线面垂直判定经典证明题

合集下载

立体几何线面垂直-题型全归纳(解析版)

立体几何线面垂直-题型全归纳(解析版)

立体几何线面垂直-题型全归纳题型一利用等腰三角形“三线合一”例题1、如图,在正三棱锥P-ABC中,E,F,G分别为线段PA,PB,BC的中点,证明:BC⊥平面PAG。

证明:在正三棱锥P-ABC中,AB=AC,G是BC的中点,∴AG⊥BC,又 PB=PC,G是BC的中点,∴PG⊥BC,PG⋂AG=G,PG,AG⊂平面PAG,∴BC⊥平面PAG,解题步骤(1)根据线段的中点,找出相应的等腰三角形;(2)格式“因为D是BC的中点,且AB=AC,所以AD⊥BC”;(3)依据“三线合一”得到线线垂直。

变式训练1、已知四面体ABCD中,AB=AC,BD=CD,E为棱BC的中点,求证:AD⊥BC证明:连接DE,AB=AC,E是BC的中点,∴AE⊥BC,又 BD=CD,E是BC的中点,∴DE⊥BC,AE⋂DE=E,AE,DE⊂平面ADE,∴BC⊥平面ADE,AD⊂平面ADE,∴AD⊥BC变式训练2、在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥.求证:PC AB ⊥证明:取AB的中点O,连接OP,OC, AP=BP,O是AB的中点,∴PE⊥AB,又 AC=BC,O是AB的中点,∴OC⊥AB,PO⋂CO=O,PO,CO⊂平面POC,∴AB⊥平面POC,PC⊂平面POC,∴AB⊥PC。

变式训练3、如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,E为CD的中点,060=∠ABC ,求证:AB⊥平面PAE。

证明: 底面ABCD是菱形,060=∠ABC ,∴AE⊥CD,又 AB//CD,∴AB⊥AE,又PA⊥平面ABCD,AB⊂平面ABCD,∴AB⊥PA,AP⋂AE=A,AP,AE⊂平面PAE,∴AB⊥平面PAE。

A CB P题型二利用勾股定理逆定理例题2、如图,在正方体1111D C B A ABCD -中,M 为棱1CC 的中点,AC 交BD 于点O ,求证:BDM1平面⊥O A 证明:连接OM,M A 1,11C A ,设正方体的棱长为2,则6222222121=+=+=AO A A O A 32122222=+=+=OC CM OM 91)22(222121121=+=+=M C C A M A 21221M A OM O A =+∴即:OM⊥OA 1又 在正方体1111D CB A ABCD -中,∴BD⊥OA 1 OM,BD⊂平面BDM,∴BDM1平面⊥O A 解题步骤(1)根据题干给出的线段长度(没有长度的可以假设),标示在图形上,找出相应的三角形;(2)把线段的长度分别求平方,判断能否构成“222c b a =+”;(3)根据平方关系得到线线垂直。

