递推数列常用十种方法

合集下载

数列递推求通项常用方法

数列递推求通项常用方法

数列递推求通项常用方法:(1)累加法:形如)(1n f a a n n +=+,转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解.(2)迭乘法:形如n n a n f a )(1=+,转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解. (3)递推公式为:()n n S f a =或)(n g S n =,利用⎩⎨⎧≥-==-)2()1(11n S S n S a n nn . )()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n ;或)(1--=n n n S S f S )2(≥n 消去n a 进行求解.(4)构造法:一. 累加法与迭乘法1.设数列中,,则 .2.已知}{n a 中,n n a n n a 21+=+,且21=a ,则n a = . 二. 递推法 ()n n S f a =或)(n g S n =3.已知下列各数列}{n a 的前n 项和n S 的公式为)(232*∈-N n n n S n =,求}{n a 的通项公式.4.已知n S 是}{n a 的前n 项和,且有12-=n n a S ,求}{n a 的通项公式.{}n a 112,1n n a a a n +==++n a =5.设数列的前项和为,且,求数列的通项公式.6.设S n 为数列{a n }的前n 项和,已知S 1 =1,且(1)求证是等差数列; (2)求数列{a n }的通项公式.三. 构造法7.在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a = .8.已知数列{}n a 中,11=a ,1124+++=n n n a a ,求n a . 9.数列中,,求数列的通项公式. 10.数列}{n a 中,若2,821==a a ,且满足03412=+-++n n n a a a ,求n a .四. 其他递推类型11.数列{}n a 中,11a =,当2n ≥时,n a a a a n 3212=恒成立,则数列的通项n a = . 12.设数列{}n a 满足21*123333,3N n n n a a a a n -+++⋯+=∈,求数列的通项=n a .巩固练习1.在数列{}n a 中,12a =, 11ln(1)n n a a n +=++,则n a =【 】A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++2.(2011杭州二中)已知数列中,,则通项公式为【 】A .B .C .D .3.已知数列{}n a 中,131+=+n n n a a a ,11=a ,则2009a = . 4.已知数列{}n a 中n n n a a a ⋅==+3,311,则该数列的通项n a = .5.已知数列的首项为,前n 项和为,且.证明数列是等比数列.}{n a n n S 31=a 321+=+n n S a }{n a ),2(1222≥-=n S S a n n n }1{n S {}n a )(42,211++∈+==N n a a a a nn n {}n a {}n a 111,34(*2)n n a a a n N n -==+∈≥且n a 13n -138n +-32n -3n6.已知数列{a n }满足a n +1=1122+++⋅n n nn a a ,a 1=2,求数列{a n }的通项公式.7.已知数列{}n a 中,,求数列{}n a 的通项公式.8.设数列的前项和为(1)求数列的通项公式(2)是否存在正整数使得 ?若存在,求出值;若不存在,说明理由. n n n a a a 32,111+==+{}n a n ,n S *11,2(1),().n n S a a n n N n ==+-∈{}n a ;n a n 1212s s ++....+()212011n s n n --=n。

