高一数学教案:4.2弧度制(一)

合集下载

高一数学必修4弧度制教案

高一数学必修4弧度制教案

弧度制教学目标知识与技能(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集R之间建立的一一对应关系;过程与方法经历弧度制的探索过程,让学生从某一个简单的、特殊的情况开始着手,更利于教学的开展和学生思维的拓展,共同找出弧度与角度换算的方法,领悟从特殊到一般的思想方法。

情感、态度与价值观通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美.教学重点弧度的概念.弧长公式及扇形的面积公式的推导与证明.教学难点“角度制”与“弧度制”的区别与联系.教学方法与教学用具教学方法:让学生通过观察.类比.思考.交流.讨论,理解弧度的意义.教学用具:投影仪.课型新授课课时1课时教学过程(一)课前检测1、在0°~360°间,找出下列终边相同角:-150°、1040°、-940°.2、写出与下列终边相同的角的集合,并写出-720°~360°间角.120°、-270°、1020°3、写出终边在第一象限的角的集合?第二象限呢?第三象限呢?第四象限呢?直线y=-x 呢?(二)导入新课有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=1.6公里)显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里.在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制---弧度制.(三)研讨新课1.角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制与角度制之间如何换算?请看课本P6~P7,自行解决上述问题.2.弧度制的定义[展示投影]长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad,或1弧度,或1(单位可以省略不写).3.探究:如图,半径为的圆的圆心与原点重合,角的终边与轴的正半轴重合,交圆弧的长旋转的方向的弧度数的度数逆时针方向逆时针方向一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.4.思考:如果一个半径为的圆的圆心角所对的弧长是,那么的弧度数是多少?角的弧度数的绝对值是:,其中,l是圆心角所对的弧长,是半径.5.根据探究中填空:,度显然,我们可以由此角度与弧度的换算了.6.例题讲解例1.按照下列要求,把化成弧度:(1)精确值;(2)精确到0.001的近似值.例2.将3.14换算成角度(用度数表示,精确到0.001).注意:角度制与弧度制的换算主要抓住,另外注意计算器计算非特殊角的方法.度弧度角的概念推广以后,在弧度制下,角的集合与实数集之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.例3.利用弧度制证明下列关于扇形的公式:(1); (2); (3).其中是半径,是弧长,为圆心角,是扇形的面积.例4.利用计算器比较和的大小.注意:弧度制定义的理解与应用,以及角度与弧度的区别.(四)反馈练习1、用弧度制表示终边在x轴上角的集合、终边在y轴上角的集合?终边在第三象限角的集合?2、时间经过2小时30分,时针和分针各转了多少弧度?3、一扇形的中心角是54°,它的半径为20cm,求扇形的周长和面积.(五)总结归纳①什么叫1弧度角?②任意角的弧度的定义③“角度制”与“弧度制”的联系与区别.(六)作业安排①阅读教材P6 –P8;②教材P9练习第1、2、3、6题;③教材P10面7、8题及B2、3题.1.1.2 弧度制导入新课研讨新课1、弧度制的概念2、角度与弧度之间的转换例1例2例3例4反馈练习总结归纳作业安排本节课从弧度的概念出发,学生自主探究,研究圆心角的弧度数的求法,角度与弧度的换算关系,这一过程是学习知识的过程,又是“发现”知识的过程,有利于培养学生的探究能力。

弧度制教案

弧度制教案

弧度制教材分析本节课是普通高中教科书人教A版必修第一册第五章第一节第二课,本节课起着承上启下的作用:在前面学生在初中已经学过角的度量单位“度”,并且上节课学了任意角的概念,将角的概念推广到了任意角;本节课作为三角函数的第二课时,该课的知识还是后继学习任意角的三角函数等知识的理论准备,因此本节课还起着启下的作用。

通过本节弧度制的学习,我们知道实数与角之间一一对应的关系,而且在弧度制下的弧长公式与扇形面积公式有了更为简单形式。

另外弧度制为今后学习三角函数带很大方便。

课程目标1.了解弧度制,明确1弧度的含义;2.能进行弧度与角度的互化;3.掌握用弧度制表示扇形的弧长公式和面积公式;学科素养1.数学抽象:角集与实数集间的一一对应;2.逻辑推理:弧长公式及扇形的面积公式;3.数学运算:角度制与弧度制的互换;4.数学模型:从圆的图形中理解角度值与弧度值。

教学重难点教学重点:理解并掌握弧度制的定义,熟练的进行角度制与弧度制的互化,弧度制的运用;教学难点:理解弧度制的定义,弧度制的运用。

教学方法引导发现法、讲授法教学准备多媒体教学过程创设情景1、我国现行的度量衡中,半斤等于八两吗?半斤等于五两即1斤等于10两是十进制半斤等于八两即1斤等于16两是十六进制2、度量衡是可以制定的,需要满足什么条件?①共同约定②便于计算3、国际单位制中衡量重量的单位是KG,那么KG跟斤能并存存的前提是什么呢?可以进行换算复习回顾1. 在平面几何里,度量角的大小用什么单位?角度制的单位有:度、分、秒。

2.1°的角是如何定义的?度、分、秒又如何换算呢?规定:圆周1/360的圆心角称作1°角。

1度等于60分(1°=60′),1分等于60秒(1′=60″)这种用度做单位来度量角的制度叫做角度制 .3.你知道60°+sin60°等于多少吗?讲授新课1.观察发现如图,射线OA绕着端点O旋转到OB形成角α.在旋转过程中,射线OA上的一点P(不同于点O)的轨迹是一条圆弧,这条圆弧对应于圆心角α.设α=n°,OP=r,点P形成的圆弧PP1的长为l由初中所学知识可知:l=nπr180,这就是角度制中的弧长公式,在这个式子中lr=nπ180几何画板展示【探究】在射线OA上任取一点Q(不同于点O),OQ=r1,在旋转过程中,点Q所形成的圆弧QQ1的长为l1,l1与r1的比值是多少?我们能得出什么结论?【结论】可以发现,圆心角α所对的弧长与半径的比值,只与α的大小有关.也就是说,这个比值随α的确定而唯一确定.这就启发我们,可以利用圆的弧长与半径的关系度量圆心角.2.弧度制的概念我们规定:长度等于半径长的圆弧所对的圆心角叫做1弧度,记作1rad,读作1弧度.我们把半径为1的圆叫做单位圆,如图,在单位圆O中,弧AB的长度等于1,∠AOB就是1弧度的角.根据上述规定:在半径为r的圆中,弧长为l的的弧所对的圆心角为α rad,那么有:对这个式子进行变形,可以得到如下结论:|α|=lr(1)l=|α|∙r(弧长公式) (2)r=l|α|其中,α的正负由角α的终边的旋转方向决定,即逆时针旋转为正,顺时针旋转为负.当角的终边旋转一周后继续旋转,就可以得到弧度数大于2π或者小于-2π的角.这样就可以得到弧度为任意大小的角.一般地,正角的弧度数是正数,负角的弧度数是复数,零角的弧度数是0.欧拉是最早提出弧度制概念的数学家。

