初三《圆》单元复习教案
九年级数学苏科版上册 第二单元《单元复习》教学设计 教案

圆的复习课教师姓名年级九年级科目数学学生姓名上课时间课题第2章圆的复习课教学目标1.理解、掌握圆的有关性质、直线和圆的位置关系、圆和圆的位置关系、正多边形和圆的位置关系.2.探索、总结、归纳与圆有关的各种问题,进行知识梳理,构建圆的知识体系.3.渗透数形结合和分类的数学思想,并逐步学会用数学的眼光认识世界,学会有条理的表达、推理.教学重点和难点重点;与圆有关的知识点梳理.难点;会用圆的有关知识解决问题.1.圆有关的概念:圆的定义:到定点的距离等于定长的点的集合。
定义用来判断几点共圆,也可画出辅助圆解决问题.(1)圆心角:顶点在圆心的角叫做圆心角.(2)圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.(3)弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.等弧是完全重合的弧,包括弧长和弧度(所对圆心角度数),只能在同圆或等圆中.(4)弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.2.圆的有关的性质:(1)圆心角、弦和弧三者之间的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量分别相等.(2)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.(3)圆心角定理:圆心角的度数等于它所对弧的度数.(4)圆心角与圆周角的关系: 同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半.(5)圆周角定理:直径所对的圆周角是直角,反过来,90°的圆周角所对的弦是直径. (6)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线;②圆心到直线的距离等于半径;③直线与圆只有唯一的公共点.方法:(无切点)作垂直,证半径;(有切点)连半径,证垂直.(7)切线的性质定理:圆的切线垂直于过切点的半径.(8)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点与圆心的连线平分两切线的夹角;圆中常作的辅助线:已知切线,常过切点作半径;已知直径,常作直径所对的圆周角. 求解有关弦的问题,作弦心距,借助垂径定理和勾股定理解决;弧的中点常和圆心连结.B IAC圆中作辅助线的解题思路:利用垂径定理勾股定理、相似三角形,同弧所对的圆周角相等,以及圆周角与圆心角之间的关系.若题目中只配有一幅图,有时不代表就只有一解.要注意题目中的条件:比如动点,直线等等字眼.油的截面问题是有图一解,无图两解. 3.三角形的内心和外心(1)确定圆的条件:不在同一直线上的三个点确定一个圆. (2) ①外心:三边中垂线的交点.② 性质:(1)OA=OB=OC.(2)外心不一定在三角形的内部. ③ 应用:∠BOC=2∠A.(3) ①三角形的内心:三角形三条角平分线的交点.②性质(a )到三边的距离相等;(b )IA 、IB 、IC 分别平分∠BAC 、∠ABC 、∠ACB ; (c )内心在三角形内部.③应用∠BIC=900+21∠A(三角形内角和角平分线得);S ⊿ABC =21C ⊿ABC r 内切.任意多边形的内切圆的半径与面积和周长公式之间的关系:S=21CR .(4)直角三角形中,∠C=90°, R 外接=21c, r 内切=21(a+b-c)=c b a ab++.(5)等边三角形中边长为a R 外接=33a ,r 内切=63a, h=23a, s=243a .4.点与圆的位置关系:点在圆外,点在圆上,点在圆内,设圆的半径为r ,点到圆心的距离为d ,则点在圆外⇔d >r .点在圆上⇔d=r .点在圆内⇔d <r .5.直线和圆的位置关系有三种:相交、相切、相离. 设圆的半径为r ,圆心到直线的距离为d ,则直线与圆相交⇔d <r ,直线与圆相切⇔d=r ,直线与圆相离⇔d >r. 6.圆与圆的位置关系:设两圆的圆心距为d ,两圆的半径分别为R 和r ,则⑴ 两圆外离⇔d >R+r ; ⑵ 两圆外切⇔d=R +r ;⑶ 两圆相交⇔R -r <d <R+r (R >r ); ⑷ 两圆内切⇔d=R -r (R >r );⑸ 两圆内含⇔d <R —r (R >r )(R 与r 大小不定加绝对值). 判断两圆位置关系:圆心距、两圆半径和、两圆半径差(绝对值)直线与圆是相离、相切、相交,圆与圆相离包含外离和内含,相切包括内切和外切n ︒r S180r n l π=弧长2扇形R π360n S =lR21=7.圆有关的计算:(1)(2)360l rn •=圆锥侧面展开图(扇形)1、h 2+r 2=l 22、S 侧 =πrl3、l 即为R, 圆锥母线长是展开图扇形半径(大半径),r 是底面圆小半径,看清楚求的是扇形面积还是弧长,面积是360作分母,弧长是180作分母。
