人教版七年级有理数乘方51乘方1

合集下载

人教版数学七年级上册1.5.1《有理数的乘方(1)》教学设计

人教版数学七年级上册1.5.1《有理数的乘方(1)》教学设计

人教版数学七年级上册1.5.1《有理数的乘方(1)》教学设计一. 教材分析人教版数学七年级上册1.5.1《有理数的乘方(1)》是学生在学习了有理数的加减乘除、相反数、绝对值等概念的基础上,进一步深化对有理数运算法则的理解。

本节课主要让学生掌握有理数的乘方运算,为后续学习幂的运算、指数函数等知识打下基础。

教材通过具体的例子引导学生探究有理数乘方的规律,从而让学生自主发现并掌握有理数乘方的法则。

二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的加减乘除运算较为熟悉。

但是,对于有理数的乘方运算,学生可能存在一定的困难,因为乘方运算涉及到多个有理数的乘积,运算规则相对复杂。

因此,在教学过程中,需要引导学生通过实例探究有理数乘方的规律,让学生在理解的基础上掌握乘方运算。

三. 教学目标1.理解有理数乘方的概念,掌握有理数乘方的法则。

2.能够熟练进行有理数的乘方运算。

3.培养学生的抽象思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.教学重点:有理数乘方的概念,有理数乘方的法则。

2.教学难点:有理数乘方运算的规律,有理数乘方在实际问题中的应用。

五. 教学方法1.实例导入:通过具体的例子引导学生探究有理数乘方的规律。

2.小组讨论:让学生分组讨论,共同发现有理数乘方的法则。

3.练习巩固:通过大量练习,让学生熟练掌握有理数乘方运算。

4.实际应用:引导学生运用有理数乘方知识解决实际问题。

六. 教学准备1.教学课件:制作课件,展示有理数乘方的例子和知识点。

2.练习题:准备适量练习题,巩固学生对有理数乘方的掌握。

3.教学道具:准备一些教学道具,如卡片、小黑板等,方便学生直观地理解乘方运算。

七. 教学过程1.导入(5分钟)利用实例引入有理数乘方的概念,如:2的3次方表示2乘以自己3次,即2×2×2=8。

让学生初步认识有理数乘方。

2.呈现(10分钟)展示多个有理数乘方的例子,引导学生发现有理数乘方的法则。

人教版七年级数学上册第一章教学课件:1.5.1 第1课时 乘方(共15张PPT)

人教版七年级数学上册第一章教学课件:1.5.1 第1课时 乘方(共15张PPT)
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/72021/9/72021/9/72021/9/79/7/2021 14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月7日星期二2021/9/72021/9/72021/9/7 15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/72021/9/72021/9/79/7/2021 16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/72021/9/7September 7, 2021 17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/72021/9/72021/9/72021/9/7
.
解:(1) (-4)3=(-4)×(-4)×(-4)=-64;
(2) (-2)4=(-2)×(-2)×(-2)×(-2)=16;
(3) 2 3 3= 2 3 2 3 2 3 =2 8 7.
思考:你发现负数的幂的正负有什么规律?
归纳总结
根据有理数的乘法法则可以得出: 负数的奇次幂是负数,负数的偶次幂是正数. 正数的任何正整数次幂都是正数,0的任何正 整数次幂都是0.
- 1 (当n为奇数时)
(9)(-1)n=
1
(当.n为偶数时).
1.求几个相同因数的积的运算,叫做乘方.
a 幂
n 指数
2.乘方的符号法则: 底数 (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数,负数的偶次幂是正数 (3)零的正整数次幂都是零
3.注意:
an与an 二者的区别及相互关系;