数列-递推公式求通项的十大模型

数列-递推公式求通项的十大模型

递推公式求通项的十种类型类型1.等差数列:相邻两项递推形式:d d a a n n ,(=--1为常数,+∈≥N n n 且2)或者相邻三项递推形式:)2(211++-∈≥=+N n n a a a n n n 且.这种递推形式下,直接用等差数列的通项公式:即可解决!例1.已知数列{}n a 的前n 项和为n S ,满足11a =1=,则n a =()A.21n -B.nC.21n +D.12n -解析:∵11a ==1,∴是以1为首项,以1为公差的等差数列,(1)11(1)1n n n =-⨯=+-⨯=,即2n S n =,∴()221121n n n a S S n n n -=-=--=-(2n ≥).当1n =时,11a =也适合上式,∴21n a n =-.故选:A.注1:在等差数列中,有一类比较特殊的递推类型,即b kn a a n n +=++1,它可以得到两个子数列分别是公差为k 的等差数列.例2.已知数列{}n a 的前n 项和为n S ,且12a =,()142n n a a n n +++=+∈N ,则数列1n S ⎧⎫⎨⎬⎩⎭的前2021项的和为()A.20212022B.20202021C.20192020D.10101011解析:∵12a =,()142n n a a n n +++=+∈N ,∴216a a +=,解得24a =.142n n a a n ++=+ ,∴2146n n a a n +++=+,两式相减,得24n na a +-=,∴数列{}n a 的奇数项与偶数项均为公差为4的等差数列,∴当n 为偶数时,2(1)422n n a a n =+-⨯=.当n 为奇数时,1n +为偶数,∴根据上式和(*)知1422n n a n a n +=+-=,数列{}n a 的通项公式是2n a n =,易知{}n a 是以2为首项,2为公差的等差数列,故()()2212n n nS n n +==+,()111111n S n n n n ==-++,设1n S ⎧⎫⎨⎩⎭的前n 项和为n T ,则20211111112021112232021202220222022T =-+-++-=-= .故选:A.例3.数列{}n a 中,112,21,N n n a a a n n *+=+=+∈.求{}n a 的通项公式;解析:(1)由121++=+n n a a n ①2123n n a a n ++⇒+=+②,②-①22n n a a +⇒-=,∴{}n a 的奇数项与偶数项各自成等差数列,由11223a a a =⇒+=,∴21a =,∴2112(1)2n a a n n -=+-=,∴1n a n =+,n 为奇数,212(1)21n a n n =+-=-,∴1n a n =-,n 为偶数.∴()()**1,21,N 1,2,Nn n n k k a n n k k ⎧+=-∈⎪=⎨-=∈⎪⎩.类型2.等比数列:相邻两项递推:)2,0,0(1+-∈≥≠≠=N n n a q qa a n n n且且或q a a n n=-1.或者相邻三项递推:)2(211≥∈=+-+n N n a a a n n n 且.注2:在等比数列应用中,有一类比较特殊的递推类型,即++∈∀⋅=N n m a a a n m m n ,,,我们可以对其赋值得到一个等比数列.例4.数列{}n a 中,112a =,对任意,N m n *∈有m n m n a a a +=,若19111k k k a a a +++++ 15522=-,则k =()A.2B.3C.4D.5解析:由任意,m n *∈N 都有m n m n a a a +=,所以令1m =,则11n n a a a +=,且112a =,所以{}n a 是一个等比数列,且公比为12,则1910155191112222222k k k k k k k k a a a ++++++++=+++=-=- 所以5k =,故选:D.例5.已知数列{}n a 满足22,2,n n n a n a a n ++⎧=⎨⎩为奇数为偶数且11a =,22a =.求通项n a ;解析:当n 为奇数时,由22n n a a +-=知数列{}21k a -是公差为2的等差数列,()2111221k a a k k -=+-⨯=-,∴n a n =,n 为奇数;当n 为偶数时,由22n n a a +=知数列{}2k a 是公比为2的等比数列,1222k kk a a q -==,∴22nn a =,n 为偶数∴2,2,n n n n a n ⎧⎪=⎨⎪⎩为奇数为偶数.类型3.)(1n f a a n n =--累加型例6.若数列{}n a 满足11a =,12n n a a n +-=.求{}n a 的通项公式.解析:因为12n n a a n +-=,11a =,所以()()()1122112(1)2(2)21n n n n n a a a a a a a a n n ---=-+-++-+=-+-+++2222(1)112n n n n -+⋅-+=-+=,故21n a n n =-+.类型4.)(1n f a a n n=-(2≥∈+n N n 且)累乘型.例7.