六年级下数学广角-鸽巢问题知识点

合集下载

六年级数学鸽巢知识点总结

六年级数学鸽巢知识点总结

六年级数学鸽巢知识点总结
鸽巢问题呀,简单来说就是把一些东西放到一些“盒子”里,然后研究怎么放会有什么样的结果。

比如说把 5 个苹果放到 3 个抽屉里,不管怎么放,总有一个抽屉里至少放了 2 个苹果。

鸽巢原理的两种形式
1. 如果把 n + 1 个物体放到 n 个抽屉里,那么至少有一个抽屉里会放进两个或者更多的物体。

就像刚刚说的放苹果的例子,5(n + 1)个苹果放到 3(n)个抽屉里,肯定有抽屉至少放 2 个。

2. 把多于 kn 个物体任意放进 n 个空抽屉(k 是正整数),那么一定有一个抽屉中放进了至少(k + 1)个物体。

比如说把 8 个球放进 3 个盒子,8÷3 = 2……2,那至少有一个盒子里放了 3(2 + 1)个球。

鸽巢问题的应用
1. 最常见的就是在分配问题上,比如分东西、安排座位啥的。

2. 还能用来判断一些可能性,比如从一副扑克牌里抽出几张牌,判断能不能保证有某种花色。

3. 在数学竞赛里也经常出现,需要咱们灵活运用鸽巢原理来解题。

解题小技巧
1. 遇到这类问题,先找出“物体”和“抽屉”分别是什么。

2. 然后根据原理去思考怎么分配。

3. 多做几道练习题,就能更熟练地掌握啦。

鸽巢问题虽然听起来有点复杂,但是只要咱们认真琢磨,多练习,就能轻松搞定它!。

六下(人教)第五单元数学广角——鸽巢问题(抽屉原理)(附答案)

六下(人教)第五单元数学广角——鸽巢问题(抽屉原理)(附答案)

第五单元数学广角——鸽巢问题(抽屉原理)一、最不利原则:为了保证能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标。

二、抽屉原理:形式1:把n+1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m×n+1个苹果放到n个抽屉中,一定有m+1个苹果放在一个抽屉里。

模块一抽屉原理【例题1】把3个苹果放到两个抽屉中,有()种放法。

【练习1】把4支铅笔放进3个笔筒中,有()种放法。

【例题2】把8个桃子放到7个果盘里,一定有一个果盘里至少放进了()桃子。

【练习2】把7本书放进6个抽屉,不管怎么放,总有一个抽屉里至少放进()本书。

【例题3】五年级一班有28个学生,保证至少有几个同学在同一个月出生?【练习3】在任意25个人中,至少有几个人的星座相同?【例题4】把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?【练习4】把17本书最多放到()个空书架上,才能保证至少有一个书架上有5本书。

【例题5】平安路小学组织862名同学去参观甲、乙、丙3处景点。

规定每名同学至少参观一处,最多可以参观两处,至少有多少名同学参观的景点相同?【练习5】中国奥运代表团的173名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水6种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?【例题6】国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项。

那么至少有多少个学生,才能保证至少有4个人参加的活动完成相同?【练习6】桂苑小学六年级每名学生都订阅了《数学小灵通》、《小学生作文》、《英语天地》、《科学画报》这4种报刊中的2种,他们当中至少有34名学生订阅的报刊种类相同。

你知道桂苑小学六年级至少有多少名学生吗?【例题7】从1,2,3,……,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?【练习7】1至70这70个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?【例题8】从1,4,7,10,……37,40这14个自然数,至少任取多少个数才能保证其中至少有2个数的和是41?【练习8】从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50?【例题9】从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是6的倍数呢?【练习9】从1至99这99个自然数中任意取出一些数,要保证其中一定有两个数的和是5的倍数,至少要取多少个?【例题10】某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有多少人的头发根数一样多?【练习10】49名同学共同参加体操表演,其中最小的8岁,最大的11岁。