弧度制教案及教学设计

弧度制教案及教学设计

弧度制教案及教学设计一、教学目标1.知识目标(1)了解弧度的定义及计算方法。

(2)掌握角度与弧度的转换方法。

(3)熟练运用弧度制进行角度计算。

2.技能目标(1)能正确地将角度转换为弧度。

(2)能够运用弧度制进行角度计算。

(3)能够解决与弧度相关的问题。

3.情感目标(1)培养学生的数学思维,提高学生的数学解决问题的能力。

(2)让学生体验到数学知识的应用,增强对数学的兴趣。

二、教学重点与难点1.教学重点(1)弧度的定义及计算方法。

(2)角度与弧度的转换方法。

(3)运用弧度制进行角度计算。

2.教学难点(1)角度与弧度的转换方法。

(2)实际问题中的弧度计算。

三、教学过程设计1.情境引入(1)引导学生观察钟表上的时针、分针、秒针的运动。

(2)引导学生发现钟表上的角度变化与弧度的关系。

(3)导入问题:若钟表的时针向前走10分钟,分针向前走150度,秒针向前走300度,问它们所走的弧度分别是多少?2.知识讲解(1)通过实际钟表运动的情境,引入角度的概念。

(2)讲解角度的转换:1圆周角=2π弧度,1度=π/180弧度。

(3)讲解弧度的计算公式:弧长=弧度×半径。

3.分组探究(1)将学生分为小组,每个小组分配一部分问题:如若钟表的秒针向前走300度,它所走的弧度是多少?(2)让学生利用所学知识进行探究,并展示结果。

4.知识总结(1)让学生就弧度的定义、计算方法和角度、弧度的转化方法进行总结归纳。

(2)板书总结的要点,并提示学生记下并复习。

5.拓展应用(1)将学生分为小组,给定不同的实际问题,要求学生将角度转换为弧度,并计算相关的长度。

(2)小组展示结果,并进行讨论和解答。

6.总结反思(1)师生共同总结本节课所学的知识内容。

(2)评价学生的掌握程度,并对下节课的学习进行引导和安排。

四、教学反思在教学过程中,通过情境引入,让学生主动参与角度与弧度的探究,培养了学生的数学思维,增强了他们的学习兴趣。

在小组探究环节,让学生通过讨论、合作解决问题,激发了他们的学习动力,并增强了沟通能力和团队合作能力。

数学教案高中弧度制

数学教案高中弧度制

数学教案高中弧度制
教学目标:
1. 了解弧度制的定义和基本概念;
2. 掌握弧度和角度的换算方法;
3. 熟练运用弧度制解决相关数学问题。

教学重点:
1. 弧度制的定义和基本概念;
2. 弧度和角度的换算;
3. 弧度制的运用。

教学难点:
1. 弧度和角度的换算方法;
2. 弧度制与角度制的转换;
3. 弧度制在解决问题中的应用。

教学准备:
1. 教案、教材、课件;
2. 黑板、彩色粉笔、橡皮;
3. 学生练习册。

教学过程:
一、导入(5分钟)
教师介绍弧度制的概念,引导学生思考角度和弧度之间的关系。

二、讲解(15分钟)
1. 弧度的定义和性质;
2. 弧度和角度的换算方法;
3. 弧度制在三角函数中的应用。

三、示范(10分钟)
教师通过例题演示如何将角度转换为弧度,以及如何运用弧度制解决三角函数问题。

四、练习(15分钟)
学生进行练习,巩固弧度制的相关知识。

五、梳理(5分钟)
教师梳理本节课的重点和难点,给予学生反馈。

六、作业(5分钟)
布置相关作业,要求学生独立完成,以巩固弧度制的知识。

教学延伸:
教师可以通过讲解弧长公式、扇形面积计算等内容,进一步拓展学生对弧度制的理解和运用。

教学反思:
本节课教学难点在于学生对弧度和角度的换算容易混淆,需要通过实例演示和练习巩固。

教师在教学过程中应引导学生思考,激发他们对数学知识的兴趣和探索欲望。

苏教版高中数学必修四新课程弧度制教案(1)

苏教版高中数学必修四新课程弧度制教案(1)

1.1.2 弧度制(1)一、课题:弧度制(1)二、教学目标:1.理解弧度制的意义;2.能正确的应用弧度与角度之间的换算;3.记住公式||l rα=(l 为以角α作为圆心角时所对圆弧的长,r 为圆半径)。

三、教学重、难点:弧度与角度之间的换算。

四、教学过程: (一)复习:初中时所学的角度制,是怎么规定1o 角的? (初中时把一个周角的1360记为1o) (二)新课讲解: 1.弧度角的定义:规定:我们把长度等于半径的弧所对的圆心角叫做1弧度的角,记此角为1rad .练习:圆的半径为r ,圆弧长为2r 、3r 、2r的弧所对的圆心角分别为多少? 说明:一个角的弧度由该角的大小来确定,与求比值时所取的圆的半径大小无关。

思考:什么π弧度角?一个周角的弧度是多少?一个平角、直角的弧度分别又是多少? 2.弧度的推广及角的弧度数的计算:规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;角α的弧度数的绝对值是rl =||α,(其中l 是以角α作为圆心角时所对弧的长,r 是圆的半径)。

说明:我们用弧度制表示角的时候,“弧度”或rad 经常省略,即只写一实数表示角的度量。

例如:当弧长4l r π=且所对的圆心角表示负角时,这个圆心角的弧度数是4||4l r r rπαπ-=-=-=-. 3.角度与弧度的换算3602π=orad 180π=orad1801π=︒rad 0.01745≈rad 1rad =︒)180(π5718'≈o4.例题分析:例1 把'3067︒化成弧度.解:因为6730'o67.5=o,所以 3671567.51808rad ππ'=⨯=oo rad . 例2 把35πrad 化成度。

