计算机组成原理实验6

合集下载

计算机组成原理实验

计算机组成原理实验

计算机组成原理实验一、实验目的本实验旨在通过实际操作,加深对计算机组成原理的理解,掌握计算机硬件的基本原理和工作方式。

二、实验设备和材料1. 计算机主机:型号为XXX,配置了XXX处理器、XXX内存、XXX硬盘等。

2. 显示器:型号为XXX,分辨率为XXX。

3. 键盘和鼠标:标准配置。

4. 实验板:包括CPU、内存、存储器、输入输出接口等模块。

5. 逻辑分析仪:用于分析和调试电路信号。

6. 示波器:用于观测电路信号的波形。

三、实验内容1. 实验一:CPU的工作原理a. 将实验板上的CPU模块插入计算机主机的CPU插槽中。

b. 连接逻辑分析仪和示波器,用于观测和分析CPU的工作信号和波形。

c. 打开计算机主机,启动操作系统。

d. 运行一段简单的程序,观察CPU的工作状态和指令执行过程。

e. 通过逻辑分析仪和示波器的数据分析,了解CPU的时钟信号、数据总线、地址总线等工作原理。

2. 实验二:内存的存储和读写a. 将实验板上的内存模块插入计算机主机的内存插槽中。

b. 打开计算机主机,启动操作系统。

c. 编写一个简单的程序,将数据存储到内存中。

d. 通过逻辑分析仪和示波器的数据分析,观察内存的写入和读取过程,了解内存的存储原理和读写速度。

3. 实验三:存储器的工作原理a. 将实验板上的存储器模块插入计算机主机的存储器插槽中。

b. 打开计算机主机,启动操作系统。

c. 编写一个简单的程序,读取存储器中的数据。

d. 通过逻辑分析仪和示波器的数据分析,观察存储器的读取过程,了解存储器的工作原理和数据传输速度。

4. 实验四:输入输出接口的工作原理a. 将实验板上的输入输出接口模块插入计算机主机的扩展插槽中。

b. 打开计算机主机,启动操作系统。

c. 编写一个简单的程序,通过输入输出接口实现数据的输入和输出。

d. 通过逻辑分析仪和示波器的数据分析,观察输入输出接口的工作过程,了解数据的传输和控制原理。

四、实验结果分析1. 实验一:通过观察CPU的工作状态和指令执行过程,可以验证CPU的时钟信号、数据总线、地址总线等工作原理是否正确。

计算机组成原理实验报告

计算机组成原理实验报告
2)海明码的每一位码Hi(包括数据位和校验位本身)由多个校验位校验,其关系是被校验的每一位位号等于校验它的各校验位的位号之和。
3)在增大合法码的码距时,所有码的码距应尽量均匀增大,以保证对所有码的检错能力平衡提高。
下面具体看一下对一个字节进行海明编码的实现过程。
只实现一位纠错两位检错,由前面的表可以看出,8位数据位需要5位校验位,可表示为H13H12…H2H1。
0
0
1
1
0
0
1
1
0
S1
0
0
1
0
1
0
1
0
1
0
1
0
1
由此可得校验后的数据位表达式为:
D1=D1 (S1•S2• • •S5)
D2=D2 (S1• •S3• •S5)
D3=D3 ( •S2•S3• •S5)
D4=D4 (S1•S2•S3• •S5)
D5=D5 (S1• • •S4•S5)
D6=D6 ( •S2• •S4•S5)
答:我们认为16位数据位的编码原理与8位数据位的hamming编码原理基本相同。即:,在k个数据位之外加上r个校验位,从而形成一个k+r位的新的码字,使新的码字的码距比较均匀地拉大。把数据的每一个二进制位分配在几个不同的偶校验位的组合中,当某一位出错后,就会引起相关的几个校验位的值发生变化,这不但可以发现出错,还能指出是哪一位出错,为进一步自动纠错提供了依据。
《计算机组成原理》
实验报告
实验室名称:S402
任课教师:邹洋
小组成员:王娜任芬
学号:2010212121 2010212119
实验一_Hamming码2
实验二_乘法器7