线面垂直题型20道

线面垂直题型20道

线面垂直题型20道
1. 两条直线的夹角为90度,则它们一定垂直。

2. 如果一条直线垂直于另一条直线,那么任意一条过这两条直线的线段,这条线段上的点就分别与这两条直线的交点连成的线段垂直。

3. 两条直线分别垂直于第三条直线,则这两条直线平行。

4. 一条线段的中垂线与线段垂直。

5. 任意一个点到平面上一直线的垂足所在的直线与这条直线垂直。

6. 如果一个三角形的两条边互相垂直,则这个三角形是直角三角形。

7. 如果一条直线与一个平面垂直,则这条直线称为这个平面的法线。

8. 一个正方体的某个面与它所在的平面垂直。

9. 一个矩形的对角线互相垂直。

10. 一个正方形的对角线互相垂直。

11. 如果两个面互相垂直,则它们的法线互相平行。

12. 如果平面P垂直于直线L1,且L1垂直于直线L2,则平面P和直线L2互相平行。

13. 如果两条直线互相垂直,则它们的斜率的乘积为-1。

14. 如果一条直线过一个圆的圆心,则这条直线与圆的切线垂直。

15. 如果一条直线垂直于直径所在的直线,则它和圆的切线互相平行。

16. 直角梯形的两条腰互相垂直。

17. 如果两个向量垂直,则它们的点积为0。

18. 如果直线L1垂直于平面P,那么L1上任意一点到P的距离均相等。

19. 一个正六面体的某个面与它所在的平面垂直。

20. 如果两个三维空间中的直线垂直,则它们的方向向量的点积为0。

线面垂直经典例题及练习题-完整可编辑版

线面垂直经典例题及练习题-完整可编辑版

页脚下载后可删除,如有侵权请告知删除!立体几何1.P 点在那么ABC ∆所在的平面外,O 点是P 点在平面ABC 内的射影 ,PA 、PB 、PC两两垂直,那么D 点是那么ABC ∆ 〔 B 〕(A)重心 (B) 垂心 (C)内心 (D)外心2.与两个相交平面的交线平行的直线和这两个平面的位置关系是 〔 A 〕(A)都平行 (B) 都相交 (C) 在两个平面内 (D)至少与其中一个平行3.假设两个平面内分别有一条直线,这两条直线互相平行,那么这两平面的位置关系是〔 A 〕(A)平行 (B) 相交 (C)平行或相交 (D)垂直 4.在空间,下述命题正确的选项是 〔 B 〕(A)假设直线//a 平面M ,直线b a ⊥,那么直线⊥b 平面M (B)假设平面M //平面N ,那么平面M 内任意直线a //平面N(C)假设平面M 与N 的交线为a ,平面M 内的直线a b ⊥,那么N b ⊥ (D)假设平面N 的两条直线都平行平面M ,那么平面N //平面M5.a 、b 表示两条直线,α、β、γ表示三个平面,以下命题中错误的选项是 〔A 〕 (A),,αα⊂⊂b a 且ββ//,//b a ,那么βα// (B)a 、b 是异面直线,那么存在唯一的平面与a 、b 等距 (C) ,,,b a b a ⊥⊂⊥βα那么βα// (D),,,//,βαβγγα⊥⊥⊥b a 那么b a ⊥6.直线l //平面α,αβ⊥,那么l 与平面β的位置关系是 〔 D 〕 (A) l β⊂ (B) //l β (C) l β与相交 (D ) 以上三种情况均有可能 7.直线l ⊥平面α,直线m ⊂平面β,有以下四个命题:①//l m αβ⇒⊥②//l m αβ⊥⇒③//l m αβ⇒⊥④//l m αβ⊥⇒,其中正确的选项是〔D 〕(A) ①② (B) ②④ (C) ③④ (D) ①③8.αβγδ,,,是四个不同的平面,且αγβγαδβδ⊥⊥⊥⊥,,,,那么〔 B 〕 (A)////αβγδ或 (B) ////αβγδ且(C) 四个平面中可能任意两个都不平行 (D) 四个平面中至多有一对平面平行 9.平面α和平面β相交,a 是α内的一条直线,那么〔 D 〕(A) 在β内一定存在与a 平行的直线 (B) 在β内一定存在与a 垂直的直线 (C) 在β内一定不存在与a 平行的直线 (D) 在β内一定不存在与a 垂直的直线页脚下载后可删除,如有侵权请告知删除!10.PA ⊥正方形ABCD 所在平面,垂足为A ,连PB PC PD AC BD ,,、,,那么互相垂直的平面有〔 C 〕(A) 5对 (B) 6对 (C) 7对 (D) 8对12. 如图9-29,P A ⊥平面ABCD ,ABCD 是矩形,M 、N 分别是AB 、PC 的中点. 求证:MN ⊥AB .13. :如图,AS ⊥平面SBC ,SO ⊥平面ABC 于O , 求证:AO ⊥BC .15. 如图,P ∉平面ABC ,PA=PB=PC ,∠APB=∠APC=60°,∠BPC=90 °求证:平面ABC ⊥平面PBC16. 如图:在斜边为AB 的R t △ABC 中,过点A 作PA ⊥平面ABC ,AE ⊥PB 于E ,AF ⊥PC 于F ,〔1〕求证:BC ⊥平面PAC ;〔2〕求证:PB ⊥平面AEF.17. 如图:PA ⊥平面PBC ,AB =AC ,M 是BC 的中点,求证:BC ⊥PM.CFEPBAC BAM P页脚下载后可删除,如有侵权请告知删除!如图,在正三棱柱111C B A ABC -.中,底面ABC 为正三角形,M 、N 、G 分别是棱CC 1、AB 、BC的中点.且AC CC 21=.〔Ⅰ〕求证:CN //平面 AMB 1; 〔Ⅱ〕求证:平面AMG .【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。