九年级圆复习教案5篇

九年级圆复习教案5篇教案在书写的时候,我们需要考虑联系实际,制定教案是一件值得深思的事情,我们要保持清晰的思路,下面是作者为您分享的九年级圆复习教案5篇,感谢您的参阅。
九年级圆复习教案篇1第一单元第一课一复习生词二背诵最后一段(共两句,最后是省略号)三课文中作者的感情是自豪、赞美,体现了民族团结的精神。
四、抄写窗外安静的句子。
(读书读得认真)五、字音、字形傣昌戴(戈)舞()六、这是一所什么样的学校?(美丽、团结)第二课一、生词二、课文感情:热爱大自然,大自然给我的们生活带来了乐趣。
三、课文写了哪两件事?(第一件:哥俩在草地上玩耍,互相往对方脸上吹蒲公英的绒毛。
第二件:我发现了草地会变色及其变色的原因)四、草地为什么会变色?(花朵张开时,它是金色的,草地也是金色的;花朵合拢时,金色的花瓣被包住,草地就变成绿色的了。
)五、一本正经:很庄严,很严肃。
引人注目:引起人的注意。
第三课一、读课文,读准字音二、生词三、背诵课文第二自然段,这段写了什么?(天都峰又高又陡)四、老爷爷和我爬上天都峰后,为什么要互相道谢?(能从他人身上汲取力量,善于向他人学习,他们个人的奋斗和努力。
)五、多音字si似乎互相似相shi似的相片园地一、我的发现真假好人发现晃眼朝阳假放假好爱好发头发晃摇晃朝朝向二、背《小儿垂钓》三、记住“读读认认”里的生字四、用下面两个词造句十分:好像:第二单元第五课一、读课文二、写生词三、注意易错的字:步胸或低四、把课文描写灰雀的句子背下来(公园里有一棵高大的……非常惹人喜爱)五、列宁是怎样对待小男孩儿的,小男孩是一个怎样的人?(列宁尊重、爱护小男孩,小男孩是一个诚实天真的人)第六课一、读课文,读准字音二、会写生词三、易听写的词:摆弄清准备胶卷杂志社四、高尔基是一个怎样的人?小男是一个怎样的人?(高尔基关心爱护小男孩,小男孩崇敬、热爱高尔基)五、小男孩摆弄了很久很久,说明什么?(从高尔基和小男孩两个方面去回答)六、高尔基的三步曲:童年在人间我的大学第七课1、熟读课文2、听写词语3、容易错的字:旅考遗4、李四光是怎么提问题的?(这么重的大石头从天上掉下来,力量一定非常大。
初中数学圆的复习教案

初中数学圆的复习教案一、教学目标1. 回顾和掌握圆的基本概念、性质和定理;2. 提高学生解决直线与圆、圆与圆位置关系的几何问题能力;3. 培养学生的逻辑思维能力和数学应用能力。
二、教学内容1. 圆的基本概念和性质;2. 直线与圆的位置关系;3. 圆与圆的位置关系;4. 圆的应用问题。
三、教学过程(一)复习导入(5分钟)1. 复习圆的基本概念:圆的定义、圆心、半径等;2. 复习圆的性质:圆的对称性、周长、面积等;3. 引导学生回顾圆的画法和相关工具。
(二)直线与圆的位置关系(15分钟)1. 讲解直线与圆的相交、相切、相离三种情况;2. 引导学生掌握垂径定理及其推论;3. 举例讲解直线与圆的位置关系在实际问题中的应用。
(三)圆与圆的位置关系(15分钟)1. 讲解圆与圆的相交、相切、相离三种情况;2. 引导学生掌握圆心角、弧、弦、弦心距之间的关系定理;3. 举例讲解圆与圆的位置关系在实际问题中的应用。
(四)圆的应用问题(15分钟)1. 讲解圆的周长、弧长、扇形面积等概念;2. 引导学生掌握圆的周长、弧长、扇形面积的计算方法;3. 举例讲解圆的应用问题在实际问题中的应用。
(五)课堂练习(10分钟)1. 针对本节课的内容,设计一些填空题、选择题和计算题;2. 引导学生独立完成练习题,并及时给予解答和反馈。
(六)总结与反思(5分钟)1. 引导学生回顾本节课所学内容,总结直线与圆、圆与圆的位置关系及应用;2. 鼓励学生提出问题,解答学生的疑问;3. 强调圆的知识在实际生活中的应用价值。
四、教学评价1. 课堂练习的完成情况;2. 对直线与圆、圆与圆位置关系的理解和应用能力;3. 学生的提问和解答问题的能力。
五、教学资源1. 教学PPT;2. 练习题;3. 几何画板等教学工具。
六、教学建议1. 注重学生的参与,鼓励学生积极提问和解答问题;2. 结合生活中的实例,让学生感受圆的知识在实际中的应用;3. 加强对学生几何画板等工具的指导,提高学生的动手能力。
数学九年级下册《圆-复习与提升》教案