数列{}n a 及其前n 项和为n S 满足:11a =,当2n ≥时,111n n n a a n -+=-,则12320231111a a a a ++++= ()A.20211011B.40442023C.20231012D.40482025解析:当2n ≥时,111n n n a a n -+=-,即111n n a n a n -+=-,所以3124123213451,,,,,12321n n n n a a a a a n n a a a a n a n ---+=====-- 累乘得:()113451123212n n n a n n a n n ++=⨯⨯⨯⨯=-- ,又11a =,所以()12n n n a +=所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭则1232023111111111111222212233420232024a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭14046202321202420241012⎛⎫=-== ⎝⎭.故选:C.类型5.d ca a n n +=-1型(待定系数法)一般形式:1(,n n a ca d c d -=+为常数,0,1,0)c c d ≠≠≠,可以构造一个等比数列,只要在每一项同加上一个常数即可,且常数1dx c =-,1()n n a x c a x -+=+,令n n b a x =+,则n b 为等比数列,求出n b ,再还原到n a ,1)1(11--⋅-+=-c dc cd a a n n .例8.在数列{}n a 中,12a =,()*1432,N n n a a n n -=-≥∈.求{}n a 的通项公式.解析:依题意,数列{}n a 中,12a =,()*1432,N n n a a n n -=-≥∈,所以()()1*N 1412,n n a a n n --=-≥∈,所以数列{}1n a -是首项为111a -=,公比为4的等比数列.例9.(2014年新课标全国1卷)已知数列{}n a 满足13,111+==+n n a a a ,证明⎭⎬⎫⎩⎨⎧+21n a 是等比数列,并求{}n a 的通项公式.解析:显性构造:13,111+==+n n a a a ,)21(3211+=++n n a a ,)13(21-=n n a .类型6.nn n b m qa a ⋅+=+1型例10.已知数列{}n a 的首项1=6a ,且满足1142n n n a a ++=-.求数列{}n a 的通项公式;解析:∵1142n n n a a ++=-,∴112122n n n n a a ++=⋅-,∴1112122n n n n a a ++⎛⎫-=- ⎪⎝⎭,又∵1122a -=,故12n n a ⎧⎫-⎨⎬⎩⎭是以2为首项,2为公比的等比数列.112222n nn n a --=⋅=,则42n n n a =+.类型7.)1)((1≠+=+p n f pa a n n 型.方法1.数学归纳法.方法2.1111)()(+++++=⇒+=n n n n n n n p n f p a p a n f pa a ,令n n n p a b =,则11)(++=-n n n pn f b b ,用累加法即可解决!(公众号:凌晨讲数学)例11.(2020年新课标全国3卷)设数列{}n a 满足31=a ,n a a n n 431-=+.(1)计算2a ,3a ,猜想{}n a 的通项公式并加以证明;(2)求数列{}n na 2的前n 项和n S .解析:方法1:归纳法.(1)235,7,a a ==猜想21,n a n =+得1(23)3[(21)]n n a n a n +-+=-+,1(21)3[(21)]n n a n a n --+=--,……2153(3)a a -=-.因为13a =,所以2 1.n a n =+方法2:构造法.由n a a n n 431-=+可得:1113433+++-=-n n n n n n a a ,累加可得:123123+=⇒+=n a n a n n n n .(2)由(1)得2(21)2n n n a n =+,所以23325272(21)2n n S n =⨯+⨯+⨯+++⨯ .①23412325272(21)2n n S n +=⨯+⨯+⨯+++⨯ .②-①②得23132222222(21)2n n n S n +-=⨯+⨯+⨯++⨯-+⨯ ,1(21)2 2.n n S n +=-+类型8.)0(1≠⋅+=+q p qpa ta a n nn 型例12.已知数列{}n a 满足11a =,*1,N 1nn n a a n a +=∈+,求数列{}n a 的通项公式.因为*1,N 1n n n a a n a +=∈+,所以1111n na a +=+,即1111n n a a +-=,又11a =,所以111a =,所以数列1n a ⎧⎫⎨⎬⎩⎭为首项为1,公差为1的等差数列,所以()1111n n n a =+-⨯=,故1n a n =,所以数列{}n a 的通项公式为1n a n=.类型9.已知n S 与n a 关系,求n a .(公众号:凌晨讲数学)解题步骤:第1步:当1=n 代入n S 求出1a ;第2步:当2≥n ,由n S 写出1-n S ;第3步:1--=n n n S S a (2≥n );第4步:将1=n 代入n a 中进行验证,如果通过通项求出的1a 跟实际的1a 相等,则n a 为整个数列的通项,若不相等,则数列写成分段形式,.)2()1(1⎩⎨⎧≥==n a n a a n n 在本考点应用过程中,具体又可分为三个角度,第一,消n S 留n a ,第二个角度,消n a 留n S ,第三个角度,级数形式的前n 项和,下面我们具体分析.