七年级数学多边形
七年级数学下册 第9章 多边形 9.2 多边形的内角和与外角和 多边形的内角和课件(新版)华东师大版

合作探究
四边形的内角和
。 360
D
A
2 4
B
C
即∠A+∠B+∠C+∠D=360o
合作探究
五边形的内角和
。 540
B C
A D
E
合作探究
3180 4180 5180
三角形 四边形 五边形
六边形
七边形
请你认真地想一想,你能通过怎样的方法把多边形转化为三角形?
345 540 °720 °900 °
n-2
例3 已知多边形的每一内角为150°,
求这个多边形的边数.
解:设这个多边形的边数为n, 根据题意,得
(n-2)×180°=150 °n 解得n= 12
答:这个多边形的边数为12.
练习运用
1.如果一个多边形的内角和等于900°, 那么这个多边形是 七 边形.
2.十边形的内角和等于1440°度.
3.正十五边形的每一个内角等于 156°度.
拓展提高
B C
B C
A
A
D
D
E
E
拓展提高
B
.
A
p
E
C
A D
B C
.D
p
E
拓展提高
B
.
A
p
E
C
A D
B C
.D
p
E
小小结结
本节课我们通过把多边形划分成
若干个三角形,用三角形内角和去 求多边形的内角和,从而得到多边 形的内角和公式为(n-2)·180°.这种 化未知为已知的转化方法,必须在 学习中逐步掌握.
例1
求八边形的内角和。
解:八边形的内角和为 (n-2)×180°=(8-2)×180°=10 80°
数学初一多边形知识点总结

数学初一多边形知识点总结一、多边形的定义和特性1.1 多边形的定义多边形是由若干条线段组成的闭合图形,是由两个或两个以上的边组成的。
1.2 多边形的特性多边形的特性包括:(1)临角和:每个顶点连接的两个边叫做该顶点的临角边,如图1。
(2)外角和:多边形的外角和等于360°。
(3)内角和:多边形的内角和等于180°乘以多边形的边数减2(4)对角线:多边形中从一个顶点到非相邻顶点的线段叫做对角线。
多边形的对角线的个数为顶点数减3。
(5)对角线交点:多边形对角线的交点数等于多边形的顶点数减4,交点数记为In。
1.3 多边形的性质多边形的性质包括:(1)对角线的性质:多边形的对角线有以下性质:a.多边形内的不同对角线之间没有交点。
b.一条对角线分两个不相邻顶点分成的两个三角形的面积之和等于多边形的面积。
c.多边形的对角线数等于面对角数(2)对角线的个数和对角线交点数的关系:多边形的对角线的个数等于多边形的顶点数减3,对角线交点数等于多边形的顶点数减4(3)多边形的对称性:多边形具有中心对称和旋转对称性。
二、多边形的分类按多边形的边数和角的大小,可以将多边形分为以下几类:2.1 三角形三角形是最简单的多边形,由三条边和三个内角组成。
三角形又可以分为等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形等。
2.2 四边形四边形是由四条边和四个内角组成的多边形,可分为平行四边形、菱形、长方形、正方形等。
2.3 五边形五边形是由五条边和五个内角组成的多边形,特殊的五边形是正五边形。
2.4 六边形六边形是由六条边和六个内角组成的多边形,特殊的六边形是正六边形。
2.5 多边形多边形是由七条边及以上的边和七个内角及以上的内角组成的多边形,包括七边形、八边形、九边形等。
其中特殊的是正多边形。
三、多边形的计算3.1 多边形的周长多边形的周长是多边形内所有边的长度之和。
3.2 多边形的面积多边形的面积是多边形内部的区域,可以通过将多边形分割成若干个简单图形计算得到。
七年级数学《多边形的内角和》一等奖说课稿

