立体几何复习空间角的求法 PPT
高中数学精品课件:空间角

图7-46-8
与平面ABCD所成的角,由已知得∠MBA=45°,则MA=MB,此时O为AB的中点.
连接OC,由∠BAD=∠ADC=90°,AB=AD=2DC,得四边形AOCD为矩形,所以
OC⊥AB,所以CO⊥平面MAB,又MA⊂平面MAB,所以OC⊥MA.
图7-46-8
[总结反思] (1)求解二面角的大小问题,关键是要合理作出它的平面角,当找到 二面角棱的一个垂面时,即可确定平面角,作二面角的平面角最常用的方法是 利用三垂线定理(或三垂线定理的逆定理). (2)对于建立空间直角坐标系比较简便的几何体,我们可以直接利用向量求出 两个平面的法向量,并转化为求两个法向量的夹角来完成.
.
题组二 常错题 ◆索引:二面角取值范围出错;线面角范围出错;不能正确构建线面垂直及斜线 段在底面上的射影.
6.在一个二面角的两个半平面内都和二面角的棱垂直的两个向量分别为
(0,-1,3),(2,2,4),则这个二面角的余弦值为
.
7.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为 45° .
图7-46-8
图7-46-8
方法二:二面角D-MA-C的大小即为二面角B-MA-D的大小与二面角B-MA-C大
小的差,由(1)可知二面角B-MA-D的大小为90°,
所以二面角D-MA-C的正弦值即为二面角B-MA-C的余弦值.
过M作MO⊥AB于O(图略),因为平面MAB⊥平面ABCD,平面 MAB∩平面ABCD=AB,所以MO⊥平面ABCD,∠MBO即为MB
A
证明:连接AC(图略),由题知△ACD为等边三角形,因为M为AD的中点,所以 CM⊥AD,又AD∥BC,所以CM⊥BC,因为平面ABCD⊥平面PBC,且平面 ABCD∩平面PBC=BC,CM⊂平面ABCD,所以CM⊥平面PBC,故CM⊥PB.
高考数学复习第十二讲立体几何之空间角

第十二讲立体几何之空间角一、基本知识回顾空间的角主要包括两条异面直线所成的角、直线与平面所成的角以及二面角。
1.范围:0,1)异面直线所成角2)直线与平面所成角20,2.求法:平移相交(找平行线替换)2向量法1.范围0 ,20,定义22.求法向量法m narcsin若 m n 则 a //或a若m // n则a m n1.范围:0.定义法(即垂面法)3)二面角 2.作二面角平面角的方法:三垂线定理及逆定理垂线法直接法3. 求二面角大小的方法射影面积法向量法S S cos( S为原斜面面积, S为射影面积 ,为斜面与射影所成锐二面角的平面角)m n当为锐角时,arccosm nm n当为锐角时,arccosm n二、例题讲解1.在正三棱柱 ABC A 1 B 1C 1 中,若 AB 2 BB 1 , 求 AB 1 与 C 1 B 所成的角的大小。
解:法一:如图一所示,设 O 为 B 1 C 、 C 1 B 的交点, D 为 AC 的中点,则所求角是 DOB 。
设 BB 1a , 则 AB 2 a ,于是在DOB 中,O B1 3a , BD 3 2 a6BC 12a,2 22O D1 3 2222AB 1 a , BD OBOD,2即DOB90 ,DOB90法二: 取 A 1 B 1 的中点 O 为坐标原点, 如图建立空间直角坐标系1O xyz , AB 的长度单位,2则由AB2BB1有A 0,1,2,B0,1, 2 , B10,1, 0, C 13,0,0AB 10, 2, 2 ,C1B 3 ,1, 2 ,AB1 C1B 2 2 0, AB1 C 1 B2.如图二所示,在四棱锥P ABCD 中,底面 ABCD 是一直角梯形,BAD90 ,AD // BC,AB BC a , AD 2 a , 且 PA底面 ABCD ,P D 与底面成 30角。
⑴若 AE PD , E 为垂足,求证:BE PD ;⑵求异面直线AE , CD 所成角的大小。
空间角的计算课件