解:35π rad 31801085=⨯=o o .例3 用弧度制分别表示轴线角、象限角的集合。

(1)终边落在x 轴的非正、非负半轴,y 轴的非正、非负半轴的角的集合。

高中数学弧度制角教案

高中数学弧度制角教案

高中数学弧度制角教案
一、教学目标
1. 了解弧度制角的概念;
2. 掌握角度与弧度的相互转换方法;
3. 能够运用弧度制角解决实际问题。

二、教学内容
1. 弧度制角的定义及表示方法;
2. 角度与弧度的转换关系;
3. 利用弧度解决三角函数和圆的相关问题。

三、教学步骤
1. 引入:通过展示一个圆的半径为1,绕圆心旋转的弧长为1所对应的角度,介绍弧度的概念;
2. 探究:让学生自己尝试将角度转换为弧度,并找出两者之间的关系;
3. 拓展:通过解决一些实际问题,引导学生掌握如何运用弧度解决相关问题;
4. 练习:让学生完成一些练习题,巩固所学的知识;
5. 总结:总结弧度制角的重点知识,强化学生的理解。

四、教学设计
1. 课堂活动设计:
(1)小组讨论:让学生分组讨论角度与弧度之间的转换方法;
(2)实际应用:请学生在实际问题中运用弧度解决相关计算;
(3)互动讨论:通过互动讨论,梳理弧度制角的重要知识点。

2. 学生作业设计:
(1)完成课堂练习题,巩固所学知识;
(2)解答一些弧度制角相关的实际问题;
(3)预习下节课内容,准备讨论。

五、教学评估
1. 学生表现评估:通过学生的课堂表现和作业完成情况,评估学生对弧度制角的掌握情况;
2. 教学效果评价:通过学生的考试成绩和课后反馈,评价本节课的教学效果,及时调整教
学方法。

(以上为高中数学弧度制角教案范本,仅供参考)。

2024年新高一数学讲义(人教A版2019必修第一册)弧度制(解析版)

2024年新高一数学讲义(人教A版2019必修第一册)弧度制(解析版)