七年级数学上册1.5有理数的乘方1.乘方1课件新版新人教版20180223275

七年级数学上册1.5有理数的乘方1.乘方1课件新版新人教版20180223275

(5)0.13 0.001;
(6)( 1)4 1 ; 2 16
(7)(10)4 10000 (8)(10)5 100000.
探究4
视察: (-4)3 =-64;
(-2)4 =16;
你发现负数的幂的正负有什么规律吗?
( 2)3 8 3 27
当指数是_奇_____数时,负数的幂是负______数; 当指数是__偶____数时,负数的幂是正______数.
今天我们学习了哪些知识?
1.什么是乘方、幂、底数、指数? 2.如何进行有理数的乘方运算?
达标测评
1.关于式子(-5)4,下列说法错误的是( C ) A.表示(-5)×(-5)×(-5)×(-5) B.-5 是底数,4 是指数 C.-5 是底数,4 是幂 D.4 是指数,(-5)4 是幂
2.下列式子正确的是( B ) A.(-6)×(-6)×(-6)×(-6)=-64 B.(-2)3=(-2)×(-2)×(-2) C.-54=(-5)×(-5)×(-5)×(-5) D.25×25×25=253
记作:______-__2_4__,读作:2_的__四_次__方__的__相__反_数___
想一想:(-2)4与-24一样吗?为什么?
探究2
a a a 一般地,n个相同的因数a相乘,即
记作an,读作“a的n次方”.
n个
指数
an
注意: 当an看作a的n次方的结果 幂 时,也可读作:
a的n次幂
底数
【义务教育教科书人教版七年级上册】
1.5.1 乘方(1)
学校:________ 教师:________
情境引入
棋盘上的学问
古时候,有个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国 王从此迷上了下棋.为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求. 大臣说:“就在这个棋盘上放一些米粒吧,第1格放1粒米,第2格放2粒米,第3格 放4粒米,然后是8粒、16粒、32粒,…,一直到第64格.”“你真傻!就要这么一点 米?” 国王哈哈大笑.这位大臣说:“就怕您的国库里没有这么多米!”

人教版七年级上册教案:1.5.1乘方

人教版七年级上册教案:1.5.1乘方
5.激发学生的数学探究精神:鼓励学生在乘方学习中提出问题、分析问题、解决问题,培养其探究精神和创新意识。
本节课的核心素养目标旨在培养学生具备抽象、推理、建模、运算等综合能力,为新教材要求下的全面发展奠定基础。
三、教学难点与重点
1.教学重点
(1)乘方的定义与表示方法:乘方是快速计算相同因数乘积的简便运算,理解乘方的概念及其表示方法(an表示n个a相乘)是本节课的核心内容。教师应通过实例讲解和强调,确保学生掌握乘方的定义和表示方法。
人教版七年级上册教案:1.5.1乘方
一、教学内容
人教版ห้องสมุดไป่ตู้年级上册教案:1.5.1乘方
1.乘方的定义:理解乘方的概念,了解乘方是快速计算相同因数乘积的简便运算。
2.乘方的表示方法:掌握an表示n个a相乘,其中a为底数,n为指数。
3.有理数的乘方:掌握正整数、零、负整数的乘方法则,了解乘方的性质。
4.乘方的计算:学会运用乘方的性质进行乘方运算,解决实际问题。
实践活动环节,学生们分组讨论和实验操作的热情很高,但在讨论过程中,部分学生过于依赖小组其他成员,自己的思考不够独立。在接下来的教学中,我会注意引导学生独立思考,鼓励他们在小组讨论中积极表达自己的观点。
学生小组讨论环节,整体效果较好,学生们能够围绕乘方在实际生活中的应用展开讨论。但在引导与启发过程中,我发现部分学生的逻辑思维能力还有待提高。针对这一点,我打算在今后的教学中,多设计一些开放性的问题和练习,帮助学生提高逻辑思维能力。
在总结回顾环节,学生们对乘方的基本概念、重要性和应用有了更加深刻的认识。但在整个教学过程中,我也发现了一些不足之处。例如,对于教学难点和重点的解析,可能还需加强针对性,通过更多实例和对比分析,帮助学生突破难点。

人教版七年级上册1.5.1有理数的乘方课年(16张PPT)

人教版七年级上册1.5.1有理数的乘方课年(16张PPT)
根据有理数的乘法法则可以得出 负数的奇次幂是负数,负数的偶次幂是正数 显然,正数的任何次幂都是正数,0的任何次幂都是0
练习巩固
乘方的运算
(1)定符号:先看底数是正是负,再看指数是奇是偶 (2)定绝对值:计算底数绝对值的幂 (3)注意当底数是负数或分数时,要先用括号将底数扩上 (4)一个数可以看作这个数本身的一次方,指数1通常省略 不写
(3)5看成幂的话,底的形式:
1、1×1×1×1×1×1×1= 17 ;
2、3×3×3×3×3= 35 ;
3、(-3)×(-3)×(-3)×(-3)= 34 ;
4、
5 6
5 6
5 6
5 6
=
5 4 6
2、某种细胞经过30min,便由一个分裂成两个,经 过5h后,这种细胞由1个分裂成多少个?
……
课堂小结
1、乘方的概念:求n个相同因数的积的运算叫做乘方 指数
an 幂(乘方的结果叫做幂)
底数
an读法:a的n次方或a的n次幂
2、乘方负号的确定
负数的积次幂是负数,负数的偶次幂是正数,正数的 任何次幂都是正数,0的任何正整数次幂都是0
1.5.1 有理数的乘方
孙光娟
一、学习目标
1、通过现实背景,使学生理解并掌握有理数的乘方、幂、底 数、指数的概念及意义。 2、能够正确进行有理数的乘方运算。
二、重难点
重点:理解有理数乘方的意义和表示,会进行乘方的运算。 难点:幂、底数、指数的概念及其表示;理解有理数乘法运算 与乘方之间的联系,处理好负数的乘方运算。
n个
{
定义:求n个相同因数的积的运算,叫做乘方
指数
an 幂 (乘方的结果叫做幂)
底数 an读法:读作a的n次方,或者a的n次幂