第27复习与提升【知识与技能】1.掌握圆的相关概念和定理;2.圆的相关概念和定理的应用.【过程与方法】通过对本章知识的系统复习,使学生对本章知识能够全面的了解,掌握.【情感态度】在整理知识点的过程中发展学生的独立思考习惯,让学生感受成功,并找到解决圆的相关问题的一般方法.【教学重点】掌握圆的相关概念和定理.【教学难点】圆的相关概念和定理的应用.一、知识体系构建【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.二、释疑解惑,加深理解1.圆的定义2.与圆相关的概念:①弦和直径②弧、半圆、优弧、劣弧③等圆④等弧⑤圆心角圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴.3.垂径定理垂径定理推论4.定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦相等、所对的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.5.圆周角的定义6.圆周角定理及讨论7.确定圆的条件8.直线与圆的位置关系9.点与圆的位置关系10.切线的性质定理及推论11.三角形的内切圆、内心12.正多边形与圆的关系13.弧长及扇形的面积【教学说明】让学生对知识进行回忆,进一步理解本章知识.三、运用新知,深化理解1.下列语句中不正确的个数是(B)①过圆上一点可以作圆中最长的弦无数条②长度相等的弧是等弧③圆上的点到圆心的距离都相等④同圆或等圆中,优弧一定比劣弧长A.1B.2C.3D.42.如图,点A,D,G,M在半圆O上,四边形ABOC,四边形DEOF,四边形HMNO 均为矩形.设BC=a,EF=b,NH=c,则下列各式中正确的是(B)A.a>b>c B.a=b=cC.c>a>b D.b>c>a第2题图第3题图3.如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P当A,B不重合),连接AP,PB,过点O分别作OE⊥AP于点E,OF⊥BP于点F,则EF= 5 .4.(北京中考)如图,⊙O的直径AB垂直平分弦CD,垂足是E,∠A=22.5°,OC=4,则CD的长为(C)A.22B.4C.42D.8第4题图第5题图5.(南通中考)如图,点A,B,C,D在⊙O上,点O在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=60 度.6.在平面直角坐标系中,△ABC 的位置如图所示,则可确定△ABC 的外接圆圆心坐标为 (1,1) .第6题图第7题图7.如图,已知∠AOM =30°,M 是OB 边上一点,以点M 为圆心,2 cm 为半径作⊙M ,若点M 在OB 边上运动,则当OM = 4 cm 时⊙M 与OA 相切.8.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为BD ︵,则图中阴影部分的面积是 π6. 第8题图第9题图9.(宿迁中考)如图,AB 是⊙O 的弦,OP ⊥OA 交AB 于点P ,过点B 的直线交OP 的延长线于点C ,且CP =CB .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径为5,OP =1,求BC 的长.解:(1)证明:连接OB ,∵OP ⊥OA ,∴∠APO +∠A =90°.∵CP =CB ,∴∠CBP =∠CPB =∠APO .∵OA =OB ,∴∠A =∠OBA ,∴∠OBA +∠CBP =∠APO +∠A =90°,∴OB ⊥BC . 又∵点B 在⊙O 上,∴BC 是⊙O 的切线.(2)设CP =CB =x ,在Rt △OBC 中,∠OBC =90°,CB =x ,CO =PC +OP =x +1,OB =5,∴x 2+(5)2=(x +1)2,解得x =2.即BC 的长为2.10.如图,正方形ABCD 的边长是4,以BC 为直径作圆,从点A 引圆的切线,切点为F ,AF 的延长线交DC 于点E .(1)求△ADE 的面积;(2)求BF 的长.解:(1)∵BC 是⊙O 的直径,AB ⊥BC ,DC ⊥BC ,∴AB ,CD 都是⊙O 的切线,∴AF =AB =4.设EC =x ,则EF =x ,DE =4-x ,∴42+(4-x )2=(4+x )2,x =1,∴△ADE 的面积是6.(2)连接AO 交BF 于点M ,则AO =25,MF =455,∴BF =855. 11.已知,如图,△ABC 内接于⊙O ,AB 是直径,弦CE ⊥AB 于点F ,C 是AD ︵的中点,连接BD 并延长交EC 的延长线于点G ,连接AD ,分别交CE ,BC 于点P ,Q ,求证:点P 是△ACQ 的外心.证明:∵AB 是直径,∴∠ACB =90°,∵AB ⊥CE ,AB 是直径,∴AC ︵=AE ︵,又∵AC ︵=CD ︵,∴CD ︵=AE ︵,∴∠ACP =∠CAP ,∴AP =PC .又∠QCP +∠ACP =∠CAP +∠CQP =90°,∴∠PCQ =∠CQP ,∴CP =PQ ,∴CP =AP =PQ ,即P 是Rt △ACQ 的外心.四、复习巩固,提升能力1.如图,点B 在⊙O 上,四边形OABC 是矩形,AC =5,则⊙O 的半径是__5__.第1题图 第3题图2.(丽水中考)如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD .已知DE =6,∠BAC +∠EAD =180°,则弦BC 的弦心距等于( D ) A.412B.342 C .4 D .33.