第22讲弧度制模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.理解角度制与弧度制的概念,能对弧度和角度进行正确的转换;2.体会引入弧度制的必要性,建立角的集合与实数集的一一对应关系;3.掌握并能应用弧度制下的弧长公式和扇形面积公式.知识点1角度制与弧度制的概念1、角度制:规定周角的1360为1度的角,这种用度作为单位来度量角的单位制叫做角度制.2、弧度制的有关概念为了使用方便,数学上采用另一种度量角的单位制——弧度制.(1)1弧度的角:长度等于半径长的弧所对的圆心角叫做1弧度的角.(2)弧度制:①定义:以弧度作为单位来度量角的单位制.②记法:用符号rad表示,读作弧度.如图,在单位圆O中, AB的长度等于1,∠AOB就是1弧度的角.3、弧度制与角度制的区别与联系区别(1)单位不同,弧度制以“弧度”为度量单位,角度制以“度”为度量单位;(2)定义不同.联系不管以“弧度”还是以“度”为单位的角的大小都是一个与圆的半径大小无关的定值.【注意】用弧度制表示角时,“弧度”二字可以省略不写;用角度制表示角时单位“°”不能丢.知识点2角度制与弧度制之间的互化1、角度制与弧度制的换算2度0°30°45°60°90°120°135°150°180°270°360°弧度6π4π3π2π32π43π65ππ23ππ23、角的集合与实数集R 的关系角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系,如图,每个角都是唯一的实数(等于这个角的弧度数)与它对应;反之,每一个实数也都有唯一的一个角(即弧度数等于这个实数的交)与之对应.知识点3弧长与扇形面积公式1、弧长与扇形面积公式的两种表示类别/度量单位角度制弧度制扇形的弧长180n R l π=l R α=扇形的面积2360n R S π=21122S lR R α==【注】扇形的半径为R ,弧长为l ,)20(παα<<或n °为其圆心角.2、弧长公式与扇形面积公式的注意事项(1)在应用公式时,要注意α的单位是“弧度”;(2)在弧度制下的扇形面积公式12S lR =,与三角形面积公式12S ah =的形式相似,可类比记忆.考点一:角度制与弧度制概念辨析例1.(23-24高一下·陕西·月考)已知相互啮合的两个齿轮,大轮50齿,小轮20齿,当小轮转动一周时大轮转动的弧度数是()A.4π5B.5π4C.π5D.5π【答案】A【解析】小齿轮转动一周时,大齿轮转动202 505=周,故其转动的弧度数是24π2π55⨯=.故选:A.【变式1-1】(23-24高一上·全国·专题练习)(多选)下列各说法,正确的是()A.半圆所对的圆心角是πradB.圆周角的大小等于2πC.1弧度的圆心角所对的弧长等于该圆的半径D.长度等于半径的弦所对的圆心角的大小是1弧度【答案】ABC【解析】由弧度制的定义可知:长度等于半径的弧所对的圆心角的大小是1弧度,则长度等于半径的弦所对的圆心角的大小不是1弧度,D的说法错误,根据弧度的定义及角度与弧度的换算可知,ABC的说法正确.故选:ABC【变式1-2】(22-23高一上·上海松江·期末)下列命题中,正确的是()A.1弧度的角就是长为半径的弦所对的圆心角B.若α是第一象限的角,则π2α-也是第一象限的角C .若两个角的终边重合,则这两个角相等D .用角度制和弧度制度量角,都与圆的半径有关【答案】B【解析】1弧度的角就是长为半径的弧所对的圆心角,A 选项错误;若α是第一象限的角,则α-是第四象限的角,所以π2α-+是第一象限的角,B 选项正确;当30α= ,390β= 时,α与β终边重合,但两个角不相等,C 选项错误;不论是用角度制还是弧度制度量角,由角度值和弧度值的定义可知度量角与所取圆的半径无关,D 选项错误.故选:B【变式1-3】(22-23高一下·江西萍乡·期中)(多选)下列说法中正确的是()A .度与弧度是度量角的两种不同的度量单位B .1度的角是周角的1360,1弧度的角是周角的12πC .根据弧度的定义,180︒一定等于π弧度D .不论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短有关【答案】ABC【解析】根据角度制和弧度制的定义可知,度与弧度是度量角的两种不同的度量单位,所以A 正确;由圆周角的定义知,1度的角是周角的1360,1弧度的角是周角的12π,所以B 正确;根据弧度的定义知,180一定等于π弧度,所以C 正确;无论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短无关,只与弧长与半径的比值有关,故D 不正确.故选:ABC.考点二:角度制化为弧度制例2.(23-24高一下·北京房山·期中)300o 化成弧度是()A .5π3B .π611C .7π6D .7π4【答案】A【解析】因为180π= ,所以3π5π300300180=⨯=.故选:A 【变式2-1】(23-24高一上·安徽亳州·期末)将315- 化为弧度制,正确的是()A .3π4-B .7π4-C .45π-D .5π3-【答案】B【解析】7π3153151804π-=-⨯=-.故选:B 【变式2-2】(23-24高一上·新疆乌鲁木齐·月考)(多选)把495- 表示成2πk θ+,Z k ∈的形式,则θ值可以是()A .5π4B .5π4-C .3π4D .3π4-【答案】AD【解析】根据角度制与弧度制的互化公式,可得11π4954-=-,再由终边相同角的表示,可得11π3π5π2π4π444-=--=-,所以11π4-与3π4-和5π4的终边相同.故选:AD.【变式2-3】(23-24高一上·广东·月考)(多选)下列各角中,与角495︒终边相同的角为()A .3π4B .5π4-C .9π4-D .13π4【答案】AB【解析】对于A ,495360135︒=︒+︒,3π1354︒=,故A 正确;对于B ,与3π4终边相同的角为324k παπ=+,k ∈Z ,当1k =-时,5π4α=-,故B 正确;对于C ,令3π9π2π44k +=-,解得32k =-∉Z ,故C 错误;对于D ,令3π13π2π44k +=,解得54k =∉Z ,故D 错误.故选:AB.考点三:弧度制化为角度制例3.(23-24高一上·湖南株洲·月考)把5π4化成角度是()A .45︒B .225︒C .300︒D .135︒【答案】B【解析】5π5π18022544π︒=⨯=︒.故选:B 【变式3-1】(23-24高一上·广东汕头·月考)5π12化为角度是()A .60︒B .75︒C .115︒D .135︒【答案】B 【解析】5π5180751212=⨯︒=︒.故选:B 【变式3-2】(23-24高一上·广东汕头·月考)3rad 是第()象限角A .一B .二C .三D .四【答案】B【解析】π180rad = ,540903180πrad ⎛⎫∴<=< ⎪⎝⎭为第二象限角.故选:B【变式3-3】(22-23高一上·北京·期末)下列与7π4的终边相同的角的表达式中,正确的是()A .()2π315Z k k +∈B .()36045Z k k ⋅-∈C .()7π360Z 4k k ⋅+∈D .()5π2πZ 4k k +∈【答案】B【解析】因为7πrad 3154=,终边落在第四象限,且与45- 角终边相同,故与7π4的终边相同的角的集合{}{}31536045360S k k αααα==+⋅==-+⋅ 即选项B 正确;选项AC 书写不规范,选项D 表示角终边在第三象限.故选:B.考点四:扇形弧长的相关计算例4.