计算机组成原理实验报告

计算机组成原理实验报告

计算机组成原理实验报告实验目的,通过本次实验,深入了解计算机组成原理的相关知识,掌握计算机硬件的基本组成和工作原理。

实验一,逻辑门电路实验。

在本次实验中,我们学习了逻辑门电路的基本原理和实现方法。

逻辑门电路是计算机中最基本的组成部分,通过逻辑门电路可以实现各种逻辑运算,如与门、或门、非门等。

在实验中,我们通过搭建逻辑门电路并进行实际操作,深入理解了逻辑门的工作原理和逻辑运算的实现过程。

实验二,寄存器和计数器实验。

在本次实验中,我们学习了寄存器和计数器的原理和应用。

寄存器是计算机中用于存储数据的重要部件,而计数器则用于实现计数功能。

通过实验操作,我们深入了解了寄存器和计数器的内部结构和工作原理,掌握了它们在计算机中的应用方法。

实验三,存储器实验。

在实验三中,我们学习了存储器的原理和分类,了解了不同类型的存储器在计算机中的作用和应用。

通过实验操作,我们进一步加深了对存储器的认识,掌握了存储器的读写操作和数据传输原理。

实验四,指令系统实验。

在本次实验中,我们学习了计算机的指令系统,了解了指令的格式和执行过程。

通过实验操作,我们掌握了指令的编写和执行方法,加深了对指令系统的理解和应用。

实验五,CPU实验。

在实验五中,我们深入了解了计算机的中央处理器(CPU)的工作原理和结构。

通过实验操作,我们学习了CPU的各个部件的功能和相互之间的协作关系,掌握了CPU的工作过程和运行原理。

实验六,总线实验。

在本次实验中,我们学习了计算机的总线结构和工作原理。

通过实验操作,我们了解了总线的分类和各种总线的功能,掌握了总线的数据传输方式和时序控制方法。

结论:通过本次实验,我们深入了解了计算机组成原理的相关知识,掌握了计算机硬件的基本组成和工作原理。

通过实验操作,我们加深了对逻辑门电路、寄存器、计数器、存储器、指令系统、CPU和总线的理解,为进一步学习和研究计算机组成原理奠定了坚实的基础。

希望通过不断的实践和学习,能够更深入地理解和应用计算机组成原理的知识。

计算机组成原理 实验报告

计算机组成原理 实验报告

计算机组成原理实验报告计算机组成原理实验报告引言计算机组成原理是计算机科学与技术专业中的一门重要课程,通过实验学习可以更好地理解和掌握计算机的基本原理和结构。

本实验报告将介绍我在学习计算机组成原理课程中进行的实验内容和实验结果。

实验一:二进制与十进制转换在计算机中,数据以二进制形式存储和处理。

通过这个实验,我们学习了如何将二进制数转换为十进制数,以及如何将十进制数转换为二进制数。

通过实际操作,我更深入地了解了二进制与十进制之间的转换原理,并且掌握了转换的方法和技巧。

实验二:逻辑门电路设计逻辑门电路是计算机中的基本组成部分,用于实现不同的逻辑运算。

在这个实验中,我们学习了逻辑门的基本原理和功能,并通过电路设计软件进行了实际的电路设计和模拟。

通过这个实验,我深入理解了逻辑门电路的工作原理,并且掌握了电路设计的基本方法。

实验三:组合逻辑电路设计组合逻辑电路是由多个逻辑门组合而成的电路,用于实现复杂的逻辑功能。

在这个实验中,我们学习了组合逻辑电路的设计原理和方法,并通过实际的电路设计和模拟,实现了多个逻辑门的组合。

通过这个实验,我进一步掌握了逻辑电路设计的技巧,并且了解了组合逻辑电路在计算机中的应用。

实验四:时序逻辑电路设计时序逻辑电路是由组合逻辑电路和触发器组合而成的电路,用于实现存储和控制功能。

在这个实验中,我们学习了时序逻辑电路的设计原理和方法,并通过实际的电路设计和模拟,实现了存储和控制功能。

通过这个实验,我进一步了解了时序逻辑电路的工作原理,并且掌握了时序逻辑电路的设计和调试技巧。

实验五:计算机指令系统设计计算机指令系统是计算机的核心部分,用于控制计算机的操作和运行。

在这个实验中,我们学习了计算机指令系统的设计原理和方法,并通过实际的指令系统设计和模拟,实现了基本的指令功能。

通过这个实验,我深入了解了计算机指令系统的工作原理,并且掌握了指令系统设计的基本技巧。

实验六:计算机硬件系统设计计算机硬件系统是由多个模块组成的,包括中央处理器、存储器、输入输出设备等。

机综实验报告

机综实验报告

一、实验模块计算机组成原理实验二、实验标题计算机组成原理实验报告三、实验内容本次实验主要围绕计算机组成原理展开,通过实际操作和理论分析,加深对计算机硬件组成和工作原理的理解。