(东营中考)如图,在⊙O 中,AB 是⊙O 的直径,AB =8 cm ,AC ︵=CD ︵=BD ︵,M 是AB上的一动点,则CM +DM 的最小值是 8 cm.4.(陕西中考)如图,⊙O 的半径是2,直线l 与⊙O 相交于A ,B 两点,M ,N 是⊙O 上的两个动点,且在直线l 的异侧,若∠AMB =45°,则四边形MANB 面积的最大值是__42__.5.如图,△ABC 内接于⊙O ,且AB >AC ,∠BAC 的外角平分线交⊙O 于E ,EF ⊥AB 于点F .(1)求证:EB =EC ;(2)求式子 AB +AC BF ,AB -AC AF的值; (3)若EF =AC =3,AB =5,求△AEF 的面积.(1)证明:∵点E ,A ,C ,B 是⊙O 上的四个点,∴∠EBC +∠EAC =180°.又∵∠EAC +∠EAM =180°,∴∠EBC =∠EAM .∵AE 平分∠BAM ,∴∠EAM =∠EAB =∠ECB .∴∠EBC =∠ECB .∴EB =EC .(2)解:作EH ⊥AM 于点H .∵∠EBA =∠ECA ,∠BFE =∠CHE =90°,BE =CE .∴△EBF ≌△ECH .∴BF =CH .又∵AE 是∠BAM 的平分线,∴AF =AH .∴AB +AC =2BF ,AB -AC =2AF ,∴AB +AC BF =2,AB -AC AF=2.(3)解:由(2)可得AF=1,∴S△AEF=3 2.6.如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是多少?【思路点拨】弧CD,弧DE,弧EF的圆心角都是120度,半径分别是1,2,3,利用弧长的计算公式可以求得三条弧长,三条弧的和就是所求曲线的长.【解】:4π【课后作业】1.布置作业:教材“复习题”中第4、5、7、8、12题2.完成练习册中本课时的练习.。
部编人教版九年级数学上册 圆单元复习 教案

A.AB⊥CD B. C.PO=PD D.AP=BP
5.如图所示,在⊙O中,弦AB的为8,那么它的弦心距是;
6.如图所示,一圆形管道破损需更换,现量得管内水面宽为60cm,水面
到管道顶部距离为10cm,问该准备内径是多少的管道进行更换。
2.一个点到圆上的最小距离是4cm,最大距离是9cm,则圆的半径是()
A.2.5cm或6.5cm B.2.5cm C.6.5cm D.5cm或13cm
3.以下说法正确的是:①圆既是轴对称图形,又是中心对称图圆心角所对的弧相等。()
A.①②B.②③C.①③D.①②③
4.圆的推论:在同一平面内,不在直线上的点确定一个圆。
5.垂径定理:垂直于弦的平分弦,并且平分弦所对的弧。如图,有。
6.垂径定理推论:平分弦(非直径)的直径弦,并且平分弦所对的两条弧。如图,有。
围标群学
扣标展示
1.下列说法正确的是()
A.长度相等的弧是等弧;B.两个半圆是等弧;
C.半径相等的弧是等弧;D.直径是圆中最长的弦;
达标测评
1.圆的半径是R,则弦长d的取值范围是()
A.0≤d<R B.0<d≤R C.0<d≤2R D.0≤d≤2R
2.如图所示,在⊙O中, ,那么()
A.AB=AC B.AB=2AC C.AB<2AC D.AB>2AC
3.如图所示,在⊙O中,直径等于10,弦AB=8,P为弦AB上一个动点,
那么OP长的取值范围是
九年级数学科圆复习课(一)教案
学习目标
1.理解圆及弧、弦有关概念、性质;
2.垂径定理及其应用;
依标独学
【精品】九年级数学下册第3章圆复习教案

第三章圆一、复习目标1.复习本章内容,以求对本章知识有整体认识2.在巩固复习中,寻求对圆各单元知识有框架性认识3.通过对比、归纳思考本章知识结构,使学生能够增强分析问题解决问题能力。
二、课时安排2三、复习重难点对本章知识结构的总体认识,把握有关性质和定理解决问题。
四、教学过程(一)圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
(二)点与圆的位置关系<⇒点C在圆内;1、点在圆内⇒d r=⇒点B在圆上;2、点在圆上⇒d r>⇒点A在圆外;3、点在圆外⇒d rA(三)直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;(四)圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;图1图2图4图5(五)垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。
人教新课标版初中九上第24章圆复习教案新部编本