例13.已知数列{}n a 的前n 项和为n S ,112a =,112n n n S S a ++⋅=-.证明:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列.证明:∵112n n n S S a ++⋅=-,∴112n n n n S S S S ++⋅=-,易知0n S ≠,∴111112n n n n n nS S S S S S +++-=-=⋅,∴数列1n S ⎧⎫⎨⎬⎩⎭是公差为2的等差数列.例14.设数列{}n a 的前n 项和为n S ,且满足1=2a ,()*123N n n n a S n +=+∈.求n S .解析:因为()*123N n n n a S n +=+∈,所以11233,3n nn n n n n S S S S S ++-=+=+∴,则111111,333333n n n n n n n n S S S S ++++-=+=,11233S =,即{}3n n S 为首项为23,公差为13的等差数列,则211(1)(1)3333n n S n n =+-=+,故1(1)3n n n S -=+⋅.例15.已知数列{}n a 满足123123252525253n n na a a a ++++----….求数列{}n a 的通项公式.解析:123123252525253n n na a a a +++=----…,①当1n =时,14a =.当2n ≥时,123112311252525253n n n a a a a ---++++----…,②由①-②,得()3522n n a n +=≥,因为14a =符合上式,所以352n n a +=.例16.(2022新高考1卷)记n S 为数列{}n a 的前n 项和,已知11=a ,{}n n S a 是公差为13的等差数列.求{}n a 得通项公式.解析:111==S a ,所以111=S a ,所以{}n n S a 是首项为1,公差为13的等差数列,所以121(1)33+=+-⋅=n n S n n a ,所以23+=n n n S a .当2n 时,112133--++=-=-n n n n n n n a S S a a ,所以1(1)(1)--=+n n n a n a ,即111-+=-n n a n a n (2n );累积法可得:(1)2+=n n n a (2n ),又11=a 满足该式,所以{}n a 得通项公式为(1)2+=n n n a .类型9:已知前n 项积求n a .例17.记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.解析:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,所以111221n n n nb b b b +++=-,由于10n b +≠,所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈,所以数列{}n b 是以132b =为首项,以12d =为公差等差数列.(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n n b n ∴=+-⨯=+,22211n n n b n S b n +==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.类型10.特征方程法(强基层次):n n n ba aa a +=++12型.求解方程:02=--b a λλ,根据方程根的情况,可分为:(1)若特征方程有两个相等的根,则nn x b An a 0)(+=(2)若特征方程有两个不等的根,则n nn Bx Ax a 21+=例18.已知数列{}n a 满足12a =,28a =,2143n n n a a a ++=-.求数列{}n a 的通项公式;解析:2143n n n a a a ++=-,变形为:()2113n n n n a a a a +++-=-,216a a -=,∴数列{}1n n a a +-是等比数列,首项为6,公比为3.∴116323n nn n a a -+-=⨯=⨯,变形为:1133n n n n a a ++-=-,131a -=-,∴31n n a -=-,∴31n n a =-例19.已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a .解析:其特征方程为2441x x =-,解得1212x x ==,令()1212nn a c nc ⎛⎫=+ ⎪⎝⎭,由1122121()121(2)24a c c a c c ⎧=+⨯=⎪⎪⎨⎪=+⨯=⎪⎩,得1246c c =-⎧⎨=⎩,1322n n n a --∴=.例20.已知数列{}n a 满足11122,(2)21n n n a a a n a --+==≥+,求数列{}n a 的通项n a .解析:其特征方程为221x x x +=+,化简得2220x -=,解得121,1x x ==-,令111111n n n n a a c a a ++--=⋅++由12,a =得245a =,可得13c =-,∴数列11n n a a ⎧⎫-⎨⎬+⎩⎭是以111113a a -=+为首项,以13-为公比的等比数列,1111133n n n a a --⎛⎫∴=⋅- ⎪+⎝⎭,3(1)3(1)n n n n na --∴=+-.。