H A E1B 1 7
E1
B1
.G
A
B
1 5
可得直线AH与BE1所成角的余弦值
1 7
1
2
3
5
例1:在正方体ABCD-A1B1C1D1中,
1
4
D1F1= D1C 1,
角的余弦值。
1
B1E1= 4
A1B1,求直线DF1与BE1所成
D1 F1
A1
H
C1
E1 B1
D
A
C
B
例1:在正方体ABCD-A1B1C1D1中,
综合法:作——证——求。
G
解析:延长AH,BE1 交于点G, 所以∠AGGH= 1 7
在三角形HE1G中,由余弦定理得
A1
H
E1
B1
GE12 GH 2 HE12
cos =
2GE1 • GH
17 17 4 15
2 17 17 17
1
点, 且D1E1= 4 D1C1求直线E1F与平面D1AC所成角的正弦值.
D1(0,0,4)
(0,4,4) C1
E1
(4,2,4) B1 (4,4,4)
(4,0,4)
A1
(0,4,0)
C
D
(4,0,0)
A
B
F
(4,4,0)
解:以
{DA,DC,DD}
正交基底,建立如图所示的
1 为
空间直角坐标系D-xyz,则各点的坐标为
D1 A 2, CE 1 (t 2)2 t 2 4t 5
D1 A • CE=1
D1 A • CE
1
所以cos60 =
立体几何中的向量方法空间角ppt

,1)
A
By
cos AF1, BD1
AF1 BD1
x
1 1 4
30
| AF1 || BD1 |
5 3 10
所以 BD与1 A所F1成角得余弦值为
42 30
10
2、直线与平面得夹角:
设直线 l 的方向向量分别为 a ,平面 的 法向量分别为 u ,
直线 l 与平面 所成的角为 ( 0 ≤ ≤ ),sin a u ;
立体几何中的向量方法空间角
1、两条直线得夹角:
设直线 l, m 的方向向量分别为 a, b ,
两直线 l , m 所成的角为 ( 0 ≤ ≤ ),cos a b ;
2
ab
l
a
m
l
a
b m
例: 在直三棱柱ABC A1B1C1中,BC AC,
BC CA CC1, 取A1B1、A1C1的中点D1、F1,
CD为a,b得公垂线,
n是直线CD的方向向量,
A,B分别在直线a,b上
b
n
C A
DB a
n AB d CD
n
例.已知:直三棱柱ABC A1B1C1的侧棱AA1 4, 底面ABC中, AC BC 2, BCA 900, E为AB的中点。求CE与AB1的距离。
解:如图建立坐标系C xyz,则C(0,0,0), E(1,1,0), A(2,0,0), B1(0,2,4).
E C
y B
x
G
D
A
(1)证明:设正方形边长为1,则PD=DC=DAz=1、连AC、BD交于G点
以DA,DC,DP为正交基底建立空间 P
直角坐标系。如图所示。则
E
y
《空间角的复习》课件

几何图形的度量
空间角是度量几何图形的重要工具,如平面角、二面角、线 面角等,通过空间角的度量可以确定图形的形状、大小和位 置关系。
在解决实际问题中的应用
建筑结构分析
在建筑领域中,空间角的应用十分广 泛,如梁、柱、墙等结构的空间角度 分析,有助于确保建筑结构的稳定性 和安全性。
注意事项
在计算过程中,需要注意向量 的方向和夹角的范围,以避免
出现错误的结果。
利用几何意义计算空间角
总结词
详细描述
几何法是通过空间几何图形的性质和定理 来计算空间角的方法,适用于解决与几何 图形相关的问题。
利用空间几何图形的性质和定理,如平行 线性质、等腰三角形性质等,可以计算出 空间中的线线角、线面角和二面角。
《空间角的复习》ppt 课件
目录
• 空间角的基本概念 • 空间角的计算方法 • 空间角的应用 • 空间角的综合题解析 • 空间角的易错点解析
CHAPTER 01
空间角的基本概念
定义与分类
总结词
详细描述空间角的定义,以及按照不 同标准分类的种类。
详细描述
空间角是指两个非平行直线或平面在 三维空间中形成的角。根据不同的分 类标准,空间角可以分为不同的类型 ,如平面角和立体角等。
CHAPTER 04
空间角的综合题解析
综合题一:求异面直线所成的角
总结词
掌握异面直线所成角的定义和性质,利用平移法或向量法求解。
详细描述
异面直线所成的角是指两条异面直线所夹的锐角或直角,其取值范围为$0^{circ}$到$90^{circ}$。求解时,可以 通过平移将两条异面直线变为相交直线,再利用平面几何知识求解;或者利用向量法,通过向量的夹角来求解。
空间角及其计算ppt课件