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校第24章圆小结与复习教学内容本节课主要是对本章知识进行系统复习,巩固所学知识,提升应用能力.教学目标知识技能梳理本单元知识,使学生全面理解本章知识,提高学生逻辑思维能力和分析解决问题的能力.数学思考重视渗透数学思想与方法,进一步培养推理能力.解决问题通过对本单元的回顾,了解知识间的联系与综合,在反思中交流,体验知识体系的价值.情感态度培养学生对数学的好奇心与求知欲,养成质疑和独立思考的学习习惯,感受知识的实际应用价值,同时加强学生的思维意识.重难点、关键重点:垂径定理及推论、圆周角定理及推论,切线的性质与判定,正多边形的有关计算.难点:几何知识的综合应用.关键:抓住基础知识进行复习,并且注意将圆的有关知识与其他知识进行联系。
教学准备教师准备:制作课件,精选习题学生准备:写一份本章知识结构图.教学过程一、回顾交流【教学方略】将学生分成四人小组,•交流各自书写的知识结构图进行概括总结.•知识网络图表•【师生共识】1.平分弦(不是直径)的直径垂直于弦,•并且平分弦所对的两条弧及其运用.2.在同圆或等圆中,相等的圆心角所对的弧相等,•所对的弦也相等及其运用.3.在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半及其运用.4.半圆(或直径)所对的圆周角是直角,90•°的圆周角所对的弦是直径及其运用.5.不在同一直线上的三个点确定一个圆.6.直线L和⊙O相交⇔d<r;直线L和圆相切⇔d=r;直线L和⊙O相离⇔d>r及其运用.7.圆的切线垂直于过切点的半径及其运用.8.•经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题.9.从圆外一点可以引圆的两条切线,它们的切线长相等,•这一点和圆心的连线平分两条切线的夹角及其运用.10.两圆的位置关系:d与r1和r2之间的关系:外离⇔d>r1+r2;外切⇔d=r1+r2;相交⇔│r2-r1│<d<r1+r2;内切⇔d=│r1-r2│;内含⇔d<│r2-r1│.11.正多边形和圆中的半径R、边心距r、中心角θ之间的等量关系并应用这个等量关系解决具体题目.12.n °的圆心角所对的弧长为L=180n Rπ,n °的圆心角的扇形面积是S 扇形=2360n R π及其运用这两个公式进行计算.13.圆锥的侧面积和全面积的计算.二、范例点击例1:例⊙O 的半径为10cm ,弦AB ∥CD ,AB=16,CD=12,则AB 、CD 间的距离是__________ . 例2:如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C,使DC=BD,连接AC 交⊙O 与点F.(1)AB 与AC 的大小有什么关系?为什么?(2)按角的大小分类, 请你判断△ABC 属于哪一类三角形, 并说明理由解::(1)方法1 连接DO. ∵OD 是△ABC 的中位线,∴DO ∥CA.∵∠ODB =∠C ,∴OD =BO ∴∠OBD =∠ODB ,∴∠OBD =∠ACB , ∴AB =AC方法2 连接AD ,∵AB 是⊙O 的直径,∴AD ⊥BC , ∵BD =CD ,∴AB =AC. 方法3 连接DO. ∵OD 是△ABC 的中位线, ∴OD=ACOB=OD=AB ∴AB=AC(2) 连接AD ,∵AB 是⊙O 的直径,∴∠ADB =90° ∴∠B <∠ADB =90°.∠C <∠ADB =90°. ∴∠B 、∠C 为锐角.∵AC 和⊙O 交于点F ,连接BF , ∴∠A <∠BFC =90°. ∴△ABC 为锐角三角形例3:已知:如图,△ABC 中,AC =BC ,以BC 为直径的⊙O 交AB 于点D ,过点D 作DE ⊥AC 于点E ,交BC 的延长线于点F .求证:(1)AD =BD ;(2)DF 是⊙O 的切线.OFDCBA例4.如图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点p 从A 开始折线A ——B ——C ——D 以4cm/秒的 速度 移动,点Q 从C 开始沿CD 边以1cm/秒的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点也随之停止运动,设运动的时间t (秒)(1)t 为何值时,四边形APQD 为矩形/ (2)如图(2),如果⊙P 和⊙Q 的半径都是2cm ,那么t 为何值时, ⊙P 和⊙Q 外切?【活动方略】学生独立思考、独立解题. 教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)【设计意图】为学生提供实际演练的机会,加强对已学知识的复习并检查对新知识的掌握情况.三、 随堂巩固课本P130 复习题24 第1、3、6、8、9、11、12、14、15题四、 小结作业1.问题:谈一谈本节课自己的收获和感受?2.作业:课本P130 复习题24 第2、4、5、7、10、13题 【活动方略】教师引导学生归纳小结,学生反思学习和解决问题的过程. 学生独立完成作业,教师批改、总结.【设计意图】通过归纳总结,课外作业,使学生优化概念,内化知识。
【九年级】圆复习教案