(23-24高一上·云南曲靖·月考)半径为3cm ,圆心角为210°的扇形的弧长为()A .630cmB .7cm6C .7πcm 6D .7πcm 2【答案】D【解析】圆心角210︒化为弧度为7π6,则弧长为7π7π3cm 62⨯=.故选:D 【变式4-1】(23-24高一上·广东深圳·期末)若扇形的面积为1,且弧长为其半径的两倍,则该扇形的周长为()A .1B .2C .4D .6【答案】C【解析】设扇形的半径为r ,圆心角为α,则弧长2l r r α==,所以2α=,扇形的面积22112S r r α===,解得1r =或1r =-(舍去),所以2l r α==,则该扇形的周长为24r l +=.故选:C【变式4-2】(23-24高一下·江西景德镇·期中)古代文人墨客与丹青手都善于在纸扇上题字题画,题字题画的扇面多为扇环形.已知某纸扇的扇面如图所示,其中外弧长与内弧长之和为89cm ,连接外弧与内弧的两端的线段长均为18cm ,且该扇环的圆心角的弧度数为2.5,则该扇环的外弧长为()A .63cmB .65cmC .67cmD .69cm【答案】C【解析】设该扇环的内弧的半径为r cm ,则外弧的半径为()18cm r +,圆心角 2.5α=,所以()1889r r αα++=,即()2.5 2.51889r r ++=,解得8.8r =,所以该扇环的外弧长()()2.518 2.58.81867cm l r =+=+=.故选:C【变式4-3】(23-24高一下·山东烟台·月考)《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把郑铁饼者张开的双臂近似看成一张拉满弦的“弓”,郑铁饼者的手臂长约为π4米,肩宽约为π8米,“弓”所在圆的半径约为1.25米,则郑铁饼者双手之间的距离约为)1.41≈()A.1.01米B.1.76米C.2.04米D.2.94米【答案】B【解析】由题意可知,“弓”所在圆的弧长为 ππ5π2488BC=⨯+=,由弧度数公式得5ππ81.252lBOCr∠===,即BOC为等腰直角三角形,所以π4OBC∠=,则掷铁饼者双手之间的距离()5 1.41 1.76mπ44sin4rBC==≈⨯≈.故选:B.考点五:扇形面积的相关计算例5.(23-24高一下·广东韶关·月考)已知扇形的圆心角为2弧度,其弧长为8m,则该扇形的面积为()A.28m B.212m C.216m D.232m【答案】C【解析】由扇形的圆心角为2弧度,其弧长为8m,得扇形所在圆半径4m=r,所以该扇形的面积148162S=⨯⨯=(2m).故选:C【变式5-1】(23-24高一上·云南昆明·期末)已知某扇形的圆心角是3π8,半径为4,则该扇形的面积为.【答案】3π【解析】由扇形的圆心角是3π8,半径为4,则该扇形的面积为23π43π812S ⨯⨯==.故答案为:3π.【变式5-2】(22-23高一下·河南南阳·期中)圆环被同圆心的扇形截得的一部分叫做扇环.如图所示,扇环ABCD 的内圆弧AB 的长为2π3,外圆弧CD 的长为4π3,圆心角2π3AOB ∠=,则该扇环的面积为()A .πB .π2C .4π3D .2π3【答案】A【解析】由扇形面积公式2122l S lr α==(其中l 为扇形弧长,α为扇形圆心角,r 为扇形半径)可得,扇环面积22214π2π34ππ2334π3S α⎡⎤⎛⎫⎛⎫'=-=⨯=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.故选:A 【变式5-3】(23-24高一下·河南驻马店·月考)如图,在菱形ABCD 中,45A ∠=︒,1A ,1B ,1C ,1D 分别是边AB ,BC ,CD ,DA 的中点,以点A 为圆心,以1AA ,2AA 为半径作出两段圆弧,与AD 分别交于点1D ,3A ,分别以B ,C ,D 为圆心,用同样方法作出如图阴影部分的扇环,其中121212121A A B B C C D D ====.若扇环1231A A A D 的周长为7π24+,则扇环1231B B B A 的面积为()A .3πB .21π8C .7π8D .3π4【答案】B【解析】设2AA r =,则11AA r =+,因为扇环1231A A A D 的周长为7π24+,所以:()ππ7π122444r r +++=+⇒3r =.所以扇环1231B B B A 的面积为:2213π13π432424⋅⋅-⋅⋅21π8=.故选:B考点六:扇形周长、面积的最值例6.(23-24高一下·重庆璧山·月考)已知某扇形的周长是24,则该扇形的面积的最大值是()A .28B .36C .42D .50【答案】B【解析】设扇形的弧长为l ,半径为r ,则224l r +=,所以扇形的面积22111212123624424l r S lr l r +⎛⎫==⋅≤=⨯= ⎪⎝⎭,当且仅当2l r =,即12,6l r ==时取等号,所以该扇形的面积的最大值是36,故选:B【变式6-1】(23-24高一上·江苏南京·期末)(多选)已知扇形的半径为r ,弧长为l .若其周长的数值为面积的数值的2倍,则下列说法正确的是()A .该扇形面积的最小值为8B .当扇形周长最小时,其圆心角为2C .2r l +的最小值为9D .2214r l+的最小值为12【答案】BCD【解析】由题意,知2r l rl +=,则(),22lr l l =>-,所以扇形面积22111(2)4(2)422222l l l S rl l l -+-+==⋅=⋅--1411[(2)4]4)(44)42222l l =-++≥⨯=⨯+=-,当且仅当422l l -=-,即4l =时,等号成立,选项A 错误;扇形周长为()()22242422222l l l l r l l l l l -+-++=+==---4(2)44482l l =-++≥+=-,当且仅当422l l -=-,即4l =时,等号成立,此时,圆心角为422l r==,选项B 正确;()()()222522222522222l l l l l l r l l l -+-+=-+=+=--++-5459≥=+=当且仅当()2222l l -=-,即3l =时,等号成立,选项C 正确;()22222222144841118421l r l l l l l l -⎛⎫+=+=-+=-+ ⎪⎝⎭,当114l =时,上式取得最小值为12,选项D 正确.故选:BCD.【变式6-2】(23-24高一上·云南曲靖·期末)已知一扇形的圆心角为α(α为正角),周长为C ,面积为S ,所在圆的半径为r .(1)若36α=︒,10cm r =,求扇形的弧长;(2)若4cm C =,求S 的最大值及此时扇形的半径和圆心角.【答案】(1)()2πcm ;(2)S 的最大值为1,此时扇形的半径是1cm ,圆心角2rad .【解析】(1)π13636rad πrad 1805α=⨯=︒=,扇形的弧长()1π102πcm 5l r α==⨯=;(2)设扇形的弧长为l ,半径为r ,则24r l +=,()4202l r r ∴=-<<,则()()22114221122S lr r r r r r ==-=-+=--+,当1r =时,2max 1cm S =,此时4212cm l =-⨯=,2lrα==,S ∴的最大值是21cm ,此时扇形的半径是1cm ,圆心角2rad α=.【变式6-3】(23-24高一下·河南南阳·月考)已知一扇形的圆心角为()0αα>,半径为R ,面积为S ,周长为L .(1)若24cm S =,则扇形圆心角α为多少弧度时,L 最小?