线面垂直判定经典证明题

线面垂直判定经典证明题

线面垂直判定经典证明题1.已知:在三角形ABC中,PA垂直于AB和AC。

证明PA垂直于平面ABC。

2.已知:在三角形ABC中,PA垂直于AB,BC垂直于平面PAC。

证明PA垂直于BC。

3.已知:在三棱锥V-ABC中,VA=VC,AB=BC。

证明VB垂直于AC。

4.已知:在正方体ABCD-EFGH中,O为底面ABCD的中心。

证明BD垂直于平面AEGC。

5.已知:在圆O中,AB是直径,PA垂直于AC和AB。

证明BC垂直于平面PAC。

6.已知:在三角形ABC中,AD垂直于BD和DC,AD=BD=CD,∠BAC=60°。

证明BD垂直于平面ADC。

7.已知:在矩形ABCD中,PA垂直于平面ABCD,M和N分别是AB和PC的中点。

1) 证明MN平行于平面PAD。

2) 证明XXX垂直于CD。

3) 若∠PDA=45°,证明MN垂直于平面PCD。

8.已知:在棱形ABCD所在平面外,P满足PA=PC。

证明AC垂直于平面PBD。

9.已知四面体ABCD中,AB=AC,BD=CD,平面ABC垂直于平面BCD,E是棱BC的中点。

1) 证明AE垂直于平面BCD。

2) 证明AD垂直于BC。

10.在三棱锥ABCD中,AB=1,BC=2,BD=AC=3,AD=2.证明AB垂直于平面BCD。

11.在四棱锥S-ABCD中,SD垂直于平面ABCD,底面ABCD是正方形。

证明AC垂直于平面SBD。

12.已知:正方形ABCD所在平面与三角形CDE所在平面相交于CD,AE垂直于平面CDE。

证明AB垂直于平面ADE。

13.在三棱锥P-ABC中,PA、PB、PC两两垂直,H是△XXX的垂心。

证明PH垂直于底面ABC。

14.在正方体ABCD-A1B1C1D1中,证明A1C垂直于平面BC1D1.15.在△ABC所在平面外一点S,SA垂直于平面ABC,平面SAB垂直于平面SBC。

证明AB垂直于BC。

16.在直三棱柱ABC-A1B1C1中,AC=BC=1,∠ACB=90°,AA1=2,D是A1B1的中点。

线面垂直练习题及答案

线面垂直练习题及答案

线面垂直练习题及答案线面垂直是立体几何中的一个重要概念,它指的是一条直线与一个平面垂直。

在解决线面垂直问题时,我们通常需要利用相关的定理和性质来进行证明和计算。

以下是一些线面垂直的练习题及答案。

练习题1:已知直线AB与平面α垂直,点C在平面α内,求证:直线AC垂直于平面α。

答案1:由于直线AB垂直于平面α,根据线面垂直的性质定理,直线AB与平面α内的所有直线都垂直。

因此,直线AC作为平面α内的一条直线,必然与直线AB垂直。

根据线面垂直的定义,直线AC也垂直于平面α。

练习题2:在长方体ABCD-EFGH中,求证:直线BF垂直于平面ABEF。

答案2:由于长方体的对角线BF是连接两个相对顶点的直线,根据长方体的性质,对角线BF垂直于底面ABCD和顶面EFGH。

因此,直线BF垂直于平面ABEF内的任意直线,满足线面垂直的定义。

练习题3:已知直线l与平面α相交于点P,且直线m垂直于平面α,求证:直线m与直线l垂直。

答案3:由于直线m垂直于平面α,根据线面垂直的性质,直线m与平面α内的所有直线都垂直。

由于直线l与平面α相交于点P,我们可以将直线l投影到平面α上,得到一个与l平行的直线。

由于直线m垂直于平面α,它也垂直于平面α内的任何直线,包括l的投影。

因此,直线m与直线l垂直。

练习题4:在三棱锥P-ABC中,若PA⊥平面ABC,且AB⊥AC,求证:平面PAB垂直于平面PAC。

答案4:由于PA垂直于平面ABC,根据线面垂直的性质,PA也垂直于平面ABC 内的所有直线,包括AB和AC。

由于AB垂直于AC,根据面面垂直的判定定理,如果一个平面内的两条相交直线都垂直于另一个平面,则这两个平面垂直。

因此,平面PAB垂直于平面PAC。

练习题5:已知直线a与平面α垂直,直线b在平面α内,且直线a与直线b 相交于点O,求证:点O是直线a上的垂足。

答案5:由于直线a垂直于平面α,根据线面垂直的性质,直线a与平面α内的所有直线都垂直。

线面垂直练习题及答案

线面垂直练习题及答案

线面垂直练习题及答案线面垂直是几何学中的一项基本概念,用于描述线段、射线、直线和平面之间的垂直关系。

理解线面垂直的概念对于解决几何问题至关重要。

本文将为读者提供一些线面垂直练习题及答案,帮助读者巩固对该概念的理解。

练习题一:1. AB为一条线段,m是一平面。

如果AB与m垂直,判断下列命题的真假:a) 线段AB垂直于平面mb) 平面m垂直于线段ABc) 线段AB平行于平面m2. P是平面XYZ的内点,AP的延长线与平面XYZ有几个交点?练习题二:1. 给出下列命题的定义:a) 垂线b) 垂直平分线c) 垂直平面2. 在平面上画一条线段AB和一条直线l,求证:若线段AB与直线l垂直,则直线l过点A和点B的垂直平分线。