【九年级】圆复习教案m第三十五章《圆》复习教案(冀教版九年级下)设计思想:本章中,我们主要学习了点与圆、直线与圆、圆与圆的位置关系,同时对圆的性质、圆的切线的判定进行了探究。
在探究图形位置关系的过程中,我们对用数量关系揭示几何图形位置关系的思想方法有了较深的理解。
本节课我们不仅要对本章知识来个总括,还要加深对题型的分析,对知识进一步掌握。
目标:1.知识与技能系统的概括总结本章的科学知识内容。
2.过程与方法通过系统地概括总结本章的科学知识内容,学会整理概括科学知识的方法,并使其条理化、系统化。
3.情感、态度与价值观通过对圆与各种图形边线关系的备考,重新认识事物之间就是相互联系的,通过运动和变化,晓得事物之间可以相互转变。
通过系统归纳,渗透要抓主要矛盾,“纲举目张”的辩证唯物主义观点。
教学重点:系统的归纳总结本章知识内容。
教学难点:使所学的知识结构化。
教学方法:讲授式、鼓励式。
教学媒体:投影仪。
教学精心安排:1课时。
教学过程:(一)导入经过一段时间的学习,第三十五章圆(二)的内容学完了,今天我们这节课的主要任务就是回顾一下这段期间所学的内容,将其整理归纳,使之结构化。
(二)探究布季谢圆是最常见的几何图形之一,在生活、生产实践中应用十分广泛。
“圆”是初中几何中重要的一章,与前面其他章节的知识也有着千丝万缕的联系。
本章的内容比较复杂,为了便于学生掌握这些内容,安排这节课将本章内容归纳整理,使之结构化。
(三)通识科指点教师把图片(圆)投影,让学生观看。
师:同学们观赏这章的科学知识框架,总结一下,你都研习了那些有关圆的科学知识呢?(学生思索,讨论探究,然后提问这个问题。
学生的提问必然零散。
)本章的内容可概括为三部分:一是点与圆的位置关系;二是直线与圆的位置关系,另外还有切线的性质及判定;三是圆与圆的位置关系。
第一部分点与圆的边线关系:回答这部分都研习了哪些内容。
(回答中下等的学生)点与圆的位置关系分为三种:①点在圆内;②点在圆上;③点在圆外。
人教版数学九年级上册圆全章复习教学设计
二、学情分析
九年级学生对圆的相关知识已有一定的基础,但在实际应用和综合运用方面仍有待提高。经过前期的学习,学生掌握了圆的基本概念、性质和定理,但在解决一些综合性和实际问题时,仍存在一定的困难。此外,学生对圆与直线、圆与圆的位置关系理解不够深刻,容易混淆。因此,在本章节的教学中,需要针对学生的这些情况,设计有针对性的教学活动,帮助学生巩固基础知识,提高解决问题的能力。
(2)设计不同难度的例题和练习题,引导学生逐步掌握圆的知识,并能够熟练运用。
(3)采用数形结合、分类讨论等方法,帮助学生理解和记忆圆与直线、圆与圆的位置关系。
2.对于难点内容的教学:
(1)结合生活实际,设计具有挑战性的问题,激发学生的求知欲,引导学生主动探索。
(2)采用小组合作、讨ห้องสมุดไป่ตู้交流的形式,让学生在互动中碰撞思维火花,共同解决问题。
4.培养学生运用圆的相关知识解决实际问题,如测量距离、计算面积等。
(二)过程与方法
1.引导学生通过自主探究、合作交流的方式,发现圆的性质和定理,培养学生主动探究、合作学习的能力。
2.教学过程中,设计丰富的例题和练习题,让学生在解题过程中,掌握圆的相关知识和方法,提高学生的解题技巧。
3.引导学生运用数形结合、分类讨论、归纳总结等方法,培养学生的逻辑思维能力和几何直观。
4.家长协助监督,关注学生的学习进度,鼓励孩子克服困难,提高自信心。
5.教师认真批改作业,针对学生的错误和问题,给予个别指导和反馈,帮助学生巩固所学知识。
(2)推荐与圆相关的数学阅读材料,拓宽学生的知识视野,激发学生的数学兴趣。
(3)组织数学实践活动,如测量、画图等,让学生在实际操作中感受数学的魅力。
初三圆的复习教案
初三圆的复习教案教案标题:初三圆的复习教案教学目标:1. 学生能够理解圆的概念,并能正确使用圆的术语。
2. 学生能够计算圆的周长和面积。
3. 学生能够应用圆的相关概念解决实际问题。
4. 学生能够发展对圆形图形的观察和推理能力。
教学准备:1. 教学PPT或白板。
2. 圆规、直尺和铅笔。
3. 纸板或绘图纸。
4. 练习题和答案。
教学过程:Step 1: 引入1. 在白板上画一个圆形,引导学生回顾圆的定义,并解释相关术语(圆心、半径、直径、弧、弦、切线等)。
2. 提问学生有关圆的特征和性质,激发他们对圆更深入的思考。
Step 2: 计算圆的周长和面积1. 提醒学生关于计算周长和面积的公式(周长=2πr,面积=πr²)。
2. 通过示范,解释如何根据给定的半径或直径计算圆的周长和面积。
3. 给学生一些练习题,让他们独立计算圆的周长和面积,并检查答案。
Step 3: 圆的相关问题1. 提供一些实际问题,要求学生应用所学知识解决。
例如:一个花坛的形状是一个半径为4米的圆,求花坛周围的围墙长度和花坛的面积分别是多少?2. 引导学生思考解决问题的方法,并鼓励他们用图画或数学计算来解决。
Step 4: 圆形图形观察和推理1. 准备一些不同大小和位置的圆形图形,让学生观察并描述它们的特征和相似之处。