数学人教版七年级上册1.5.1有理数的乘方.5.1有理数的乘方教学设计与反思

数学人教版七年级上册1.5.1有理数的乘方.5.1有理数的乘方教学设计与反思
3、进行乘方运算应先定符号后计算。
目标检测
1、在46中,底数是,指数,
2、(-4)7读做;
3、(-4)12的结果是数(填“正”或“负”);
4、计算:=;
5、计算:(-1)2n+(-1)2n+1=;
课后作业
教材p47立完成,师生共同订正
通过练习使学生对这节课的知识得以巩固,加深理解
对折3次可裁成8张,即2×2×2张;
问题(1):
若对折10次可裁成几张?请用一个算式表示(不用算出结果)
2×2×2×2×2×2×2×2×2×2
有10个2相乘
若对折100次,算式中有几个2相乘?
在这个积中有100个2相乘。这么长的算式有简单的记法吗?
问题(2):
2个a相加可记为:a+a=a×2
边长为a的正方形的面积可记为:
七、教学评价设计
在探索法则的教学环节中,教师放手学生操作,把课堂还给学生,真正体现学生的主体地位,教师起到一个引导者、合作者、组织者的作用,学生在合作交流与自主探索的过程中归纳出有理数乘方的符号法则。在练习设计中,设置不同难度的计算题,让不同的学生都得到训练,得到提高。为了使学生真正掌握重难点,熟练的进行有理数的乘方运算,设计了一定的试题教学,难点得以突破,学生的能力得到提高,同时培养了学生集体合作的意识。
a×a=a2
3个a相加可记为:a+a+a=a×3
棱长为a的正方体的体积可记为:
a×a×a=a3
4个a相加可记为:a+a+a+a=a×4
那么4个a相乘可记为:
a×a×a×a=a4
n个a相加可记为:a+a+…+a=a×n
n个a相乘可记为:a×a×…×a=an

七年级上数学上册 1.5.1 有理数的乘方(一)教案 人教新课标版

七年级上数学上册 1.5.1 有理数的乘方(一)教案 人教新课标版

1.5.1 有理数的乘方(一)教学目标1,在现实背景中,理解有理数乘方的意义。

2,能进行有理数的乘方运算,并会用计算器进行乘方运算。

3,掌握幂的符号法则。

教学难点:幂、底数、指数的概念及其表示,理解有理数乘法运算与乘方间的联系,处理好负数的乘方运算。

知识重点有理数乘方的意义设置情境引入课题1.教师展示细胞分裂的示意图,引导学生分析某种细胞的分裂过程,学生则回答教师提出来的问题,并说明如何得出结果。

2.结合学生熟悉的边长为a的正方形的面积是a•a,棱长为a的正方体的体积是a•a•a及它们的简单记法,告诉学生几个相同因数a相乘的运算就是这堂课所要学习的内容。

小组合作1. 分小组学习教科书49页,要求能结合教产书中的示意图,用自己的语言表达下列几个概念的意义及相互关系。

底数是相同的因数,可以是任何有理数,指数是相同因数的个数,在现阶段中是正整数,而幂则是乘方的结果。

2. 补充例题:把下列各式写成乘方运算的形式,并指出底数,指数各是多少?(1)(-2.3)×(-2.3)×(-2.3)×(-2.3)(2)(-)×(-)×(-)×(-)(3)x•x•x•……•x(1999个)3. 此例可由学生口述,教师板述完成。