1. 已知直线l与平面P垂直,直线m过l上一点,那么直线m与平面P的关系是什么?2. 在长方形ABCD中,线段AC和线段BD相交于点O。

求证:线段AC与平面ABCD垂直。

答案及解析:练习题一:1. a) 假,线段AB无法垂直于平面m,因为线段只有两个端点而不是无限延伸。

b) 真,平面m可以垂直于线段AB。

c) 假,线段和平面不可能平行。

2. AP的延长线与平面XYZ有且只有一个交点。

练习题二:1. a) 垂线是与给定线段或直线垂直的线段或直线。

b) 垂直平分线是将给定线段或直线垂直平分的线段或直线。

c) 垂直平面是与给定平面垂直的平面。

2. 假设直线l过点A和点B的垂直平分线交线段AB于点M,则根据垂直平分线的定义,我们可以得出线段AM和线段BM的长度相等,且直线l与线段AM和线段BM都垂直。

1. 直线m与平面P平行。

2. 连接线段AC的中点和线段BD的中点,设为点O'。

根据长方形的性质,线段OO'相等且垂直于两个平行线段AC和BD。

因此,线段OO'垂直于平面ABCD,而线段OO'与线段AC相等,所以线段AC与平面ABCD垂直。

通过以上练习题及答案,我们可以加深对线面垂直概念的理解。

线面垂直经典例题_变式

线面垂直经典例题_变式

线面、面面垂直的判定与性质一、 线面垂直1.线面垂直:若一条直线垂直于平面内所有直线(垂直于平面中的两条相交直线即可),则直线与平面垂直.判定定理:若一条直线垂直于平面内的两条相交直线,直线与平面垂直. 2.线面垂直的证明方法:(1)判定定理;(2)如果两条平行线中一条垂直于一个平面,那么另一条也垂直于这个平面; (3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面; (4)两个平面垂直,在一个平面内垂直于它们交线的直线垂直于另一个平面;(5)如果两个相交平面都与第三个平面垂直,那么它们的交线与第三个平面垂直;3.直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那麽这两条直线平行4.点到平面的距离的定义:从平面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.5.直线和平面的距离的定义:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.6. 三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直7.三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那麽它也和这条斜线的射影垂直,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭注意:(1)三垂线指PA ,PO ,AO 都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理. (2)要考虑a 的位置,并注意两定理交替使用. 二、 面面垂直1. 面面垂直:如果两个平面的所成的角为直角,则两个平面垂直. 2. 面面垂直的证明:(1)计算二面角的平面角为90︒;(2)如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直. 3.两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面.典型例题:1. 线面垂直的判定及其应用【例1】 一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( )A . 