四、实验目的1. 理解计算机硬件的基本组成,包括CPU、内存、I/O接口等。

2. 掌握计算机各组成部分之间的数据传输和通信方式。

3. 了解计算机的基本工作原理,包括指令的执行过程和中断处理等。

4. 通过实验,提高动手能力和问题解决能力。

五、实验环境实验地点:学校机房实验设备:计算机组成原理实验箱(EL-JY-II型)实验软件:相关实验软件六、实验步骤及实验结果1. CPU实验(1)实验连线:将CPU、内存、I/O接口等设备按照实验要求进行连接。

(2)写数据:向内存写入数据,通过CPU读取数据并输出。

(3)实验结果:观察数据是否正确传输,分析CPU的工作原理。

2. 内存实验(1)实验连线:将内存与CPU、I/O接口等设备连接。

(2)往存储器写数据:向内存写入数据。

(3)从存储器读数据:从内存读取数据,观察数据是否正确。

(4)实验结果:分析内存的工作原理,验证内存读写功能。

3. I/O接口实验(1)实验连线:将I/O接口与CPU、内存等设备连接。

(2)实验步骤:通过I/O接口进行数据传输。

(3)实验结果:观察数据是否正确传输,分析I/O接口的工作原理。

4. 中断实验(1)实验连线:将中断设备与CPU、内存等设备连接。

(2)实验步骤:模拟中断发生,观察CPU如何响应中断。

(3)实验结果:分析中断处理过程,理解中断在计算机中的作用。

七、实验结果的分析与总结1. 通过本次实验,我们深入了解了计算机硬件的基本组成和工作原理,掌握了CPU、内存、I/O接口等设备的工作方式。

2. 实验过程中,我们学会了如何进行实验连线、数据传输和中断处理等操作,提高了动手能力和问题解决能力。

3. 实验结果表明,计算机硬件各部分之间协同工作,共同完成指令的执行和数据的处理。

计算机组成原理——存储器和总线实验精选全文完整版

计算机组成原理——存储器和总线实验精选全文完整版

可编辑修改精选全文完整版实验六存储器和总线实验一、实验目的熟悉存储器和总线组成的硬件电路。

二、实验要求按照实验步骤完成实验项目,利用存储器和总线传输数据三、实验内容实验原理图如下(省略图):(1)实验原理按照实验所用的半导体静态存储器电路图进行操作,该静态存储器由一片6116(2K x 8)构成,其数据线(D0-D7)已和数据总线(BUS-DISP UNIT)相连接,地址线由地址锁存器(74LS273)给出,该锁存器的输入已连接至数据总线。

地址A0-A7与地址总线相连,显示地址内容。

数据开关经一三态门(74LS245)已连接至数据总线,分时给出地址和数据。

因为地址寄存器为8位,接入6116的地址A7-A0,而高三位A8-A10本实验装置已接地,其容量为256字节。

6116有三根控制线:/CS(片选线)、OE(读线)、WE(写线)。

当片选有效(/CS=0)时,同时OE=0时,(WE=0)时进行读操作。

本实验中将OE引脚接地,在此情况下,当/CS=0、WE=1时进行写操作,/CS=0、WE=0时进行读操作,其写时间与T3脉冲宽度一致。

实验时T3脉冲由“单步”命令键产生,其他电平控制信号由二进制开关模拟,其中/CE(存储器片选信号)为低电平有效,WE为写/读(W/R)控制信号,当WE=0时进行读操作、当WE=1时为写操作。

(2)实验步骤1、控制信号连接:位于实验装置右侧边缘的RAM片选端(/CE)、写/读线、(WE)、地址锁存信号(LDAR)与位于实验装置左上方的控制信号(/CE、WE、LDAR)之间对应相连接。

位于实验装置左上方CTR-OUT 的控制信号(/SW-B)与左下方INPUT-UNIT(/SW-B)对应相连接。

具体信号连接:/CW,WE,LDAR,/SW-B2、完成上述连接,仔细检查无误后方可进入本实验。

在闪动上的“P.”状态下按动增址命令键,使LED显示自左向右第一位显示提示符“H”,表示本装置已进入手动单元实验状态。

计算机组成原理综合实验报告

计算机组成原理综合实验报告

计算机组成原理综合实验报告一、实验目的本次计算机组成原理综合实验旨在深入理解计算机组成的基本原理,通过实际操作和设计,巩固所学的理论知识,并培养实践动手能力和创新思维。