教师要提醒学生注意,相同的分数或相同的负数相乘时,要加括号,例如(-2)×(-2)×(-2)×(-2)记作(-2)此例可由学生口述,教师板书完成。

4、小组讨论:应用新知巩固练习1、做一做:教科书第51页练习第1题。

2、用计算器算,以及教科书51页练习第2题。

3、小组讨论:通过上面练习,你能发现负数的幂的正负有什么规律?正数呢?0呢?学生归纳总结:负数的奇数次幂是负数,负数的偶次幂是正数;正数的任何次幂是正数;0的任何次幂是0 .课堂小结1、由学生小结本堂课所学的内容。

2、总结五种已学的运算及其结果:运算加减乘除乘方运算结果和差积商幂课后反思:——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————。

人教版数学七年级上册精品教学设计《1.5.1 第1课时 乘方》

人教版数学七年级上册精品教学设计《1.5.1 第1课时 乘方》

人教版数学七年级上册精品教学设计《1.5.1 第1课时乘方》一. 教材分析本节课的主题是乘方,这是人教版数学七年级上册的教学内容。

乘方是指数与数的乘积,例如2的3次方表示为2^3,即2×2×2。

乘方在数学中具有广泛的应用,对于培养学生的逻辑思维和抽象思维能力具有重要意义。

二. 学情分析七年级的学生已经掌握了有理数的基本运算,对数的概念也有了一定的了解。

但是,对于乘方的概念和运算法则,学生可能还较为陌生。

因此,在教学过程中,需要引导学生从实际问题出发,逐步理解和掌握乘方的意义和运用。

三. 教学目标1.了解乘方的概念,掌握乘方的运算法则。

2.培养学生运用乘方解决实际问题的能力。

3.培养学生逻辑思维和抽象思维能力。

四. 教学重难点1.乘方的概念和运算法则。

2.乘方在实际问题中的应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题情境,引导学生主动探究乘方的意义和运算法则;通过案例分析,让学生了解乘方在实际问题中的应用;通过小组合作学习,培养学生的团队协作能力。

六. 教学准备1.课件:制作乘方的概念、运算法则和应用案例的课件。

2.教学素材:准备一些实际问题,用于巩固和拓展学生的知识。

3.黑板:用于板书关键点和总结。

七. 教学过程1.导入(5分钟)利用一个实际问题引入乘方的概念,如:“小明的年龄是小红的两倍,小红6岁,求小明的年龄。

”让学生思考并解答,引出乘方的意义。

2.呈现(15分钟)通过课件展示乘方的概念、运算法则和例子,让学生了解乘方的基本知识。

3.操练(15分钟)让学生进行乘方的计算练习,教师巡回指导,及时纠正学生的错误。

4.巩固(5分钟)通过一些实际问题,让学生运用乘方进行计算,巩固所学知识。

5.拓展(10分钟)引导学生思考乘方的应用,如在科学计算、工程设计等领域中的应用,让学生了解乘方的重要性。

6.小结(5分钟)教师总结本节课的主要内容,强调乘方的概念和运算法则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

连续对折 30次的厚度能超过珠穆
朗玛峰。这是真的吗?
这张纸对折30次后能超过珠穆朗玛峰吗?
退出 返回 上一张 下一张
如果把足够长的厚0.1毫米的纸折叠30 次后有10万多米高,有12个珠穆朗玛峰 高。
分析: 0.1毫米×230=0.1毫米×1073741824
=107374.1824米 8844.43 ×12=106133.16
(? 10)2 ? 100(? 10)3 ? -1000(? 10)4 ? 10000
(1)正数的任次幂为正;负数的偶次 幂为正 奇次幂为负
(2)对于10n,1后面就有n个0
你能发现什么规 律吗?
退出 返回 上一张 下一张
抢答练习: 计算
0.12 ? 0.01; 0.13 ? 0.001 0.14 ? 0.0001
10 有理数的乘方 2 ×2 ×… ×2 ×2 记作210
10个2
a×a ×… ×a ×a 记作 an
n个a
乘方:求几个相同因数的 积的运算,叫?做?乘?方?
底数
aan
指数
(乘方的结果叫做幂)