六年级数学下册期末总复习《5单元数学广角——鸽巢问题》必记知识点

六年级数学下册期末总复习《5单元数学广角——鸽巢问题》必记知识点

六年级数学下册期末总复习《5单元数学广角——鸽巢问题》必记知识点一、鸽巢问题基本原理•定义:鸽巢问题,也被称为抽屉原理或鸽笼原理,是一种组合数学原理。

它描述的是,如果n 个物体被放入m 个容器(n > m),那么至少有一个容器包含两个或更多的物体。

••简单示例:••如果有 3 个苹果放入 2 个盒子中,至少有一个盒子包含 2 个或更多的苹果。

•如果有 5 只鸽子飞入 4 个鸽笼,至少有一个鸽笼包含 2 只或更多的鸽子。

二、鸽巢问题的数学表达•公式:物体个数÷ 鸽巢个数= 商…… 余数,至少个数= 商+ 1(当余数存在时)。

••应用:••如果有10 个苹果放入9 个抽屉,那么至少有一个抽屉包含至少 2 个苹果(因为10 ÷ 9 = 1 …… 1,至少个数= 1 + 1 = 2)。

三、鸽巢原理的变种•鸽巢原理(二):把多于kn 个物体任意分进n 个鸽巢中(k 和n 是非0自然数),那么一定有一个鸽巢中至少放进了(k+1) 个物体。

••应用:••如果有15 只鸽子飞入 4 个鸽笼,至少有一个鸽笼包含至少 4 只鸽子(因为15 = 3 × 4 + 3,所以至少有一个鸽笼包含3+1=4 只鸽子)。

四、摸球问题与鸽巢原理•摸同色球:•要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。

•如果有两种颜色的球,至少需要摸 3 个球来保证有两个同色的球;三种颜色则需要摸 4 个球,以此类推。

•极端思想:•在摸球时,先考虑最不利的情况(即先摸出不同颜色的球),然后再考虑下一个球,以确保满足条件。

五、鸽巢原理的应用实例•生日悖论:在一个至少有23 人的群体中,存在至少两个人的生日在同一天的概率超过50%。

•选举投票:在一个有n 个候选人和超过n 个选民的选举中,至少有一个候选人获得了超过1/2 的选票(通过多轮投票或淘汰制)。

六、解题步骤1.分析题意:明确“鸽巢”和“物体”分别是什么。

人教版六年级下数学数学广角——鸽巢问题

人教版六年级下数学数学广角——鸽巢问题

人教版六年级下数学数学广角——鸽巢问题第十二周数学广角——鸽巢问题鸽巣原理是一个重要而又基本的组合原理,在解决数学问题时有非常重要的作用。

鸽巣原理的最简单表达形式是:物体个数÷鸽巣个数=商……余数,至少个数=商+1.举例来说,如果有3个苹果放在2个盒子里,共有四种不同的放法,但无论哪一种放法,都可以说“必有一个盒子放了两个或两个以上的苹果”。

类似的,如果有5只鸽子飞进四个鸽笼里,那么一定有一个鸽笼飞进了2只或2只以上的鸽子。

如果有6封信,任意投入5个信箱里,那么一定有一个信箱至少有2封信。

摸2个同色球的计算方法是:要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1.物体数=颜色数×(至少数-1)+1.另外,可以使用极端思想:用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。

在填空题中,可以通过运用鸽巣原理来解决问题。

例如,鱼岳三小六年级有30名学生是二月份出生的,那么六年级至少有3名学生的生日是在二月份的同一天。

又如,有3个同学一起练投篮,如果他们一共投进16个球,那么一定有1个同学至少投进了6个球。

把6只鸡放进5个鸡笼,至少有2只鸡要放进同1个鸡笼里。

某班有个小书架,40个同学可以任意借阅,小书架上至少要有14本书,才可以保证至少有1个同学能借到2本或2本以上的书。

在解决问题时,我们可以运用鸽巣原理来求解。

例如,六(1)班有50名同学,至少有6名同学是同一个月出生的。

书籍里混装着3本故事书和5本科技书,要保证一次一定能拿出2本科技书,一次至少要拿出4本书。

把16支铅笔最多放入3个铅笔盒里,可以保证至少有1个铅笔盒里的铅笔不少于6支。

在拓展应用中,我们可以通过鸽巣原理来解决更加复杂的问题。

例如,把27个球最多放在4个盒子里,可以保证至少有1个盒子里有7个球。

教师引导学生规范解答:2、假设先取5只,全是红的,不符合题意,要继续取;假设再取5只,5只有全是黄的,这时再取一只一定是蓝色的,这样取5×2+1=11(只)可以保证每种颜色至少有1只。

六年级下数学广角-鸽巢问题知识点

六年级下数学广角-鸽巢问题知识点

六年级下数学广角-鸽巢问题知识点甲景点?知识点一:“鸽巢原理”(一)告诉我们,把m个物体任意分放进n个鸽巢中(m和n是非0自然数,且m>n),那么一定有一个鸽巢中至少放进了2个物体。