_求递推数列通项公式的十种技巧

_求递推数列通项公式的十种技巧

求递推数列通项公式的十种技巧一、利用公式法求通项公式例1 已知数列}a {n 满足n n 1n 23a 2a ⋅+=+,2a 1=,求数列}a {n 的通项公式。

解:n n 1n 23a 2a ⋅+=+两边除以1n 2+,得232a 2a nn 1n 1n +=++,则232a 2a n n 1n 1n =-++, 故数列}2a {n n 是以1222a 11==为首,以23为公差的等差数列,由等差数列的通项公式,得23)1n (12a nn -+=,所以数列}a {n 的通项公式为n n 2)21n 23(a -=。

评注:本题解题的关键是把递推关系式n n 1n 23a 2a ⋅+=+转化为232a 2a nn1n 1n =-++,说明数列}2a {n n 是等差数列,再直接利用等差数列的通项公式求出23)1n (12a nn -+=,进而求出数列}a {n 的通项公式。

二、利用累加法求通项公式例2 已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。

解:由1n 2a a n 1n ++=+ 得1n 2a a n 1n +=-+则112232n 1n 1n n n a )a a ()a a ()a a ()a a (a +-+-++-+-=---1)1n (2n)1n (21)1n (]12)2n ()1n [(21)112()122(]1)2n (2[]1)1n (2[+-+-⋅=+-++++-+-=++⋅++⋅+++-++-=所以数列}a {n 的通项公式为2n n a =评注:本题解题的关键是把递推关系式1n 2a a n 1n ++=+转化为1n 2a a n 1n +=-+,进而求出112232n 1n 1n n a )a a ()a a ()a a ()a a (+-+-++-+---- ,即得数列}a {n 的通项公式。

例3 已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。

9类常见递推数列求通项公式方法

9类常见递推数列求通项公式方法

数列通项九种求解方法类型一:1n n a pa q+=+(1p ≠)思路(构造等比数列法):设()1n n a p a μμ++=+,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列。

例1、已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。

解:(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134a +=为首项、2为公比的等比数列,则113422n n n a -++=⋅=,即123n n a +=-。

3(a a ++-21n a n =+类型三:1()n n a f n a +=⋅ (累乘法) 思路(累乘法):=n a 13211221n n n n a a a a a a a a a ---⋅⋅⋅⋅⋅,即得数列{}n a 的通项公式 例3、已知11a =,111n n n a a n --=+,求n a 。

解:,2≥n 111n n a n a n --=+,依次类推有:122n n a n a n ---=、2331n n a n a n ---=-、…、3224a a =、2113a a =,即12311n n n n a n n n ---=⋅⋅⋅+-…21243(1)n n ⋅⋅=+,11=a 也符合。

类型四:1()n n a pa f n +=+ (0p ≠且1p ≠)思路(转化法):1(1)n n a pa f n -=+-,递推式两边同时除以np 得11(1)n n n n n a a f n p p p ---=+,我们令nn na b p =,那么问题就可以转化为类型二进行求解了。

例4 、已知12a =,1142n n n a a ++=+,求n a 。

解:142nn n a a -=+,式子两边同时除以4n得111442nn n n n a a --⎛⎫=+ ⎪⎝⎭,令4n n n a b =,则112nn n b b -⎛⎫-= ⎪⎝⎭,由累加法得nn b )21(1-= 1441422n n n n n n n a b ⎡⎤⎛⎫∴=⋅=⋅-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦。

数列递推公式的九种方法

数列递推公式的九种方法

求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法例1在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n 则,211112-+=a a 312123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.二、作商求和法例2设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题)解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0∵n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,nn a a n n 11-=-逐项相乘得:na a n 11=,即n a =n 1.三、换元法例3已知数列{n a },其中913,3421==a a ,且当n≥3时,)(31211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编).解:设11---=n n n a a b ,原递推式可化为:}{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31.故n n n n b b 31()31(9131(2211==⋅=---.故n n n a a )31(1=--.由逐差法可得:nn a )31(2123-=.例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。

递推数列常十种方法

递推数列常十种方法

求递推数列通项公式的十种策略例析递推数列的题型多样,求递推数列的通项公式的方法也非常灵活,往往可以通过适当的策略将问题化归为等差数列或等比数列问题加以解决,亦可采用不完全归纳法的方法,由特殊情形推导出一般情形,进而用数学归纳法加以证明,因而求递推数列的通项公式问题成为了高考命题中颇受青睐的考查内容。

笔者试给出求递推数列通项公式的十种方法策略,它们是:公式法、累加法、累乘法、待定系数法、对数变换法、迭代法、数学归纳法、换元法、不动点法、特征根的方法。

仔细辨析递推关系式的特征,准确选择恰当的方法,是迅速求出通项公式的关键。

一、利用公式法求通项公式例1 已知数列}a {n 满足n n 1n 23a 2a ⋅+=+,2a 1=,求数列}a {n 的通项公式。

解:n n 1n 23a 2a ⋅+=+两边除以1n 2+,得232a 2a nn 1n 1n +=++,则232a 2a n n 1n 1n =-++, 故数列}2a {n n 是以1222a 11==为首,以23为公差的等差数列,由等差数列的通项公式,得23)1n (12a nn -+=,所以数列}a {n 的通项公式为n n 2)21n 23(a -=。