二、实验设备本次实验所使用的设备包括计算机硬件实验平台、数字逻辑实验箱、示波器、万用表等。

三、实验内容1、运算器实验设计并实现一个简单的运算器,能够完成加法、减法、乘法和除法运算。

通过实验,深入理解运算器的工作原理,包括数据的输入、运算过程和结果的输出。

2、控制器实验构建一个基本的控制器,实现指令的读取、译码和执行过程。

了解控制器如何控制计算机的各个部件协同工作,以完成特定的任务。

3、存储系统实验研究计算机的存储系统,包括主存和缓存的工作原理。

通过实验,掌握存储单元的读写操作,以及如何提高存储系统的性能。

4、输入输出系统实验了解计算机输入输出系统的工作方式,实现与外部设备的数据传输。

四、实验步骤1、运算器实验步骤(1)确定运算器的功能和架构,选择合适的逻辑器件。

(2)连接电路,实现加法、减法、乘法和除法运算的逻辑。

(3)编写测试程序,输入不同的数据进行运算,并观察结果。

2、控制器实验步骤(1)分析控制器的工作流程和指令格式。

(2)设计控制器的逻辑电路,实现指令的译码和控制信号的生成。

(3)编写测试程序,验证控制器的功能。

3、存储系统实验步骤(1)连接存储单元,设置地址线、数据线和控制线。

(2)编写读写程序,对存储单元进行读写操作,观察数据的存储和读取情况。

(3)通过改变缓存策略,观察对存储系统性能的影响。

4、输入输出系统实验步骤(1)连接输入输出设备,如键盘、显示器等。

(2)编写程序,实现数据的输入和输出。

(3)测试输入输出系统的稳定性和可靠性。

五、实验结果1、运算器实验结果通过测试程序的运行,运算器能够准确地完成加法、减法、乘法和除法运算,结果符合预期。

2、控制器实验结果控制器能够正确地译码指令,并生成相应的控制信号,使计算机各个部件按照指令的要求协同工作。

计算机组成原理实验报告精品9篇

计算机组成原理实验报告精品9篇

计算机组成原理实验报告课程名称计算机组成原理实验学院计算机专业班级学号学生姓名指导教师20年月日实验一:基础汇编语言程序设计实验1实验目的●学习和了解TEC-XP+教学实验监控命令的用法;●学习和了解TEC-XP+教学实验系统的指令系统;●学习简单的TEC-XP+教学实验系统汇编程序设计。

2实验设备及器材●工作良好的PC机;●TEC-XP+教学实验系统和仿真终端软件PCEC。

3实验说明和原理实验原理在于汇编语言能够直接控制底层硬件的状态,通过简单的汇编指令查看、显示、修改寄存器、存储器等硬件内容。

实验箱正如一集成的开发板,而我们正是通过基础的汇编语言对开发板进行使用和学习,过程中我们不仅需要运用汇编语言的知识,还需要结合数字逻辑中所学的关于存储器、触发器等基本器件的原理,通过串口通讯,实现程序的烧录,实验箱与PC端的通讯。

4实验内容1)学习联机使用TEC-XP+教学实验系统和仿真终端软件PCEC;2)学习使用WINDOWS界面的串口通讯软件;3)使用监控程序的R命令显示/修改寄存器内容、D命令显示存储内容、E命令修改存储内容;4)使用A命令写一小段汇编程序,U命令反汇编输入的程序,用G命令连续运行该程序,用T、P命令单步运行并观察程序单步执行情况。

5实验步骤1)准备一台串口工作良好的PC机器;2)将TEC-XP+放在实验台上,打开实验箱的盖子,确定电源处于断开状态;3)将黑色的电源线一段接220V交流电源,另一端插在TEC-XP+实验箱的电源插座里;4)取出通讯线,将通讯线的9芯插头接在TEC-XP+实验箱上的串口"COM1"或"COM2"上,另一端接到PC机的串口上;5)将TEC-XP+实验系统左下方的六个黑色的控制机器运行状态的开关置于正确的位置,再找个实验中开关应置为001100(连续、内存读指令、组合逻辑、联机、16位、MACH),6)控制开关的功能在开关上、下方有标识;开关拨向上方表示"1",拨向下方表示"0","X"表示任意,其他实验相同;7)打开电源,船型开关盒5V电源指示灯亮;8)在PC机上运行PCEC16.EXE文件,根据连接的PC机的串口设置所用PC机的串口为"1"或"2",其他的设置一般不用改动,直接回车即可; (8)按一下"RESET"按键,再按一下"START"按键,主机上显示:6实验截图及思考题【例3】计算1到10的累加和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六节 CPU组成与机器指令执行实验
一、实验目的
(1)将微程序控制器同执行部件(整个数据通路)联机,组成一台模型计算机;
(2)用微程序控制器控制模型机数据通路;
(3)通过CPU运行九条机器指令(排除中断指令)组成的简单程序,掌握机器指令与微指令的关系,牢固建立计算机的整机概念。