并求出L 的最小值;(2)若10cm L =,则扇形圆心角α为多少弧度时,S 最大?并求出S 的最大值.【答案】(1)2rad α=,最小值为8cm ;(2)2rad α=,最大值为225cm 4.【解析】(1)2214cm 2S R α== ,28Rα∴=则288222L R R R R R R Rα=+=+⋅=+.由基本不等式可得828R R +≥=,当且仅当82R R =,即2R =时等号成立,此时2822α==.∴当2rad α=时,L 最小,最小值为8cm .(2)210cm L R R α=+= ,102RRα-∴=.22221110252552224R S R R R R R R α-⎛⎫==⋅⋅=-+=--+ ⎪⎝⎭.当52R =,即2α=时,max 254S =.∴当2rad α=时,S 最大,最大值为225cm 4.一、单选题1.(23-24高一上·贵州黔南·315︒化为弧度是()A .π4-B .7π4C .11π6D .5π3【答案】B 【解析】3157315ππ1804︒==.故选:B 2.(23-24高一上·江苏徐州·月考)把2π3弧度化成角度是()A .30︒B .60︒C .90︒D .120︒【答案】D【解析】因为π180=︒,所以22π18012033=⨯︒=︒.故选:D.3.(22-23高一上·广东深圳·期末)在半径为2的圆中,弧长为π的弧所对的圆心角为()A .60︒B .90︒C .120︒D .180︒【答案】B【解析】弧长为π的弧所对的圆心角为πrad 902︒=,故选:B 4.(23-24高一下·辽宁大连·月考)已知扇形的弧长为2π,半径为3,则扇形的面积为()A .πB .3π2C .3πD .6π【答案】C【解析】由扇形的面积可得,112π33π22S lr ==⨯⨯=.故选:C 5.(23-24高一下·内蒙古赤峰·月考)已知扇形的半径为2,圆心角为2弧度,则此扇形的弧长为()A .4B .6C .8D .10【答案】A【解析】因为半径2r =,圆心角=2α,所以根据弧长公式l r α=得4l =.故选:A.6.(23-24高一上·陕西铜川·月考)已知一扇形的周长为40,当扇形的面积最大时,扇形的圆心角等于()A .2B .3C .1D .4【答案】A【解析】设扇形所在圆半径为r ,则该扇形弧长402l r =-,020r <<,于是该扇形的面积21(20)(10)1001002S rl r r r ==-=--+≤,当且仅当10r =时取等号,所以当10r =时,扇形的面积最大,此时扇形的圆心角等于2lr=.故选:A 二、多选题7.(23-24高一下·安徽淮北·)A .120-︒化成弧度是2πrad3-B .πrad 10化成角度是18°C .1 化成弧度是180rad D .10πrad 3-化成角度是60-︒【答案】AB【解析】对于A 项,因π2120120πrad 1803-︒=-⨯=-,故A 项正确;对于B 项,因ππ180rad=(181010π⨯=,故B 项正确;对于C 项,因ππ11rad rad 180180=⨯=,故C 项错误;对于D 项,因1010180πrad π(60033π-=-⨯=-,故D 项错误.故选:AB.8.(23-24高一下·湖南·期中)已知某扇形的周长和面积均为18,则扇形的圆心角的弧度数可能为()A .4B .3C .2D .1【答案】AD【解析】设扇形的半径为r ,弧长为l ,圆心角为α,根据扇形的周长和面积均为18,则2181182l r lr +=⎧⎪⎨=⎪⎩,解得312r l =⎧⎨=⎩或66r l =⎧⎨=⎩,则4lrα==或1.故选:AD .三、填空题9.(23-24高一下·河南驻马店·月考)已知某扇形的半径为42,周长为122,则该扇形的面积为.【答案】16【解析】设扇形的弧长为l ,依题意,242122l ⨯+=,解得42l =.故该扇形的面积为14242162⨯⨯=.故答案为:16.10.(23-24高一下·河南南阳·月考)以密位作为角的度量单位,这种度量角的单位制,叫作角的密位制.在角的密位制中,采用四个数码表示角的大小,单位名称密位二字可以省去不写.密位的写法是在百位数与十位数之间画一条短线,如5密位写成“005-”,235密位写成“235-”,1246密位写成“1246-”.1周角等于6000密位,写成“6000-”.已知某扇形中的弧的中点到弧所对的弦的距离等于弦长的36,则该扇形的圆心角用密位制表示为.【答案】2000-【解析】如图,C 是弧AB 的中点,由题意可得3363CD AB BD ==,即3=BD CD .因为AB CD ⊥,所以π6CBD ∠=,所以同弧所对圆心角π3AOC ∠=,所以2π2π60002000332πAOB ∠==⨯=,即该扇形的圆心角用密位制表示为2000-.故答案为:2000-11.(23-24高一下·江西乙醇·dm ,宽为1dm 的长方体木块在桌面上作无滑动翻滚,翻滚到第四次时被小木块挡住,此时长方体木块底面与桌面所成的角为π6,求点A 走过的路程为.()dm【解析】第一次是以B 为旋转中心,以2BA ==为半径旋转90︒,此次点A 走过的路径是π2π2⨯=,第二次是以C 为旋转中心,以11CA =为半径旋转90︒,此次点A 走过的路径是ππ122⨯=,第三次是以D 为旋转中心,以2DA =60︒,此次点A 走过的路径是π3=∴点A 三次共走过的路径是()3π9πdm 236++=,()dm .四、解答题12.(23-24高一下·辽宁辽阳·期中)如图,这是一个扇形环面(由扇形OCD 挖去扇形OAB 后构成)展台,4=AD 米.(1)若2π3COD ∠=,2OA =米,求该扇形环面展台的周长;(2)若该扇形环面展台的周长为14米,布置该展台的平均费用为500元/平方米,求布置该扇形环面展台的总费用.【答案】(1)16π83+米;(2)6000元【解析】(1)弧AB 的长度14π3l =,弧CD 的长度212π3l =,所以扇形环面展台周长为:1216π2483l l ++⨯=+米;(2)设COD θ∠=,OA r =米,则弧AB 的长度1l r θ=,弧CD 的长度()244l r r θθθ=+=+,因为该扇形环面的周长为14米,所以124214l l ++⨯=,即4814r r θθθ+++=,整理得23r θθ+=,则该扇形环面展台的面积:()2211(4)48421222S r r r r θθθθθθ=+-=+=+=平方米,所以布置该扇形环面展台的总费用为:125006000⨯=元.13.(23-24高一上·安徽淮北·月考)已知扇形的圆心角是α,半径为R ,弧长为l .(1)若3πα=,10cm R =,求扇形的弧长l .(2)若扇形的周长是20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?(3)若,2cm 3R πα==,求扇形的弧所在的弓形的面积.【答案】(1)10cm 3π;(2)2α=时,面积最大;(3)23π⎛⎝cm 2.【解析】(1)由,10cm 3R πα==,则扇形的弧长101033l R ππα==⨯=(cm).(2)由已知得,220l R +=,则202l R =-,∴()()22022111202252242R R S lR R R -+⎡⎤==-⋅≤=⎢⎥⎣⎦当且仅当2022R R -=,即5R =时扇形的面积最大,此时圆心角1025α===l R .(3)设弓形面积为S 弓形,由,2cm 3R πα==,得()2cm 3l R πα==,所以22121222sin cm 23233S πππ⎛=⨯⨯-⨯⨯= ⎝弓形.。