评注:本题解题的关键是把递推关系式n n 1n 23a 2a ⋅+=+转化为232a 2a nn1n 1n =-++,说明数列}2a {n n 是等差数列,再直接利用等差数列的通项公式求出23)1n (12a nn -+=,进而求出数列}a {n 的通项公式。

二、利用累加法求通项公式例2 已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。

解:由1n 2a a n 1n ++=+ 得1n 2a a n 1n +=-+则112232n 1n 1n n n a )a a ()a a ()a a ()a a (a +-+-++-+-=---1)1n (2n)1n (21)1n (]12)2n ()1n [(21)112()122(]1)2n (2[]1)1n (2[+-+-⋅=+-++++-+-=++⋅++⋅+++-++-= 所以数列}a {n 的通项公式为2n n a =评注:本题解题的关键是把递推关系式1n 2a a n 1n ++=+转化为1n 2a a n 1n +=-+,进而求出112232n 1n 1n n a )a a ()a a ()a a ()a a (+-+-++-+---- ,即得数列}a {n 的通项公式。

高考数学解题技巧-递推数列通项公式的十种策略例析

高考数学解题技巧-递推数列通项公式的十种策略例析

求递推数列通项公式的十种策略例析递推数列的题型多样,求递推数列的通项公式的方法也特别灵巧,常常能够经过合适的策略将问题化归为等差数列或等比数列问题加以解决, 亦可采纳不完整概括法的方法, 由特 殊情况推导出一般情况, 从而用数学概括法加以证明, 因此求递推数列的通项公式问题成为 了高考命题中颇受喜爱的考察内容。

笔者试给出求递推数列通项公式的十种方法策略, 它们 是:公式法、累加法、累乘法、待定系数法、对数变换法、迭代法、数学概括法、换元法、 不动点法、特点根的方法。

认真辨析递推关系式的特点,正确选择合适的方法,是快速求出 通项公式的重点。

一、利用公式法求通项公式例 1 已知数列 { a n } 知足 a n 1 2a n 3 2n , a 1 2 ,求数列 { a n } 的通项公式。

解: a n12a n 3 2n两边除以2n 1 ,得an 1a n 3 ,则an 1a n 3 ,2n 12 n22 n 12 n2故数列 {a n} 是以a 12 3 为公差的等差数列,由等差数列的通项公式,得 2 n 211 为首,以22a n1 (n1) 3,所以数列 { a n } 的通项公式为 a n ( 3n1)2n 。

2n222评注:此题解题的重点是把递推关系式a n 1 2a n列 { a n} 是等差数列,再直接利用等差数列的通项公式求出2 n列 { a n } 的通项公式。

3 2n转变为a n 1 a n 3 ,说明数2n12n2a n 1 ( n 3,从而求出数2 n1)2二、利用累加法求通项公式例 2 已知数列 { a n } 知足 a n 1an2n 1, a 1 1 ,求数列 { a n } 的通项公式。

解:由 a n 1 a n 2n1得 a n 1 a n 2n 1则 a n(a n a n 1 ) (a n 1 a n 2 ) (a 3 a 2 ) ( a 2a 1 ) a 1 [2(n 1) 1][2(n2) 1] (2 2 1)(2 1 1)12[( n 1) (n 2)2 1] ( n 1) 12 ( n1)n ( n 1) 12所以数列 { a n } 的通项公式为 a nn 2评注:此题解题的重点是把递推关系式 an 1a n 2n 1 转变为 a n 1 a n 2n 1 ,从而求出 (a na n 1 ) (a n 1 a n 2)(a 3 a 2 ) ( a 2 a 1 ) a 1 ,即得数列 { a n } 的通项公式。

求递推数列的通项公式的十一种方法包含特征根和不动点

求递推数列的通项公式的十一种方法包含特征根和不动点

求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法例1 在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n 则,211112-+=a a312123-+=a a413134-+=a a ,……,nn a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.二、作商求和法例2 设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题)解:原递推式可化为: )]()1[(11n n n n a a na a n +-+++=0∵ n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,n n a a n n 11-=- 逐项相乘得:na a n 11=,即n a =n1. 三、换元法例 3 已知数列{n a },其中913,3421==a a ,且当n ≥3时,)(31211----=-n n n n a a a a ,求通项公式na (1986年高考文科第八题改编). 解:设11---=n n n a ab ,原递推式可化为:}{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31.故n n n n b b )31()31(91)31(2211==⋅=---.故n n n a a )31(1=--.由逐差法可得:n n a )31(2123-=. 例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求递推数列通项公式的十种策略例析递推数列的题型多样,求递推数列的通项公式的方法也非常灵活,往往可以通过适当的策略将问题化归为等差数列或等比数列问题加以解决,亦可采用不完全归纳法的方法,由特殊情形推导出一般情形,进而用数学归纳法加以证明,因而求递推数列的通项公式问题成为了高考命题中颇受青睐的考查内容。