2. 引导学生思考圆形图形的一些共同特点,并鼓励他们提出自己的观察和推理。
例如:如何通过测量圆的直径来判断两个圆是否相等?3. 给学生几个挑战性的问题,鼓励他们思考并解决。
Step 5: 小结和反思1. 总结圆的相关概念和计算方法。
2. 要求学生回顾整个课堂内容,自我评价学习效果。
3. 鼓励学生思考如何将所学知识应用到实际生活中。
教学扩展:1. 鼓励学生自行寻找更多关于圆的实际问题并解决。
2. 设计一些有趣的游戏或活动,帮助学生巩固对圆的概念的理解。
教学评估:1. 在课堂上观察学生的参与度和对圆概念的理解程度。
2. 分发练习题和挑战性问题,检查学生对圆的计算和应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆》章节知识点复习
一、圆的概念
集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:
1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;
(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫
中垂线);
~
3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;
4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;
5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系
1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;
2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;
3、点在圆外 ⇒ d r > ⇒ 点A 在圆外;
|
练习题:一个圆的直径为cm 8,到圆心的距离为cm 5,则该点在圆
三、直线与圆的位置关系
1、直线与圆相离 ⇒ d r > ⇒ 无交点;
2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;
3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;
A
)
练习题:、一个点到圆的最短距离为cm
3,到圆的最长距离为cm
9,则这个圆的半径为四、圆与圆的位置关系
外离(图1)⇒无交点⇒d R r
>+;
外切(图2)⇒有一个交点⇒d R r
=+;
相交(图3)⇒有两个交点⇒R r d R r
-<<+;
内切(图4)⇒有一个交点⇒d R r
=-;
内含(图5)⇒无交点⇒d R r
<-;
|
五、垂径定理
垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
}
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
图4
图5
以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:
①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。
即:在⊙O 中,∵AB ∥CD
(
∴弧AC =弧BD 六、圆心角定理
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称1推3定理,即上述四个结论中,
只要知道其中的1个相等,则可以推出其它的3个结论, 即:①AOB DOE ∠=∠;②AB DE =;
③OC OF =;④ 弧BA =弧BD
练习题:如图, O 为ABC ∆的外心,若0
50=∠BAC ,则OBC ∠=
|
七、圆周角定理
%
1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠
2、圆周角定理的推论:
B
D
B
5题图
D
C
B
A
B
6题图
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧; 即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠
'
推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。
即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径
推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
即:在△ABC 中,∵OC OA OB ==
∴△ABC 是直角三角形或90C ∠=︒
注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
?