高一数学必修4示范教案:第一章第一节弧度制Word版含解析

高一数学必修4示范教案:第一章第一节弧度制Word版含解析

识弧度制的关键, 为更好地理解角度弧度的关系奠定基础. 讨论后教师提问学生, 并对回答
好的学生及时表扬, 对回答不准确的学生提示引导考虑问题的关键. 教师板书弧度制的定义:
规定长度等于半径长的圆弧所对的圆心角叫做
1 弧度的角. 以弧度为单位来度量角的制度叫
做弧度制;在弧度制下, 1 弧度记作 1 rad.如图 1 中, 的长等于半径 r,AB 所对的圆心角
教师给学生指出,角的概念推广后,在弧度制下,角的集合与实数集
R 之间建立起一
一对应关系:每一个角都有唯一的一个实数 (即这个角的弧度数 )与它对应;反过来,每一个 实数也都有唯一的一个角 (即弧度数等于这个实数的角 )与它对应.值得注意的是:今后在表
示与角 α终边相同的角时, 有弧度制与角度制两种单位制, 要根据角 α的单位来决定另一项
度数为 αrad= (18π0α) °, n°= 1n8π0(rad).
提出问题
问题①: 引入弧度之后, 在平面直角坐标系中, 终边相同的角应该怎么用弧度来表示? 扇形的面积与弧长公式用弧度怎么表示?
问题②:填写下列的表格,找出某种规律 .
的长
OB 旋转的方向 ∠ AOB 的弧度数 ∠ AOB 的度数
问题②:如果一个半径为 r 的圆的圆心角 α所对的弧长是 l,那么 α的弧度数是多少? 既然角度制、弧度制都是角的度量制,那么它们之间如何换算?
活动: 教师引导学生学会总结和归纳角度制和弧度制的关系,
提问学生归纳的情况, 让
学生找出区别和联系. 教师给予补充和提示, 对表现好的学生进行表扬, 对回答不准确的学
度量一个确定的量所得到的量数必须是唯一确定的.
在初中, 已学过利用角度来度量角的大
小,现在来学习角的另一种度量方法 —— 弧度制.要使学生真正了解弧度制,首先要弄清
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 题:4.2弧度制(一) 教学目的:1.理解1弧度的角、弧度制的定义.2.掌握角度与弧度的换算公式并能熟练地进行角度与弧度的换算.3.熟记特殊角的弧度数教学重点:使学生理解弧度的意义,正确地进行角度与弧度的换算. 教学难点:弧度的概念及其与角度的关系. 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 内容分析:讲清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但是互相联系的、辩证统一的.进一步加强对辩证统一思想的理解. 教学过程: 一、复习引入: 1.角的概念的推广 ⑴“旋转”形成角一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到另一位置OB ,就形成角α.旋转开始时的射线OA 叫做角α的始边,旋转终止的射线OB 叫做角α的终边,射线的端点O 叫做角α的顶点. ⑵.“正角”与“负角”“0角”2.度量角的大小第一种单位制—角度制的定义规定周角的3601作为1°的角,我们把用度做单位来度量角的制度叫做角度制,有了它,可ABαO2100-15006600以计算弧长,公式为180r n l π=3.探究30°、60°的圆心角,半径r 为1,2,3,4,分别计算对应的弧长l ,再计算弧长与半径的比结论:圆心角不变,则比值不变, 因此比值的大小只与角的大小有关,我们可以利用这个比值来度量角,这就是另一种度量角的制度——弧度制 二、讲解新课:1. 定义:长度等于半径长的弧所对的圆心角称为1弧度的角它的单位是rad读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制.如下图,依次是1rad , 2rad , 3rad ,αrad探究:⑴平角、周角的弧度数,(平角=π rad 、周角=2π rad )⑵正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0⑶角α的弧度数的绝对值r l=α(l 为弧长,r 为半径)⑷角度制、弧度制度量角的两种不同的方法,单位、进制不同,就像度量长度一样有不同的方法,千米、米、厘米与丈、尺、寸,反映了事物本身不变,改变的是不同的观察、处理方法,因此结果就有所不同⑸用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同 2. 角度制与弧度制的换算:∵ 360︒=2π rad ∴180︒=π rad∴ 1︒=radrad 01745.0180≈π'185730.571801=≈⎪⎭⎫ ⎝⎛=πrad三、讲解范例:例1 把'3067化成弧度解:⎪⎭⎫⎝⎛=2167'3067∴rad rad ππ832167180'3067=⨯=例2 把rad π53化成度 解:1081805353=⨯=rad π注意几点:1.度数与弧度数的换算也可借助“计算器”进行;2.今后在具体运算时,“弧度”二字和单位符号“rad ”可以省略 如:3表示3rad , sin π表示πrad 角的正弦;3.一些特殊角的度数与弧度数的对应值应该记住: 角度 0° 30° 45° 60° 90° 120° 135° 150° 180° 弧度 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 角度 210° 225° 240° 270° 300° 315° 330° 360° 弧度7π/65π/44π/33π/25π/37π/411π/62π4.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系 任意角的集合 实数集R 例3用弧度制表示:1 终边在x 轴上的角的集合2 终边在y 轴上的角的集合3 终边在坐标轴上的角的集合解:1 终边在x 轴上的角的集合 {}Z k k S ∈==,|1πββ2 终边在y 轴上的角的集合⎭⎬⎫⎩⎨⎧∈+==Z k k S ,2|2ππββ 3 终边在坐标轴上的角的集合⎭⎬⎫⎩⎨⎧∈==Z k k S ,2|3πββ 四、课堂练习:1.下列各对角中终边相同的角是( )正角 零角 负角 正实数 零 负实数A.πππk 222+-和(k∈Z) B.-3π和322πC.-97π和911πD.9122320ππ和2.若α=-3,则角α的终边在( )A.第一象限B.第二象限C.第三象限D.第四象限 3.若α是第四象限角,则π-α一定在( )A.第一象限B.第二象限C.第三象限D.第四象限4.(用弧度制表示)第一象限角的集合为 ,第一或第三象限角的集合为 .5.7弧度的角在第 象限,与7弧度角终边相同的最小正角为 .6.圆弧长度等于截其圆的内接正三角形边长,则其圆心角的弧度数为 .7.求值:2cos4tan6cos6tan3tan3sinππππππ-+.8.已知集合A={α|2kπ≤α≤π+2kπ,k∈Z},B ={α|-4≤α≤4},求A ∩B.9.现在时针和分针都指向12点,试用弧度制表示15分钟后,时针和分针的夹角. 参考答案: 1.C 2.C 3.C4.{α|2k π<α<2π+2k π,k ∈Z } {α|k π<α<2π+k π,k ∈Z }5.一 7-2π6.37.28.A ∩B ={α|-4≤α≤-π或0≤α≤π}9.2411π五、小结 1.弧度制定义 2.与弧度制的互化 2.特殊角的弧度数 六、课后作业:已知α是第二象限角,试求:(1)2α角所在的象限;(2)3α角所在的象限;(3)2α角所在范围.解:(1)∵α是第二象限角,∴2π+2k π<α<π+2k π,k ∈Z,即4π+k π<2α<2π+k π,k ∈Z. 故当k=2m(m ∈Z)时,4π+2m π<2α<2π+2m π,因此,2α角是第一象限角;当k=2m+1(m ∈Z)时,45π+2m π<2α<23π+2m π,因此,2α角是第三象限角.综上可知,2α角是第一或第三象限角.(2)同理可求得:6π+32k π<3α<3π+32k π,k ∈Z.