笔者试给出求递推数列通项公式的十种方法策略,它们是:公式法、累加法、累乘法、待定系数法、对数变换法、迭代法、数学归纳法、换元法、不动点法、特征根的方法。

仔细辨析递推关系式的特征,准确选择恰当的方法,是迅速求出通项公式的关键。

一、利用公式法求通项公式例1 已知数列}a {n 满足n n 1n 23a 2a ⋅+=+,2a 1=,求数列}a {n 的通项公式。

解:n n 1n 23a 2a ⋅+=+两边除以1n 2+,得232a 2a nn 1n 1n +=++,则232a 2a n n 1n 1n=-++, 故数列}2a {n n 是以1222a 11==为首,以23为公差的等差数列,由等差数列的通项公式,得23)1n (12a nn -+=,所以数列}a {n 的通项公式为n n 221n 23(a -=。

评注:本题解题的关键是把递推关系式n n 1n 23a 2a ⋅+=+转化为232a 2a nn1n 1n =-++,说明数列}2a {nn 是等差数列,再直接利用等差数列的通项公式求出23)1n (12a n n -+=,进而求出数列}a {n 的通项公式。

二、利用累加法求通项公式例2 已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。

解:由1n 2a a n 1n ++=+ 得1n 2a a n 1n +=-+则112232n 1n 1n n n a )a a ()a a ()a a ()a a (a +-+-++-+-=---1)1n (2n )1n (21)1n (]12)2n ()1n [(21)112()122(]1)2n (2[]1)1n (2[+-+-⋅=+-++++-+-=++⋅++⋅+++-++-= 所以数列}a {n 的通项公式为2n n a =评注:本题解题的关键是把递推关系式1n 2a a n 1n ++=+转化为1n 2a a n 1n +=-+,进而求出112232n 1n 1n n a )a a ()a a ()a a ()a a (+-+-++-+---- ,即得数列}a {n 的通项公式。

例3 已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。

解:由132a a n n 1n +⋅+=+ 得132a a n n 1n +⋅=-+则112232n 1n 1n n n a )a a ()a a ()a a ()a a (a +-+-++-+-=---3)1n ()3333(23)132()132()132()132(122n 1n 122n 1n +-+++++=++⋅++⋅+++⋅++⋅=----所以1n 32n 31332a n nn -+=++--⋅= 评注:本题解题的关键是把递推关系式132a a n n 1n +⋅+=+转化为132a a n n 1n +⋅=-+,进而求出112232n 1n 1n n a )a a ()a a ()a a ()a a (+-+-++-+---- ,即得数列}a {n 的通项公式。

例4 已知数列}a {n 满足3a 132a 3a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。

解:132a 3a n n 1n +⋅+=+两边除以1n 3+,得1n nn 1n 1n 31323a 3a +++++=,则1n nn 1n 1n 31323a 3a ++++=-, 故3a )3a 3a ()3a 3a ()3a a a ()a a 3a (3a 111223n 3n 2n 2n 2n 2n 1n 1n 1n 1n nn nn +-++-+-+-=---------- 333132()3132(3132()3132(22n 1n n +++++++++=-- 1)3131313131(3)1n (222n 1n n n +++++++-=-- 因此n1n n n n 321213n 2131)31(313)1n (23a ⋅-+=+--⋅+-=-, 则213213n 32a n n n -⋅+⋅⋅=评注:本题解题的关键是把递推关系式132a 3a n n 1n +⋅+=+转化为1n n n1n 1n 31323a 3a ++++=-,进而求出)3a 3a ()3a 3a ()3a 3a (3n 3n 2n 2n 2n 2n 1n 1n 1n 1n n n -----------+-+-+…+3a )3a 3a (11122+-,即得数列}3a {n n的通项公式,最后再求数列}a {n 的通项公式。