知识点二:“鸽巢原理”(二)告诉我们,把多于kn个物体任意分进n个鸽巢中(k和n是非0自然数),那么一定有一个鸽巢中至少放进了(k+1)个物体。

知识点三:应用“鸽巢原理”解决简单的实际问题的步骤包括:(1)分析题意,把实际问题转化成“鸽巢问题”,即弄清楚“鸽巢”(“鸽巢”是什么,有几个鸽巢)和分放的物体;(2)设计“鸽巢”的具体形式;(3)运用原理得出某个“鸽巢”中至少分放的物体个数,最终解决问题。

误区警示:误区一的错解在计算抽屉里至少放的书的本数时出错,应该是“3(商)+1”;误区二的错解在把小球的总数作为要分放物体的数量了,求得的结果也与问题要求不符。

正确的解法是将问题转化为已知鸽巢数量和分的结果,求要分放物体的数量,各种颜色小球的数量并与参与运算。

运用逆推法解决鸽巢问题的方法是,根据“鸽巢原理”(二),用分放的物体总数除以鸽巢数量求出平均每个鸽巢里所放物体的数量和余数,其中至少有一个鸽巢中有(平均每个鸽巢里所放物体的数量+1)个物体。

例如,对于问题“把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?”,可以把玻璃球的总数看成分放的物体总数,把盒子数看成鸽巢数,要使其中一个鸽巢里至少有5个玻璃球,则玻璃球的个数至少要比鸽巢数的(5-1)倍多1个。

因此,正确的解答是(25-1)÷(5-1)=6个。

典型例题“XXX组织862名同学去参观甲、乙、丙处景点。

规定每名同学至少参观一处,最多可以参观两处,至少有多少名同学参观甲景点?”可以把参观景点的同学数看成分放的物体总数,把景点数看成鸽巢数,要使其中一个鸽巢里至少有参观甲景点的同学数,则同学数至少要比鸽巢数的(2-1)倍多1个。

因此,正确的解答是(862-1)÷(2-1)=861名同学。

新教材人教版小学六年级下册第五单元数学广角知识点归纳总结鸽巢问题

新教材人教版小学六年级下册第五单元数学广角知识点归纳总结鸽巢问题

新教材人教版小学六年级下册第五单元数学广角知识点归纳总结鸽巢问题
新教材人教版小学六年级下册第五单元数学广角知识点归纳总结鸽巢问题
查字典数学网为大家准备了新教材人教版小学六年级下册第五单元数学广角知识点归纳总结,希望能对大家有所帮助。

新教材人教版小学六年级下册第五单元数学广角知识点归纳总结:鸽巢问题
1、鸽巣原理是一个重要而又基本的组合原理, 在解决数学问题时有非常重要的作用。

①什么是鸽巣原理?先从一个简单的例子入手, 把3个苹果放在2个盒子里, 共有四种不同的放法,如下表:
放法盒子1盒子2
130
221
312
403
无论哪一种放法, 都可以说“必有一个盒子放了两个或两个以上的苹果”。

这个结论是在“任意放法”的情况下, 得出的一个“必然结果”。

类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子。

如果有6封信, 任意投入5个信箱里, 那么一定有一个信箱
以上就是为大家整理的新教材人教版小学六年级下册第五单元数学广角知识点归纳总结,希望对小朋友们有所启发!。

六年级下册数学广角鸽巢知识点

六年级下册数学广角鸽巢知识点

六年级下册数学广角鸽巢知识点六年级下册数学广角鸽巢知识点1、鸽巣原理是一个重要而又基本的组合原理, 在解决数学问题时有非常重要的作用①什么是鸽巣原理, 先从一个简单的例子入手, 把3个苹果放在2个盒子里, 共有四种不同的放法,如下表放法盒子1盒子21322131243无论哪一种放法, 都可以说“必有一个盒子放了两个或两个以上的苹果〞。

这个结论是在“任意放法〞的情况下, 得出的一个“必然结果〞。

类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子如果有6封信, 任意投入5个信箱里, 那么一定有一个信箱至少有2封信我们把这些例子中的“苹果〞、“鸽子〞、“信〞看作一种物体,把“盒子〞、“鸽笼〞、“信箱〞看作鸽巣, 可以得到鸽巣原理最简单的表达形式②利用公式进行解题:物体个数÷鸽巣个数=商……余数至少个数=商+12、摸2个同色球计算方法。

