 (1) ,为圆周(2)直线(3)先看直线 x=1的象,而 z=0 的象在圆的外部,因此的象是圆的内部即为讨论下列函数在指定点的极限存在性,若存在求出其值,并判断在该点的连续性.1), 2),解 1),则,,,又注意即在点处极限存在且连续.2)设,则显然,在点极限存在且连续.但注意不存在,事实上,令,有,对不同值有不同结果,故知不存在.所以,不存在.由连续与极限的关系知在处极限不存在、不连续.注这两个问题均通过极限存在的充要条件将问题转化为两个二元实函数在对应点处极限存在性的判断问题,这是最常用的方法.在问题1)中,又根据连徐的另一等价定义,立即得到在处不仅极限存在,而且在该点连续的结论;在2)中,实际上是一复变量实值函数,即,所以由充要条件只需判断一个二元实函数在点的极限存在性.由该二元实函数在点极限不存在即得在处极限的不存在性.若函数在点点连续,证明(1)在该点连续;(2)的模在该点连续.本章计算机编程实践与思考(说明:读者可参考第五部分计算机仿真编程实践)使用Matlab,或Mathcad,或Mathmatic计算机仿真求解下列复数的实部、虚部;共轭复数;模与辐角;计算机仿真计算:计算机仿真求解方程计算机仿真编程实践:若对应为的根,其中且取整数.试用计算机仿真编程验证下列数学恒等式成立.用计算机编程实践方法(Matlab,Mathcad,Mathmatic,C/C++)实现:(1)绘出单位圆及其内接正十七边形;(2)计算机编程求出边长;(3)能否对多变形进行推广,得出相应的计算机仿真计算方法.计算机仿真编程验证对复平面任意两个以上的不重合的有限远点,(即保证分母不为零),恒等式是否还成立呢注意式中自然数,而m, k为1至N的整数.(提示:利用随机函数产生随机数,从而验证恒等式是否成立)。
复变函数习题总汇与参考答案
复变函数习题总汇与参考答案(总21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--复变函数习题总汇与参考答案第1章 复数与复变函数一、单项选择题1、若Z 1=(a, b ),Z 2=(c, d),则Z 1·Z 2=(C )A (ac+bd, a )B (ac-bd, b)C (ac-bd, ac+bd )D (ac+bd, bc-ad)2、若R>0,则N (∞,R )={ z :(D )}A |z|<RB 0<|z|<RC R<|z|<+∞D |z|>R3、若z=x+iy, 则y=(D) A B C D4、若A= ,则 |A|=(C ) A 3 B 0 C 1 D 2二、填空题1、若z=x+iy, w=z 2=u+iv, 则v=( 2xy )2、复平面上满足Rez=4的点集为( {z=x+iy|x=4} )3、( 设E 为点集,若它是开集,且是连通的,则E )称为区域。
2zz +2z z -izz 2+iz z 2-)1)(4()1)(4(i i i i +--+4、设z 0=x 0+iy 0, z n =x n +iy n (n=1,2,……),则{z n }以z o 为极限的充分必要条件是 x n =x 0,且 y n =y 0。
三、计算题1、求复数-1-i 的实部、虚部、模与主辐角。
解:Re(-1-i)=-1 Im(-1-i)=-1|-1-i|=2、写出复数-i 的三角式。
解:3、写出复数 的代数式。
解:4、求根式的值。
+∞→n lim +∞→n lim ππ45|11|arctan ),1(12)1()1(=--+=--∴--=-+-i ary i 在第三象限 ππ23sin 23cos i i +=-i i i i i i i i i i i i i i i 212312121)1()1)(1()1(11--=--+-=⋅-++-+=-+-ii i i -+-11327-解:四、证明题1、证明若 ,则a 2+b 2=1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复变函数练习题解答
一、求出下列函数的奇点,并确定它们的类别<对于极点,要指明它
们的阶),对于无穷远点也要加以讨论.
<1),<2)
解.<1)有奇点,因在扩充复平面上
有一阶零点,故有一阶极
点,易见0是的一阶极点的
极限点,因而0不是的孤立奇点.
解.<2)有奇点,因
0是的可去奇点,易见有一阶极点.事实
上
因而是的一阶极点的极限点,不是的孤立奇点.
二、考查函数的可微性和解读性,并求出导数<如
存在).
解.因,,,,
,,故仅在两个点满
足条件,,因此函数处处不
解读,仅在两个点可导和可微,且,
.
三、求出圆到半平面的共形映射,使符合条件
1.将圆映为圆,
2.因将半平面映为圆,故逆映射
将圆映为上半平面
3.将上半平面映为右半平面
4.上述三个映射的复合将圆映为半平面
,且符合
条件.
四、证明:级数收敛,但不绝对收敛,提示,写成实
部和虚部.
因
其实部条件收敛,虚部绝对收敛
因此级数收敛,但不绝对收敛.
五、计算下列积分
<1) <2)
解.<1),事实上
<2)已知,为求,令,则原积分
,
记,,则
六、设函数在区域内解读,试证
<1)设,则,
<2)左
<3)由<2)和Laplace方程,知,
左,
<4)由<3)和条件,知,左
<5)由<4)和知,右
<6)由<4)和<5)知,左=右.
七、设在内解读,且,,如果原点0是
的阶零点,则 <1)当时
<2)
<3)如对于某一点,有,或者,
,那么,在内,其中是一复常数,
因原点0是的阶零点,故可以将在展成如下的幂级数,且,
记,则在内解读,,
,
设,,则由最大模定理知,
,
令,得,因此
(1)当时得证;
(2)由知,
,
同<1)类似可以证明.
(3)如对于某一点,有或,那么由最大
模定理知,或是常值函数.因此,在内,,
其中是复常数,且.
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。