垂直B . 平行C . 相交不垂直D .不确定变式:若直线a 与b 异面,则过a 且与b 垂直的平面( )A . 有且只有一个B . 可能有一个也可能不存在C . 有无数多个D . 一定不存在【例2】 (2005•天津)设αβγ,,为平面,m n l ,,为直线,则m β⊥的一个充分条件是( ) A .l m l αβαβ⊥⋂=⊥,, B .m αγαγβγ⋂=⊥⊥,, C .m αγβγα⊥⊥⊥,, D .n n m αβα⊥⊥⊥,,变式(2005•湖南)已知平面α,β和直线m ,给出条件:①m ∥α; ②m α⊥; ③m α⊂; ④αβ⊥; ⑤α∥β. 1) 当满足条件 时,有m ∥β;2) 当满足条件 时,有m β⊥.(填所选条件的序号)【例3】 设a b ,为两个不重合的平面,l m n ,,为两两不重合的直线,给出下列四个命题:①若a ∥b ,l a ⊥,则l b ⊥;②若m ⊥a ,n ⊥a ,m ∥b ,n ∥b ,则a ∥b ; ③若l ∥a ,l b ⊥,则a ⊥b ;④若m 、n 是异面直线,m ∥a ,n ∥a ,且l m ⊥,l n ⊥,则l a ⊥. 其中真命题的序号是( )A . ①③④B . ①②③C . ①③D . ②④【例4】 已知m n ,是不同的直线,αβ,是不同的平面,则下列条件能使n α⊥成立的是( ) A . α⊥β,m ⊂β B . α∥β,n ⊥β C . α⊥β,n ∥β D . m ∥α,n ⊥m变式1:若,,a b c 表示直线,α表示平面,下列条件中,能使a α⊥的是( ) A . ,,,a b a c b c αα⊥⊥⊂⊂ B . a b ⊥, b ∥αC . ,,a b A b a b α=⊂⊥D . α∥b ,b a ⊥变式2:以下条件中,能判定直线l 垂直平面α的是( )A . l 与平面α内的一条直线垂直B .l 与平面α内的一个三角形的两边垂直C . l 与平面α内的两条直线垂直D .l 与平面α内的无数条直线垂直变式3:在空间中,设m n ,为两条不同的直线,α,β为两个不同的平面,给定下列条件:①α⊥β且m ⊂β; ②α∥β且m ⊥β; ③α⊥β且m ∥β; ④m ⊥n 且n ∥α.其中可以判定m ⊥α的有()A . 1个B . 2个C . 3个D . 4个【例5】 如图,在正方体1111ABCD A B C D -中,与1BD 垂直的面对角线有( )A .4条B .6条C .8条D .12条D 1C 1B 1A 1D CBA2. 线面垂直的性质及其应用【例6】 已知直线a b ,和平面α,且a b ⊥,a α⊥,则b 与α的位关系是 .90,PA3.面面垂直的判定、性质及其应用【例12】(2009•广东)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④【例13】A BCD为正方形,P为平面ABCD外一点,且PA⊥平面ABCD,则平面PAB与平面PBC,平面PAB与平面PAD的位置关系是()A.平面PAB与平面PAD,PBC垂直B.它们都分别相交且互相垂直C.平面PAB与平面PAD垂直,与平面PBC相交但不垂直D.平面PAB与平面PBC垂直,与平面PAD相交但不垂直【例14】 如图,在直三棱柱ABC A B C '''-的侧棱4AA '=,底面三角形ABC 中,2AC BC ==,90ACB ∠=︒,D 是AB 的中点.(Ⅰ)求证:CD AB '⊥;(Ⅱ)求二面角A AB C ''--的大小;。

线面垂直的证明及应用测试题(含答案)

线面垂直的证明及应用测试题(含答案)