二面角的平面角:在二面角的棱 AB 上任取一点 O,过 O
分别在二面角的两个面α,β 内作与棱垂直 的射线 OA,OB,我们把 ∠AOB 叫作
二面角 α-l-β 的平面角,用它来度量二面角
的大小.
二面角 θ 的取值范围为 θ∈ [0°,180°] .
平面角是直角的二面角叫作 直二面角
2×2×1×cos 60°=3,所以 BD= 3,所以 B1D1= 3.
又 AB1 与 AD1 所成的角即为 AB1 与 BC1 所成的角 θ ,
所以
cos
θ=AB221×+AABD1×12-ABD11D21=2×5+25-×3
= 2
10 5.
答案:C
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
因此,BC⊥PC,
在 Rt△PCB 中,PB= PC2+BC2= 13,
在
Rt△PEB
中,sin∠PBE=PPEB=
39 13 .
所以直线
PB
与平面
ABCD
所成的角的正弦值为
39 13 .
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
【变式探究】
1.(2017·新课标卷Ⅱ)已知直三棱柱 ABC-A1B1C1 中, ∠ABC=120°,AB=2,BC=CC1=1,则异面直线 AB1 与 BC1 所成角的余弦值为( )
C.120°
D.60°或 120°
解:∠FEG 为两异面直线 AD 与 BC 所成的角或其补角.
7.6.1向量法求空间角课件高三数学一轮复习

考点二 直线与平面所成的角 【例 2】 如图,在四棱锥 P-ABCD 中,底面 ABCD 是平行四边形,∠ABC=120°, AB=1,BC=4,PA= 15,M,N 分别为 BC,PC 的中点,PD⊥DC,PM⊥MD.
(1)证明:AB⊥PM; (2)求直线 AN 与平面 PDM 所成角的正弦值.
【解】 (1)证明:因为 AB=AD,O 为 BD 的中点,所以 OA⊥BD. 因为平面 ABD⊥平面 BCD,平面 ABD∩平面 BCD=BD,OA⊂平面 ABD,所以 OA ⊥平面 BCD. 因为 CD⊂平面 BCD,所以 OA⊥CD. (2)以 O 为坐标原点,OD,OA 所在的直线分别为 y 轴,z 轴,过点 O 且垂直于 BD 的 直线为 x 轴,建立如图所示空间直角坐标系.
(2)由(1)知,A( 2,0,0),B( 2,1,0),C(0,1,0),P(0,0,1),M 22,1,0, 则A→M=- 22,1,0,P→M= 22,1,-1, B→C=(- 2,0,0),P→B=( 2,1,-1). 设 n1=(x1,y1,z1)为平面 PAM 的法向量,
则nn11··PA→ →MM= =00, ,
以 D 为坐标原点,DA,DC,DP 所在直线分别为 x 轴、y 轴、z 轴建立空间直角坐标 系.
设 BC=2x,则 D(0,0,0),A(2x,0,0),P(0,0,1),B(2x,1,0),M(x,1,0).所以A→M=(-x,1,0), P→B=(2x,1,-1),
所以(-x,1,0)·(2x,1,-1)=0,解得 x= 22(负值舍去).所以 BC= 2.
(2)以 A 为原点,AD 所在直线为 x 轴,AB 所在直线为 y 轴,AA1 所在直线为 z 轴建立 空间直角坐标系.设正方体 ABCD-A1B1C1D1 的棱长为 2,则 A(0,0,0),A1(0,0,2),D1(2,0,2), E(0,2,1),∴A→A1=(0,0,2),A→D1=(2,0,2),A→E=(0,2,1).
高考数学一轮复习第八章立体几何利用空间向量求空间角与距离课件