a n 读作a的n次方
a n 看作是a的n次方的结果时,也
可读作a的n次幂
其中a代表相乘的因数,n代表
(1) (2)
53 =125 4 2 =16
(3) (-3)4 =81
22 4
(4) ( ) =
3
9
(5)
13 1
(-
2
)
=-
8
想一想:
观察例1和左边各式的计 算结果,你能发现乘方 运算的符号有什么规律?
乘方运算的符号规律
?正数的任何次幂都是正 数 ?负数的偶次幂是正数, 奇次幂是负数
试一试
确定下列幂的正负
致我亲爱的同学们
天空的幸福是穿一身蓝 森林的幸福是披一身绿 阳光的幸福是如钻石般耀眼 老师的幸福是因为认识了你们
愿你们努力进取,永不言败
有理数的乘方(1)
问题情境:1个细胞30分钟后分裂成2个,经过5 小时,这种细胞由1个能分裂成多少个?
2×2×·······×2×
2
=
10个2
图意示裂分胞细
2
2×2 2×2×2
+
-
+
+
-
试一试 口答
1 1 (1) 3 =1 (2) 2008 =1
(3)(? 1)8 =1(4)(? 1)2008 =1
(5)(? 1)7=-1(6)(? 1)2007 =-1
(1) 1的任何次幂都为 1。
(2) -1的幂很有规律: -1的奇次幂是-1 , -1的偶次幂是1。
!议一议
3 2 与 (-3)2 结果相等吗?
解:
3
(1) (? 4)3 ? (? 4) ? (? 4) ? (? 4) ? ? 64
(2) (? 2) 4 ? (? 2) ? (? 2) ? (? 2) ? (? 2) ? 16
(3) (? 2 )3 ? (? 2 ) ? (? 2 ) ? (? 2 ) ? ? 8
3
3 3 3 27
计算下列各题:
注意:(1)负数的乘方 ,在书写时一 定要把整个负数 (连同符号),用小括号
括起来.这也是辨认底数的方法。 (2)分数的乘方 ,在书写的时一定
要把整个分数用小括号括起来。
如:(
1 2)3、(-3)2写出下列各幂的底数与指数:
(1)在64中,底数是__6_,指数是__4__;
(2)在a4中,底数是_a__,指数是__4__;
??
0.1?2
?
0.01; ??
0.1?3
;
?-0.001(?
0.1)4
?
0.0001
(3)对于0.1n ,1前面就有n个0
你能发现什么规 律吗?
退出 返回 上一张 下一张
练习:用〉 、〈 或=号填空
1.711 __>__ 0
(? 3)5 _<____0
4
(?7)8 _>___ 0
040 __=__0
(3)在(-6)4中,底数是 _-6__, 指数是_4__;
(4)在
(2)5 3
2
中,底数是__3__,指数是__5__;
一个数可以看作这个数本身的一次方, 例如:5就是51,指数是1通常省略不写
2次方又叫 平方,3次方又叫 立方。
退出 返回 上一张 下一张
例1 计算:
(1) (?4)3 (2) (? 2) 4 (3)( ? 2 ) 3
相乘因数的个数即: 乘方的意义 n个a
an = a×a×a···×a
也就是a的n次方等于n个a相乘
运算 加法 减法 乘法 除法 乘方 结果 和 差 积 商 幂
思考:说说下列各数的意义,它们一样吗?
(2)2和 22 33
? ??
2 3
2
? ??
的意义是
2 的平方; 3
即 2个 2 相乘; 3
22 的意义是“2的平方再除以3”。 3
0的任何正整数次幂都是0
小结:
你能告诉我这节课的收获吗?
乘方:求几个 相同因数 的积 的运算,叫做乘方
乘方运算的法则: 正数的任何次幂 都是正数; 0的任何正整数次幂都是 0;负 数的奇次幂是负数,负数的 偶次幂是正数
猜一猜
珠穆朗玛峰是世界的最高峰,
它的海拔高度是 8844米。把一张
足够大的厚度为 0.1毫米的纸,
-32 读作 3 2 的相反数,而(-3)2 读作-3的 平方
所以
(-3)2 =9
2
-3
=-9
思考:说说下列各数的意义,它们一样吗?
(? 2)4 和 ? 24;
( ? 2)4的意义是 ? 2的 4次方; 即 4个 ? 2相乘;
? 24的意义是2的4次方的相反数。
抢答练习: 计算
102 ? 100 103 ? 1000; 104 ? 10000
这下你该
相信了吧!
反思
这节课你学会了一种什么运算? 你有何体会?
“乘方”精神:虽然是简简 单单的重复,但结果却是惊 人的。做人也要这样,脚踏 实地,一步一个脚印,成功 也会令你惊喜的。
必做题:教科书第42页练习第2题;第47页习题1.5 第1题.
相关文档
最新文档