七年级数学《多边形的内角和》一等奖说课稿1、七年级数学《多边形的内角和》一等奖说课稿各位评委、老师:早上好,我今天说课的题目是:华东师大版七年级数学第八章《多边形》的第三节“多边形的内角和”。
说课内容包括教材分析、教学目标、教法分析、过程设计和评价分析五个部分。
一、教材分析1、教学内容“多边形的内角和”一节包括的内容主要有多边形的有关概念以及多边形内角和公式的推导和运用。
2、本章及本节的地位与作用本章《多边形》,探索的是三角形和多边形的有关概念和性质,是学生在上学期初步认识和感受空间图形之后的延伸,也为今后进一步学习各种多边形打好基础。
本节课“多边形的内角和”作为本章的一个重点,是三角形有关知识的拓展,学习四边形的基础、公式的运用还充分地体现了图形与客观世界的密切联系。
3、重点与难点多边形内角和的公式及公式的推导和运用是本节课的重点;因为公式的得出可以用多种不同的方法推导、所以我确定本节课的难点是如何引导学生通过自主学习、探索多边形内角和的公式。
二、教学目标根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。
因此,我把本节课的教学目标确定为以下三个方面:知识目标:①识别多边形的顶点、边、内角及对角线;②理解多边形内角和公式的推导过程;③掌握多边形内角和公式的内涵及其运用。
能力目标:①培养学生类比归纳、转化的能力;②培养学生观察分析、猜想和概括的能力。
思想情感目标:通过体会数学图形的美感,提高审美能力、树立认识数学来源于生活,又服务于实践的观点。
三、教法分析在教法上树立以学生为本的思想,通过创设问题情境,启发引导学生观察————分析————猜想————概括,培养学生积极思考,勇于探索的精神,充分发挥其自主能动性。
学法指导是培养学生学习能力的关键,本节课针对学生的认知规律,指导他们动手操作、交流合作,体验发现问题、探索问题和解决问题的学习过程。
教学手段上采用多媒体辅助教学,通过直观演示,更好地实现了“数形结合”的教学,切实有效地提高了课堂教学的效果。
2024年北师大七年级数学上册 4.3 多边形和圆的初步认识(课件)

点 A, B, C, D, E
内角
多边形相邻两条边 组成的角
∠ EAB, ∠ ABC, ∠ BCD, ∠ CDE, ∠ DEA
对角线
连接多边形不相邻 两个顶点的线段
线段 AC,AD,BE , BD, CE
知1-讲
图示
感悟新知
知1-讲
4. 正多边形:各边相等、各角也相等的多边形叫作正多边形 .
示 例
顶点在圆心的角叫作圆心角
如∠ AOB
知2-讲
感悟新知
知2-讲
1. 圆心角的度数: 因为一个周角为 360° ,所以将一个圆分 成的几个扇形的圆心角的度数之和等于 360° ,一个扇形 圆心角的度数 =360°× 这个扇形圆心角占周角的百分比 .
2. 扇形的面积: 半径为 R 的圆,其面积 S=π R2,将圆等分为 360 个小扇形,则每个圆心角为 1° 的小扇形的面积是
段组成,那么这个多边形叫作 n 边形 . 如三角形、四边形、
五边形……三角形是最简单的多边形 .
注意: 如无特别说明,本书所说的多边形都是指凸多边形,
即多边形总在其任意一条边所在直线的同一侧 .
感悟新知
知1-讲
2. 多边形的表示方法: 先写出多边形的名称,然后写出表示 它的各个顶点的大写字母,可以按顶点顺时针的顺序书写, 也可以按顶点逆时针的顺序书写 .
答案:C
感悟新知
知1-练
1-1.如图所示的图形中,属于多边形的有( A ) A.3 个 B.4 个 C.5 个 D.6 个
感悟新知
1-2.下列图形中一定是正多边形的是( B ) A. 三角形 B. 正方形 C. 长方形 D. 八边形
知1-练
感悟新知
知识点 2 圆和扇形及其相关概念
初中数学——(47)多边形的有关概念

初中数学——(47)多边形的有关概念一、多边形(一)定义:在平面内,由一些线段首尾顺次相接组成的图形(二)内角:多边形相邻两边组成的角叫做它的内角(三)外角:多边形的边与邻边的延长线组成的角叫多边形的外角(四)对角线:连接多边形不相邻的两个顶点的线段二、多边形的性质(一)多边形的内角和:n 边形的内角和等于(n-2)×180°(二)多边形的外角和:任意多边形的外角和等于360°(三)多边形对角线的条数:1、从n边形的一个顶点出发可以引(n-3)条对角线2、从n边形的一个顶点出发可以把多边形分(n-2)个三角形2、n边形共有23)-n(n条对角线三、镶嵌(一)同一种正三边形、正方形、正六边形可以进行平面镶嵌(二)正三角形与正四边形、正三角形与正六边形、正四边形与正八边形、正三角形与正十二边形可以进行平面镶嵌(三)同一种任意三角形、任意四边形可以进行镶嵌四、练习题(一)正方形每个内角都是_____,每个外角都是 ____(二)多边形的每一个内角都等于150°,则从此多边形一个顶点出发引出的对角线有条(三)将一个三角形截去一个角后,所形成的一个新的多边形的内角和(四)若一个多边形的内角和与外角和相等,则这个多边形是()A、三角形B、六边形B、五边形 D、四边形(五)一个多边形内角和是1080°,则这个多边形的边数为()A、 6B、 7C、 8D、 9(六)若一个多边形的内角和与外角和相加是1800°,则此多边形是( )A、八边形B、十边形C、十二边形D、十四边形(七)下列正多边中,能铺满地面的是()A、正方形B、正五边形C、等边三角形D、正六边形(八)下列正多边形的组合中,不能够铺满地面的是( )A、正六边形和正三角形B、正三角形和正方形C、正八边形和正方形D、正五边形和正八边形。
初一上期末数学复习整理(四边形-多边形的概念和性质 )