线面垂直的证明及应用一、单选题(共10道,每道10分)1.若为平面,为直线,则下列选项中能得到的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:直线与平面垂直的判定2.如图,PO⊥平面ABC,BO⊥AC,则图中一定与AC垂直的直线共有( )A.1条B.2条C.3条D.4条答案:D解题思路:试题难度:三颗星知识点:直线与平面垂直的判定3.如图,在三棱柱中,底面是正三角形,且侧棱,若E是BC的中点,则下列叙述正确的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:直线与平面垂直的性质4.在长方体中,已知AB=BC=1,,E是侧棱的中点,则直线AE与平面所成角的大小为( )A.60°B.90°C.45°D.以上都不正确答案:B解题思路:试题难度:三颗星知识点:直线与平面垂直的性质5.如图,四棱锥S-ABCD的底面为正方形,且SD⊥底面ABCD,则下列结论不正确的是( )A.AC⊥SBB.AB∥平面SCDC.AC⊥平面SBDD.AB与SC所成的角等于CD与SA所成的角答案:D解题思路:试题难度:三颗星知识点:直线与平面垂直的性质6.如图,在正方体中,O是底面ABCD的中心,,H为垂足,则与平面的位置关系是( )A.垂直B.平行C.斜交D.以上都不对答案:A试题难度:三颗星知识点:直线与平面垂直的判定7.如图,在等边三角形ABC中,CD是AB边上的高,E,F分别是AC,BC的中点,现将△ACD 沿CD折起,使平面ACD⊥平面BCD,则下列结论中不正确的是( )A.AB∥平面DEFB.CD⊥平面ABDC.EF⊥平面ACDD.答案:C试题难度:三颗星知识点:平面与平面垂直的性质8.如图,在三棱锥S-ABC中,△ABC是边长为6的正三角形,且SA=SB=SC=15,若D,E,F,H分别是AB,BC,SC,SA的中点,则四边形DEFH的面积为( )A. B.C.45D.答案:A解题思路:试题难度:三颗星知识点:直线与平面垂直的性质9.如图,E,F分别是正方体的棱AB,的中点,若M,N分别是线段上的点,则与平面ABCD垂直的直线MN有( )A.0条B.1条C.2条D.无数条答案:B解题思路:试题难度:三颗星知识点:直线与平面垂直的判定10.如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上一点,AE⊥PB于点E,AF⊥PC 于点F,给出下列结论:①BC⊥平面PAC;②AF⊥平面PCB;③EF⊥PB;④AE⊥平面PBC.其中正确的有( )A.1个B.2个C.3个D.4个答案:C解题思路:试题难度:三颗星知识点:直线与平面垂直的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线面垂直判定
1、已知:如图,PA⊥AB,PA⊥AC。

求证:PA⊥平面ABC。

2、已知:如图,PA⊥AB,BC⊥平面PAC。

求证:PA⊥BC。

3、如图,在三棱锥V-ABC中,VA=VC,AB=BC。

求证:VB⊥AC
4、在正方体ABCD-EFGH中,O为底面ABCD中心。

求证:BD⊥平面AEGC
5、如图,AB是圆O的直径,PA⊥AC, PA⊥AB,
求证:BC⊥平面PAC
6、如图,AD ⊥BD, AD ⊥DC,AD=BD=CD,∠BAC=60°
求证: BD ⊥平面ADC
7、.如图所示,P A ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点.
(1)求证:MN ∥平面P AD . (2)求证:MN ⊥CD . (3)若∠PDA =45°,求证:MN ⊥平面PCD .
8、已知:如图,P 是棱形ABCD 所在平面外一点,且PA=PC 求证:AC PBD ⊥平面
9、已知四面体ABCD 中,CD BD AC AB ==,,平面⊥ABC 平面BCD ,E 为棱BC 的中点。

(1)求证:⊥AE 平面BCD ; (2)求证:BC AD ⊥;
_
A
_
D
_
C
_
B
P
C
B
A
E
D
10、三棱锥A-BCD中,AB=1,BC=2,BD=AC=3
AD=2,求证:AB⊥平面BCD
11、在四棱锥S-ABCD中,SD⊥平面ABCD,底面ABCD是正方形
求证:AC⊥平面SBD
12、如图,正方形ABCD所在平面与三角形CDE所在平面相交于CD,AE⊥平面CDE,求证:AB⊥
平面ADE;
13、三棱锥P-ABC中,三条侧棱PA,PB,PC两两垂直,H是△ABC的垂心
求证:PH⊥底面ABC
A B
C
D
E
_A _P
_C
_E
_H
_B
14、正方体ABCD-A1B1C1D1中,
求证:A1C⊥平面BC1D.
15、S是△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC,
求证AB⊥BC
S
A
B
C
16、如图,直三棱柱ABC—A1B1C1中,AC=BC=1,
∠ACB=90°,AA1=2,D是A1B1中点.
求证C1D⊥平面A1B;
_C
_1
_B
_1
_D
_1
_D
_A_B _C
_A
_1。

相关文档
最新文档