二、实验电路
本次实验用到前面四个实验中的所有电路,包括运算器、存储器、通用寄存器堆、程序计数器、指令寄存器、微程序控制器等,将几个模块组合成为一台简单计算机。

因此,在基本实验中,这是最复杂的一个实验,也是最能得到收获的一个实验。

在前面的实验中,实验者本身作为“控制器”,完成数据通路的控制。

而在本次实验中,数据通路的控制将由微程序控制器来完成。

CPU从内存取出一条机器指令到执行指令结束的一个机器指令周期,是由微指令组成的序列来完成的,即一条机器指令对应一个微程序。

三、实验设备
(1)TEC-9计算机组成原理实验系统一台
(2)双踪示波器一台
(3)直流万用表一只
(4)逻辑测试笔一支
四、实验任务
(1)对机器指令系统组成的简单程序进行译码。

(2)按照下面框图,参考前面实验的电路图完成连线,控制器是控制部件,数据通路(包括上面各模块)是执行部件,时序产生器是时序部件。

连线包括控制台、时序部分、数据通路和微程序控制器之间的连接。

其中,为把操作数传送给通用寄存器组RF,数据通路上的RS1、RS0、RD1、RD0应分别与IR3至IR0连接,WR1、WR0也应接到IR1、IR0上。

开关控制
控制台时序发生器
时序信号
开关控制指示灯信号控制信号时序信号
控制信号
微程序控制器数据通路
指令代码、条件信号
(3)将上述任务(1)中的程序机器代码用控制台操作存入内存中,并根据程序的需要,用数码开关SW7—SW0设置通用寄存器R2、R3及内存相关单元的数据。

注意:由于设置通用寄存器时会破坏内存单元的数据,因此一般应先设置寄存器的数据,再设置内存数据。

也可以使用上端软件或实验台监控系统用PS2键盘写入内容。

(4)用单拍(DP)方式执行一遍程序,列表记录通用寄存器堆RF中四个寄存器的数据,以及由STA指令存入RAM中的数据(程序结束后从RAM的相应单元中读出),与理论分析值作对比。

单拍方式执行时注意观察微地址指示灯、IRBUS指示灯、DBUS指示灯、AR2指示灯、AR1指示灯和判断字段指示灯的值,以跟踪程序中取指令和执行指令的详细过程(可观察到每一条微指令)。

(5)以单指(DZ)方式重新执行程序一遍,注意观察IR/DBUS指示灯、AR2/AR1指示灯的值(可观察到每一条机器指令)。

执行结束后,记录RF中四个寄存器的数据,以及由STA指令存入RAM中的数据,与理论分析值作对比。

注意:单指方式执行程序时,四个通用寄存器和RAM中的原始数据与第一遍执行程序的结果有关。

(6)以连续方式(DB、DP、DZ都设为0)再次执行程序。

这种情况相当于计算机正常运行程序。

由于程序中有停机指令STP,程序执行到该指令时自动停机。

执行结束后,记录RF中四个寄存器的数据,以及由STA指令存入RAM中的数据,与理论分析值作对比。

同理,程序执行前的原始数据与第二遍执行结果有关。

五、实验步骤和实验结果
1、对机器指令系统组成的简单程序进行译码并填入下表中。

2、接线
微程序控制器与数据通路之间的线可以通过选择开关直接选择。

将开关设置为“微程序”。

只需连接数据通路部分的线。

a、数据通路的LDIR接CER、LDPC接LDR4、LDDR1接LDDR2、M1接M2、LDAR1接LDAR2。

b
、指令寄存器IR的输出IR0接双端口寄存器堆的RD0、WR0,IR1接RD1、WR1,IR2
选择模式开关拔=“微程序”
3、实验步骤
(1)、设置通用寄存器R2、R3的值。