初中数学第六章四边形多边形的概念及性质1、多边形定义:平面内,由不在一条直线上的一些线段首尾顺次连结而形成的封闭图形。
分类:1)按凹凸分:凹多边形,凸多边形;2)按边数分:三边形,四边形,五边形;3)一类特殊多边形:正多边形,各边相等,各角相等。
2、内角和N边形的内角和等于(n-2)X 180°,三角形的内角和等于180°。
四边形的内角和等于360°,任意一个四边形都可以通过连结对角线分割成两个三角形。
3、外角和N边形的外角和等于360°。
四边形的外角和也等于360°4、镶嵌定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖。
特征:1)拼接在同一个点的各个角的和恰好等于360°,2)相邻的多边形有公共点。
1、多边形的密铺问题正方形、矩形、正三角形、正六边形等都能将地板铺满。
2、多边形问题转化为三角形或四边形问题连结对角线,将多边形分成若干个三角形,运用三角形性质转化多边形中的角,补全图形转化为四边形的问题3、多边形的内角和从一个顶点出发,连对角线,将四边形问题转化成三角形问题,每个三角形的内角和都等于180°,四边形的内角和等于360°,多边形的内角和等于(n-2)X 180°4、N边形的对角线1)N边形共有n(n-3)/2 条对角线。
2)N边形的一个顶点可引(n-3)条对角线,这些对角线将多边形分成(n-2)个三角形。
5、四边形的外角和(多边形的外角和等于360°)推导:1)每一个内角与相邻的一个外角组成一个平角。
2)四个内角与相邻的四个外角组成四个平角。
3)外角和等于四个平角的和减去内角和,等于360°。
1、学习误区不是在理解的基础上运用多边形的内角和公式已知一个多边形的内角和与外角和的关系,求边数的问题。
(却不知道多边形的外角和为多少)2、知能提升1)多边形的外角和为360°;2)多边形的密铺问题;3)多边形的内角和公式(n-2)X 180°;(知道一个条件可以求另一个条件:边和度数)4)熟记n边形的对角线公式:n(n-3)/2。
七年级数学多边形内角和与外角和练习

多边形内角和与外角和知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次联接结所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形.2.相关概念:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。
外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形。
如图:要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)过n边形的一个顶点可以引(n-3)条对角线,n边形对角线的条数为(3)2n n-;(3)过n边形的一个顶点的对角线可以把n边形分成(n-2)个三角形.知识点二、多边形内角和定理n边形的内角和为(n-2)·180°(n≥3).要点诠释:(1)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于(2)180nn-°;知识点三、多边形的外角和多边形的外角和为360°.要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n边形的外角和恒等于360°,它与边数的多少无关;(2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于360n°;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.【典型例题】类型一、多边形的概念1.如图,正四边形有2条对角线,正五边形有5条对角线,正六边形有9条对角线,则正十边形有()条对角线.A.27 B.35C.40D.44【变式1】如图,四边形ABCD中,∠B=40°,沿直线MN剪去∠B,则所得五边形AEFCD中,∠1+∠2=。
初中数学 如何计算多边形的边长

初中数学如何计算多边形的边长
计算多边形的边长需要了解多边形的性质和相应的数学原理。
首先,我们需要了解多边形的定义。
多边形是由一系列直线段连接而成的封闭图形。
边长是指连接多边形两个相邻顶点的线段的长度。
对于一个简单的多边形,我们可以使用以下方法计算边长:
1. 已知顶点坐标:如果我们已知多边形的顶点坐标,可以使用坐标几何的方法计算边长。
假设我们有一个n边形,其中的顶点坐标依次为(x₁, y₁), (x₂, y₂), ..., (xₙ, yₙ)。
我们可以使用两点间距离公式来计算每条边的长度,然后将所有边长相加得到多边形的边长。
2. 已知边长和角度:如果我们已知多边形的边长和内角度数,可以使用三角函数来计算边长。
假设我们有一个n边形,其中每条边的长度都相等,且每个内角都相等。
首先,我们可以通过内角和公式计算出每个内角的度数。
然后,我们可以使用三角函数中的正弦函数来计算每条边的长度,最后将所有边长相加得到多边形的边长。
3. 已知边长和面积:如果我们已知多边形的边长和面积,可以使用面积公式来计算边长。
假设我们有一个n边形,其中每条边的长度都相等,且多边形的面积已知。
我们可以使用面积公式计算出每条边的长度,最后将所有边长相加得到多边形的边长。
以上是计算多边形边长的一些常见方法。
在实际问题中,我们可能需要结合不同的已知条件和数学原理来进行计算。
希望这些方法能帮助你更好地理解和计算多边形的边长!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。