6、如图四边形ABOC ,(O 为圆心),若0
130=∠BOC ,则_____=∠A
八、圆内接四边形
圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
即:在⊙O 中,
∵四边形ABCD 是内接四边形
(
∴180C BAD ∠+∠=︒ 180B D ∠+∠=︒
B
A
B
A
O
7题图
B
11题图
DAE C ∠=∠
练习题5:边形ABCD 内接于⊙O ,若0
150=∠ABC ,则_______=∠ADC 7、如图,0
110=∠AOB ,则_______=∠ACB
九、切线的性质与判定定理
(1)切线的判定定理:过半径外端且垂直于半径的直线是切线;
#
两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN OA ⊥且MN 过半径OA 外端 ∴MN 是⊙O 的切线 (2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。
推论2:过切点垂直于切线的直线必过圆心。
以上三个定理及推论也称二推一定理:
即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
"
11、如图,⊙O 的半径为6,弦10=AB ,M 是弦AB 上的动点,最线段OM 的最小值为 ,最大值为
十、切线长定理 切线长定理:
从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
即:∵PA 、PB 是的两条切线 ∴PA PB =
<
P
PO 平分BPA ∠
十一、圆幂定理
(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。
即:在⊙O 中,∵弦AB 、CD 相交于点P ,
~
∴PA PB PC PD ⋅=⋅
(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
即:在⊙O 中,∵直径AB CD ⊥, ∴2
CE AE BE =⋅
(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
即:在⊙O 中,∵PA 是切线,PB 是割线 ∴ 2
PA PC PB =⋅
(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。
?
即:在⊙O 中,∵PB 、PE 是割线 ∴PC PB PD PE ⋅=⋅
十二、两圆公共弦定理
圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的
的公共弦。
D
B
B
A
如图:12O O 垂直平分AB 。
即:∵⊙1O 、⊙2O 相交于A 、B 两点 ∴12O O 垂直平分AB
%
十三、圆的公切线
两圆公切线长的计算公式:
(1)公切线长:12Rt O O C ∆
中,221AB CO ==
(2)外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和 。
十四、圆内正多边形的计算 (1)正三角形
在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆
中进行:
::2OD BD OB =;
<
(2)正四边形
同理,四边形的有关计算在Rt OAE ∆
中进行,::OE AE OA =
(3)正六边形
同理,六边形的有关计算在Rt OAB ∆
中进行,::2AB OB OA =.
>
十五、扇形、圆柱和圆锥的相关计算公式 1、扇形:(1)弧长公式:180
n R
l π=
;
l
O
(2)扇形面积公式: 21
3602
n R S lR π=
= n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积
2、圆柱:
(1)圆柱侧面展开图
2S S S =+侧表底=2
22rh r ππ+
;
(2)圆柱的体积:2
V r h π=
(2)圆锥侧面展开图
(1)S S S =+侧表底=2
Rr r ππ+
(2)圆锥的体积:213
V r h π=
,
中考真题
1(陕西).如图,在RT △ABC 中∠ABC=90°,斜边AC 的垂直平分线交BC 与D 点,交AC 与E 点,连接BE
(1)若BE 是△DEC 的外接圆的切线,求∠C 的大小
C 1
D 1
(2)当AB=1,BC=2是求△DEC外界圆的半径
2(安徽).如图所示,在圆⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为()
A.19 B.16 C.18 D.20
3(福州).(满分11分)
如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,
(1)求证:CB∥PD;
(2)若BC=3,sinP=3
5
,求⊙O的直径。