①要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1.物体数=颜色数×(至少数-1)+1②极端思想:用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。

③公式:两种颜色:2+1=3(个)三种颜色:3+1=4(个)四种颜色:4+1=5(个)数学长度单位简介及换算分米(dm)、厘米(cm)、纳米(nm)等,长度的标准单位是“米〞,分米dm,米m。

毫米mm,厘米cm,用符号“m〞表示。

1里=150丈=5米。

2里=1公里(10米)。

1丈=10尺。

1丈=3.33米。

1尺=3.33分米。

小学数学四边形定义知识点(1)什么是四边形?有四条线段围成的图形叫四边形。

(2)什么是平等四边形?两组对边分别平行的四边形叫做平行四边形。

(3)什么是平行四边形的高?从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。

(4)什么是梯形?只有一组对边平行的四边形叫做梯形。

六年级下学期数学鸽巢问题完整版讲义教师版+学生版

六年级下学期数学鸽巢问题完整版讲义教师版+学生版

鸽巢问题★ 知识概要1、鸽巢问题如果物体数除以抽屉数有余数,用所得的商加 1 ,就会发现“总有一个抽屉里至少有商加 1 个物体” 。

物体数+抽屉数=商……余数至少数:商+12、题型1)如果把m个物体任意放进n个抽屉中,(m>n , m和n是非0自然数),那么一定有一个抽屉中至少放进了 2 个物体。

2)如果把多于kn(k 是正整数,n 是非0 的自然数)个物体放进n 个抽屉里,那么一定有一个抽屉里至少有(k+1)个物体。

3)苹果数=抽屉数x(至少数-1) +14)最不利原理★ 精讲精练例1、( 1)11 只鸽子飞进了 4 个鸽笼,总有一个鸽笼至少飞进了 3 只鸽子。

为什么?解析:11 + 4=2 (只)……3 (只)2+1=3 (只)( 2) 5 个人坐 4 把椅子,总有一把椅子上至少坐2 人。

为什么?解析:5 + 4=1 (人) .. 1 (人)1+1=2 (人)演练1、(1)一个小组13 个人,其中至少有2 人是同一个月出生的,为什么?解析:13+12=1 (人)……1 (人)1+1=2 (人)2)9 只白鸽飞回 4 个鸽笼,至少有一个鸽笼里要飞进 3 白鸽,为什么?解析:9 + 4 = 2 (只)1 (只)2+1=3 (只)例2、(1)一个小组13个人,其中至少有(2 )人是同一个月出生的。

(2)6只鸽子飞回5个鸽舍,至少有(2 )只鸽子要飞进同一个鸽舍里。

演练2、(1)9只白鸽飞回2个鸽笼,至少有一个鸽笼里要飞进( D )白鸽。

A. 2只B. 3只C. 4只D. 5只(2)1987年某地一年新生婴儿有368名,他们中至少有(A )是同一天出生的。

A. 2名B. 3名C. 4名D. 10名以上例3、(1)17名同学参加考试,考试题是3道判断题(答案只有对或错),每名同学都在答题纸上依次写上了3道题的答案。

至少有多少名同学的答案是一样的?解析:答题情况:2 >2 >2=8 (种)17为=2 (名)••…1 (名)至少有2+1=3 (名)(2)全班40人去动物园,动物园有狮子馆、大象馆、鳄鱼馆和海洋馆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五单元:数学广角-鸽巢问题
【知识点一】“鸽巢原理”(一)
“鸽巢原理”(一):把m个物体任意分放进n个鸽巢中(m和n是非0自然数,且
m>n),那么一定有一个鸽巢中至少放进了2个物体。

【知识点二】“鸽巢原理”(二)
“鸽巢原理”(二):把多于kn个物体任意分进n个鸽巢中(k和n是非0自然数),
那么一定有一个鸽巢中至少放进了(k+1)个物体。

【知识点三】应用“鸽巢原理”解决简单的实际问题
应用“鸽巢原理”解题的一般步骤(1)分析题意,把实际问题转化成“鸽
巢问题”,即弄清楚“鸽巢”(“鸽巢”是什么,有几个鸽巢)
和分放的物体。