7 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
1.思维辨析 (1)两直线的方向向量所成的角就是两条直线所成的角.( × ) (2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × ) (3)两个平面的法向量所成的角是这两个平面所成的角.( × ) (4)两异面直线夹角的范围是0,π2,直线与平面所成角的范围是0,π2,二面角的范围是[0,π].( √ )
5 .
14 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
(2)由(1)可得 E(0,2,1),易知平面 ADE 的一个法向量为 n1=(1,0,0).
设平面 ACE 的一个法向量为 n2=(x′,y′,1),又A→E=(0,2,1),A→C=(2,4,0),则nn22··AA→→EC==00,,
=||aa|·|nn||.
5 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
3 二面角的平面角的求法 设 n1,n2 分别是二面角 α-l-β 的两个面 α,β 的法向量,则向量 n1 与 n2 的夹角(或其补角)的大小就 是二面角的平面角的大小(如图①②).
6 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
4 点到平面的距离的向量求法 →
如图,设 AB 为平面 α 的一条斜线段,n 为平面 α 的法向量,则点 B 到平面 α 的距离 d=|A|Bn·|n|.
注意点 二面角的大小与两法向量夹角的关系 求出两平面法向量的夹角后,一定要根据图形来判断二面角的大小与两法向量夹角的关系是相等还是 互补.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求证:平面 AEC⊥平面 PDB; (2)当 PD= 2AB,且 E 为 PB 中点时, 求 AE 与平面 PDB 所成角的大小.
作(找)---证---指出---算---结论
关键
在三角形中计算
(三)二面角:范围是[0,π].
①棱上一点定义法:常取等腰三角形底边(棱)中点.
②面上一点垂线法:自二面角的一个面上一点向另一 面引垂线,再由垂足向棱作垂线
高考大题冲关(四)
• [例1] (2013年高考新课标全国卷Ⅱ)如图
所示,直三棱柱ABC-A1B1C1中,D,E分别是 AB,BB1的中点.
(1)证明:BC1∥平面 A1CD; (2)设 AA1=AC=CB=2,AB=2 2,求三棱锥 C-A1DE 的体积.
题型二 立体几何中的折叠问题
[例 3] (2013 年高考广东卷)如图(1),在边长为 1 的等边三角形 ABC 中,D,E 分别是 AB,AC 边上的 点,AD=AE,F 是 BC 的中点,AF 与 DE 交于点 G, 将△ABF 沿 AF 折起,得到如图(2)所示的三棱锥 A- BCF,其中 BC= 2.
在正方体AC1中,求(1)直线A1B和B1C所成的角;
(2)直线D1B和B1C所成的角 D1
C1
A1
E
B1
D
C
A
B
作(找)---证---指出---算---结论
关键
在三角形中计算
(二)直线与平面所成的角:范围是[0,π/2].
确定射影的方法(找斜足和垂足):
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
正三A 棱 B柱 C A1B1C1,的底面a,边 侧长 棱 长为 2a,求直 A1 线 C 与平 A1面 A B1B所成.的
C1
A1
D
B1
C
A
B
(2014 江苏无锡市模拟)如图所示,四棱锥 P-ABCD 的 底面是正方形,PD⊥底面 ABCD,AC 与 BD 交于 O,点 E 在 PB 上,连接 OE.
A
B
O
D
α
C
例1.如图,四面体ABCD的棱BD长为2,其余
各棱的长均是 2 , 求二面角A-BD-C的大小。
解 :取 B的 D 中 O ,连 点 A结 ,B O.(O 作) A A A O O B A 是 B,C ,B D C D 二 O A C B 面 B D D D 角 C 的 (平 证().指面 出)角
在 AO 中 ,C O AO C1,AC 2
AO9 C0 0
(
算
)
A
二面 A角 BD C的大9小 0 0. 为
(结论)B
O
D
作(找)---证(指出)---算---结论
C
练:正方体ABCD—A1B1C1D1中,
D1
求:
A1
(1) 二面角A-BD-A1的正切值;
(2) 二面角A1-AD-B的大小.
(2)直线D1B和B1C所成的角 D1
C1
A1
B1
D
C
A
B
空间角(线线角,线面角,二面角)
作(找)---证(指出)---算---结论
在正方体AC1中,求(1)直线A1B和B1C所成的角;
(2)直线D1B和B1C所成的角 D1
C1
A1
B1
O
E
D
C
F
A
B
空间角(线线角,线面角,二面角)
作(找)---证(指出)---算---结论
D
解由:正连方结体A的C,性交质BD可于知O,,连BD结⊥OOAA1 ,BD⊥AAA1
O
C1 B1
C B
OA和AA1是平面AOA1内两条相交直线 ∴BD⊥平面AOA1 ∴BD⊥OA1 ∴∠AOA1是二面角A-BD-A1的平面角.
设正方1 ,体 作(找的 )---证棱 (指出长 )---算-为 --结论
在 R A t1A中 O ,A1 A 1 ,A O 2 2,ta A n 1 O A A A 1 A O2
[典题](2013年高考天津卷)如图,三棱柱ABC- A等1B,1CD1,中E,,侧F棱分A别1A为⊥棱底A面B,ABBCC,,且A1各C1棱的长中均点相.
(1)证明:EF∥平面A1CD; (2)证明:平面A1CD⊥平面A1ABB1; (3)求直线BC与平面A1CD所成角的正弦值.
③空间一点垂面法:自空间一点作与棱垂直的平面, 截二面角得两条射线,这两条射线所成的角.
▲当二面角的平面角不易作出时,可用面积法 直接求平面角的余弦值.
斜面面积和射影面积的关系公式: SSc os
( S为原斜面面积,S 为射影面积, 为斜面与射影所
成二面角的平面角)这个公式对于斜面为三角形,任意多 边形都成立.
立体几何复习空间角的求法
作(找)---证---指出---算---结论
关键
在三角形中计算
例1.正四面体S-ABC中,如
s
果E、F分别是SC、AB的
ቤተ መጻሕፍቲ ባይዱ
中点,那么异面直线EF和 E
SA所成的角=_______.
C
B
G
F
A
空间角(线线角,线面角,二面角)
作(找)---证(指出)---算---结论
在正方体AC1中,求(1)直线A1B和B1C所成的角;