当k=3m(m ∈Z)时,ππαππm m 23326+<<+,此时,3α是第一象限角;当k=3m+1(m ∈Z)时,πππαπππ322333226++<<++m m ,即3265αππ<+m <π+2m π,此时,3α角是第二象限角;当k=3m+2(m ∈Z)时,ππαππm m 2353223+<<+,此时,3α角是第四象限角.综上可知,3α角是第一、第二或第四象限角.(3)同理可求得2α角所在范围为:π+4k π<2α<2π+4k π,k ∈Z.评注:(1)注意某一区间内的角与象限角的区别.象限角是由无数个区间角组成的,例如0°<α<90°这个区间角,只是k=0时第一象限角的一种特殊情况.(2)要会正确运用不等式进行角的表达,同时会以k 取不同值,讨论形如θ=α+32k π(k ∈Z)所表示的角所在象限.(3)对于本例(3),不能说2α只是第一、二象限的角,因为2α也可为终边在y 轴负半轴上的角23π+4k π(k ∈Z),而此角不属于任何象限.七、板书设计(略)八、课后记:课 题:4.2弧度制(一) 教学目的:1.理解1弧度的角、弧度制的定义.2.掌握角度与弧度的换算公式并能熟练地进行角度与弧度的换算.3.熟记特殊角的弧度数教学重点:使学生理解弧度的意义,正确地进行角度与弧度的换算. 教学难点:弧度的概念及其与角度的关系. 授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪 内容分析:讲清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但是互相联系的、辩证统一的.进一步加强对辩证统一思想的理解. 教学过程: 一、复习引入: 1.角的概念的推广 ⑴“旋转”形成角一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到另一位置OB ,就形成角α.旋转开始时的射线OA 叫做角α的始边,旋转终止的射线OB 叫做角α的终边,射线的端点O 叫做角α的顶点. ⑵.“正角”与“负角”“0角”2.度量角的大小第一种单位制—角度制的定义规定周角的3601作为1°的角,我们把用度做单位来度量角的制度叫做角度制,有了它,可以计算弧长,公式为180r n l π=3.探究30°、60°的圆心角,半径r 为1,2,3,4,分别计算对应的弧长l ,再计算弧长与半径的比结论:圆心角不变,则比值不变, 因此比值的大小只与角的大小有关,我们可以利用这个比值来度量角,这就是另一种度量角的制度——弧度制 二、讲解新课:ABαO2100-150066001.定义:长度等于半径长的弧所对的圆心角称为1弧度的角它的单位是rad 读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制.如下图,依次是1rad ,2rad ,3rad ,αrad探究:⑴平角、周角的弧度数,(平角=π rad、周角=2π rad)⑵正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0⑶角α的弧度数的绝对值rl=α(l为弧长,r为半径)⑷角度制、弧度制度量角的两种不同的方法,单位、进制不同,就像度量长度一样有不同的方法,千米、米、厘米与丈、尺、寸,反映了事物本身不变,改变的是不同的观察、处理方法,因此结果就有所不同⑸用角度制和弧度制来度量零角,单位不同,但数量相同(都是0)用角度制和弧度制来度量任一非零角,单位不同,量数也不同2. 角度制与弧度制的换算:∵360︒=2π rad ∴180︒=π rad∴1︒=radrad01745.0180≈π'185730.571801=≈⎪⎭⎫⎝⎛=πrad三、讲解范例:例1 把'3067 化成弧度解:⎪⎭⎫⎝⎛=2167'3067∴radradππ832167180'3067=⨯=例2 把radπ53化成度解:1081805353=⨯=radπ注意几点:1.度数与弧度数的换算也可借助“计算器”进行;2.今后在具体运算时,“弧度”二字和单位符号“rad ”可以省略 如:3表示3rad , sin π表示πrad 角的正弦;3.一些特殊角的度数与弧度数的对应值应该记住: 角度 0° 30° 45° 60° 90° 120° 135° 150° 180° 弧度 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 角度 210° 225° 240° 270° 300° 315° 330° 360° 弧度 7π/65π/44π/33π/25π/37π/411π/62π4.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系 任意角的集合 实数集R 例3用弧度制表示:1 终边在x 轴上的角的集合2 终边在y 轴上的角的集合3 终边在坐标轴上的角的集合解:1 终边在x 轴上的角的集合 {}Z k k S ∈==,|1πββ2 终边在y 轴上的角的集合⎭⎬⎫⎩⎨⎧∈+==Z k k S ,2|2ππββ 3 终边在坐标轴上的角的集合⎭⎬⎫⎩⎨⎧∈==Z k k S ,2|3πββ 四、课堂练习:1.下列各对角中终边相同的角是( )A.πππk 222+-和(k∈Z) B.-3π和322πC.-97π和911πD. 9122320ππ和2.若α=-3,则角α的终边在( )A.第一象限B.第二象限C.第三象限D.第四象限 3.若α是第四象限角,则π-α一定在( )A.第一象限B.第二象限C.第三象限D.第四象限正角 零角 负角 正实数 零 负实数4.(用弧度制表示)第一象限角的集合为 ,第一或第三象限角的集合为 .5.7弧度的角在第 象限,与7弧度角终边相同的最小正角为 .6.圆弧长度等于截其圆的内接正三角形边长,则其圆心角的弧度数为 .7.求值:2cos4tan6cos6tan3tan3sinππππππ-+.8.已知集合A={α|2kπ≤α≤π+2kπ,k∈Z},B ={α|-4≤α≤4},求A ∩B.9.现在时针和分针都指向12点,试用弧度制表示15分钟后,时针和分针的夹角. 参考答案: 1.C 2.C 3.C4.{α|2k π<α<2π+2k π,k ∈Z } {α|k π<α<2π+k π,k ∈Z }5.一 7-2π6.37.28.A ∩B ={α|-4≤α≤-π或0≤α≤π}9.2411π五、小结 1.弧度制定义 2.与弧度制的互化 2.特殊角的弧度数 六、课后作业:已知α是第二象限角,试求:(1)2α角所在的象限;(2)3α角所在的象限;(3)2α角所在范围.解:(1)∵α是第二象限角,∴2π+2k π<α<π+2k π,k ∈Z,即4π+k π<2α<2π+k π,k ∈Z. 故当k=2m(m ∈Z)时,4π+2m π<2α<2π+2m π,因此,2α角是第一象限角;当k=2m+1(m ∈Z)时,45π+2m π<2α<23π+2m π,因此,2α角是第三象限角.综上可知,2α角是第一或第三象限角.(2)同理可求得:6π+32k π<3α<3π+32k π,k ∈Z.当k=3m(m ∈Z)时,ππαππm m 23326+<<+,此时,3α是第一象限角;当k=3m+1(m ∈Z)时,πππαπππ322333226++<<++m m ,即3265αππ<+m <π+2m π,此时,3α角是第二象限角;当k=3m+2(m ∈Z)时,ππαππm m 2353223+<<+,此时,3α角是第四象限角.综上可知,3α角是第一、第二或第四象限角.(3)同理可求得2α角所在范围为:π+4k π<2α<2π+4k π,k ∈Z.评注:(1)注意某一区间内的角与象限角的区别.象限角是由无数个区间角组成的,例如0°<α<90°这个区间角,只是k=0时第一象限角的一种特殊情况.(2)要会正确运用不等式进行角的表达,同时会以k 取不同值,讨论形如θ=α+32k π(k ∈Z)所表示的角所在象限.(3)对于本例(3),不能说2α只是第一、二象限的角,因为2α也可为终边在y 轴负半轴上的角23π+4k π(k ∈Z),而此角不属于任何象限.七、板书设计(略) 八、课后记:。

相关文档
最新文档