(2)设计“鸽巢”的具体形式。

(3)运用
原理得出某个“鸽巢”中至少分放的物体个数,最终解决问
题。

【误区警示】
误区一:判断:因为11÷3=3....2,所以把11本书放进3个抽屉中,总有一个
抽屉里至少放5本书。

(√)
错解分析此题错在把这个抽屉至少放的书的本数用“3(商)+2(余数)”
计算了,应该是“3(商)+1”。

错解改正×
误区二:有红、绿、蓝三种颜色的小球各5个,至少取出几个能保证有2个同色的
5×3÷3=5(个)
错解分析此题错在把小球的总数作为要分放物体的数量了,求得的结果也是
与问题要求不符。

本题属于已知鸽巢数量(3中颜色即3个
鸽巢)和分的结果(保证一个鸽巢里至少有2个同色的),
求要分放物体的数量,各种颜色小球的数量并与参与运算。

错解改正3+1=4(个)
【方法运用】运用逆推法解决鸽巢问题
典型例题把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5
个玻璃球
思路分析由“鸽巢原理”(二)可知,用分放的物体总数除以鸽巢数量求出平均
每个鸽巢里所放物体的数量和余数,其中至少有一个鸽巢中
有(平均每个鸽巢里所放物体的数量+1)个物体。

此题可以把玻璃球的总数看成分放的物体总数,把盒子数看成鸽巢数,
要使其中一个鸽巢里至少有5个玻璃球,则玻璃球的个数至
少要比鸽巢数的(5-1)倍多1个。

正确解答(25-1)÷(5-1)=6个(个)
方法总结(分放的物体总数-1)÷(其中一个鸽巢里至少有的物体个数-1)=
a....b(a.b为自然数,且b>a),则a就是所求的
鸽巢数。

典型例题平安路小学组织862名同学去参观甲、乙、丙处景点。

规定每名同学
至少参观一处,最多可以参观两处,至少有多少名同学参观
的景点相同
思路分析参观甲、乙、丙3处景点,若只参观一处,则有3种参观方案;若参观
两处,则有“甲乙、乙丙和甲丙”这3种参观方案。

所以,
一共有3+3=6(种)参观方案。

求至少有多少名同学参
观的景点相同,可以转化为“鸽巢问题”解答,把862名
同学看成要分放的物体,把6中参观方案看成6个鸽巢。

正确解答3+3=6(种)
862÷6=143(名).....4(名)
143+1=144(名)
【综合测评】
1、
(1)小东玩掷骰子游戏(掷一枚骰子),要保证掷出的骰子数至少有两次是相同
的,小东至少应该掷()次
(2)李阿姨给幼儿园的孩子买衣服,有红、黄、白3种颜色,结果总是至少有2
个孩子的衣服颜色一样,她至少给()个孩子买衣服。

2、11名学生到老师家借书,老师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类型的书,最少可借一本。

至少有几名学生所借的书的类型完全相同
3、、金星小学六年级有30名学生是2月份出生的,所以六年级至少有2名学生的生日是在2月份的同一天,为什么
4、大风车幼儿园大班有25个小朋友,班里有60件玩具。

若把这些玩具全部分给班里的小朋友,则会有小朋友得到3件或3件以上的玩具吗
5、学校图书馆有科普读物、故事书、连环画这3种图书。

每名学生从中任意借阅2本,那么至少要几名学生借阅才能保证其中一定有2名学生所借阅的图书种类一样
6、布袋里有4种不同颜色的小球若干个,最少取出多少个小球,就能保证其中一定有3个小球的颜色相同
7、49名学生共同参加体操表演,其中最小的8岁,最大的11岁。

参加体操表演的学生中是否一定有2名或2名以上是在同年同月出生的
8、一个幼儿园有40名小朋友,现有各种玩具共122件,把这些玩具全部分给小朋友们,是否会有小朋友得到4件或4件以上的玩具为什么
9、篮子里有苹果、梨和橘子若干个,现有35个小朋友,如果每个小朋友都从中任意拿2个水果,那么至少有多少个小朋友拿的水果种类是相同的
10、任意4个整数中,必存在两个数,它们被3除的余数相同。

你能说出其中的道理吗
11、六年级有100名学生,他们分别订阅了甲、乙、丙三种杂志中的一种、两种或三种。

至少有多少名学生订阅的杂志种类相同
12、8只猴子分一堆桃,要保证有一只猴子至少分到4个桃,这堆桃至少有多少个。

相关文档
最新文档