在本操作中,使R2 = 60H,R3 = 61H。

令DP = 0,DB = 0,DZ =0,使实验系统处于连续运行状态。

令SWC = 0、SWB = 1、SWA = 1,使实验系统处1)、于寄存器加载工作方式KLD。

按CLR#按钮,使实验系统处于初始状态。

2)、在SW7—SW0上设置一个存储器地址,该存储器地址供设置通用寄存器使用。

该存储器地址最好是不常用的一个地址,以免设置通用寄存器操作破坏重要的存储器单元的内容。

例如可将该地址设置为0FFH。

3)、按一次QD按钮,将0FFH写入AR0和AR1。

4)、在SW7—SW0上设置02H,作为通用寄存器R2的寄存器号。

按一次QD按钮,则将02H 写入IR。

5)、在SW7—SW0设置60H,作为R2的值。

按一次QD按钮,将60H写入IR指定的R2寄存器。

6)、在SW7—SW0上设置03H,作为通用寄存器R3的寄存器号。

按一次QD按钮,将03H 写入IR。

7)、在SW7—SW0设置61H,作为R3的值。

按一次QD按钮,将61H写入R3。

设置R2、R3结束,按CLR#按钮,使实验系统恢复到初始状态。

或用实验台监控系统或系统上端软件直接写入内容
(2)、存程序机器代码。

本操作中,我们从00地址开始依次存10个机器代码:58H,5DH,04H,94H,3EH,1BH,4BH, 60H,84H。

在60H存入24H,用于给R0置初值;在61H存入83H,用于给R0置初值。

令DP = 0,DB = 0,DZ =0,使实验系统处于连续运行状态。

令SWC = 0、SWB = 1、SWA = 0,使实验系统处于写双端口存储器工作方式KWE。

按CLR#按钮,使实验系统处于初始状态。

1)、置SW7—SW0为00H,按QD按钮,将00H写入AR1。

2)、置SW7—SW0 为58H,按QD按钮,将58H写入存储器00H单元。

AR1自动加1,变为01H。

3)、置SW7—SW0为5DH,按QD按钮,将5DH写入存储器01H单元。

AR1自动加1,变为02H。

重复进行下去,一直到将84H写入存储器09H单元。

按CLR#按钮,使实验系统恢复到初始状态。

4)、置SW7—SW0为60H,按QD按钮,将60H写入AR1。

5)、置SW7—SW0 为24H,按QD按钮,将24H写入存储器60H单元。

AR1自动加1,变为61H。

6)、置SW7—SW0为83H,按QD按钮,将83H写入存储器61H单元。

按CLR#按钮,使实验系统恢复到初始状态。

或用实验台监控系统或系统上端软件直接写入内容
(3)用单拍(DP)方式执行一遍程序。

(SWC=0,SWB=0,SWA==0;DP=1,DZ=0,DB=0)在单拍执行过程中,首先要随时监测AR2的值和IR的值,以判定程序执行到何处,正在执行哪条指令。

监测微地址指示灯和判断字段指示灯,对照微程序流程图,可以判断出微指令的地址和正在进行的微操作。

程序执行的结果如下:
初值:R0未定,R1未定,R2 = 60H,R3 = 61H。

存储器60H单元的内容是24H,61H
单元的内容是83H。

(4)、用单指(DZ=1)方式执行程序。

1)、按步骤(1)写寄存器内容。

使R2 = 60H,R3 = 61H。

2)、按步骤(2)写存储器内容。

从00地址开始依次存10个机器代码:58H,5DH,04H,95H,3EH,1BH,4BH,60H,84H。

在60H存入24H,用于给R0置初值;在61H 存入83H,用于给R0置初值。

3)、单指执行程序(SWC=0,SWB=0,SWA==0;DP=0,DZ=1,DB=0)
初值:R0未定,R1未定,R2 = 60H,R3 = 61H。

存储器60H单元的内容是24H,61H单元的内容是83H。

按一次QD,执行一条指令,观察寄存器的值:
(5)、用连续方式执行程序。

1)、按步骤(1)写寄存器内容。

使R2 = 60H,R3 = 61H。

2)、按步骤(2)写存储器内容。

从00地址开始依次存10个机器代码:58H,5DH,04H,94H,3EH,1BH,4BH,60H,84H。

在60H存入24H,用于给R0置初值;在61H 存入83H,用于给R0置初值。

3)、单连续方式执行程序(SWC=0,SWB=0,SWA==0;DP=0,DZ=0,DB=0)
执行结果为:PC地址停在07H。

观察执行结果R0=A7H;R1=83H;R2=60H;R3=01H
存储器60单元:01H。

相关文档
最新文档