三、利用累乘法求通项公式例5 已知数列}a {n 满足3a a 5)1n (2a 1n n 1n =⋅+=+,,求数列}a {n 的通项公式。

解:因为3a a 5)1n (2a 1n n 1n =⋅+=+,,所以0a n ≠,则n n1n 5)1n (2a a +=+, 则112232n 1n 1n n n a a a a a a a a a a ⋅⋅⋅⋅⋅=---3]5)11(2[]5)12(2[]5)12n (2[]5)11n (2[122n 1n ⋅⋅+⋅⋅⋅+⋅+-⋅+-=-- 35]23)1n (n [212)2n ()1n (1n ⋅⋅⋅⋅⋅-⋅⋅=+++-+--所以数列}a {n 的通项公式为!n 523a 2)1n (n 1n n⋅⋅⋅=--评注:本题解题的关键是把递推关系n n 1n a 5)1n (2a ⋅+=+转化为n n1n 5)1n (2a a +=+,进而求出112232n 1n 1n n a a a a a a a a a ⋅⋅⋅⋅⋅--- ,即得数列}a {n 的通项公式。

例6 (2004年全国15题)已知数列}a {n 满足)1n (a 3a 2a a 1a 321n 1-++++== , )2n (a )1n (1n ≥-+-,则}a {n 的通项⎪⎩⎪⎨⎧≥==2n 2!n 1n 1a n ,,解:因为)2n (a )1n (a 3a 2a a 1n 321n ≥-++++=-①所以n 1n 3211n na a )1n (a 3a 2a a +-++++=-+②所以②式-①式得n n 1n na a a =-+ 则)2n (a )1n (a n 1n ≥+=+则)2n (1n a a n1n ≥+=+ 所以2232n 1n 1n n n a a a a a a a a ⋅⋅⋅⋅=--- 22a 2!n a ]34)1n (n [⋅=⋅⋅⋅⋅-= ③由)2n (a )1n (a 3a 2a a 1n 321n ≥-++++=- ,取n=2得212a 2a a +=,则12a a =,又知1a 1=,则1a 2=,代入③得2!n n 5431a n =⋅⋅⋅⋅⋅= 。

评注:本题解题的关键是把递推关系式)2n (a )1n (a n 1n ≥+=+转化为1n a a n1n +=+(n ≥2),进而求出2232n 1n 1n n a a a a a a a ⋅⋅⋅⋅--- ,从而可得当n ≥2时n a 的表达式,最后再求出数列}a {n 的通项公式。

四、利用待定系数法求通项公式例7 已知数列}a {n 满足6a 53a 2a 1n n 1n =⋅+=+,,求数列}a {n 的通项公式。

解:设)5x a (25x a n n 1n 1n ⋅+=⋅+++④将n n 1n 53a 2a ⋅+=+代入④式,得n n 1n n n 5x 2a 25x 53a 2⋅+=⋅+⋅++,等式两边消去n a 2,得n 1n n 5x 25x 53⋅=⋅+⋅+,两边除以n 5,得x 25x 3=⋅+,则x=-1,代入④式,得)5a (25a n n 1n 1n -=-++⑤由1565a 11=-=-≠0及⑤式,得05a nn ≠-,则25a 5a nn 1n 1n =--++,则数列}5a {n n -是以15a 11=-为首项,以2为公比的等比数列,则1n n n 215a -⋅=-,故n 1n n 52a +=-。

评注:本题解题的关键是把递推关系式n n 1n 53a 2a ⋅+=+转化为)5a (25a n n 1n 1n -=-++,从而可知数列}5a {n n -是等比数列,进而求出数列}5a {n n -的通项公式,最后再求出数列}a {n 的通项公式。

例8 已知数列}a {n 满足1a 425a 3a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。

解:设)y 2x a (3y 2x a n n 1n 1n +⋅+=+⋅+++⑥将425a 3a n n 1n +⋅+=+代入⑥式,得)y 2x a (3y 2x 425a 3n n 1n n n +⋅+=+⋅++⋅++整理得y 32x 3y 42)x 25(n n +⋅=++⋅+。

令⎩⎨⎧=+=+y 3y 4x 3x 25,则⎩⎨⎧==2y 5x ,代入⑥式,得)225a (3225a n n 1n 1n +⋅+=+⋅+++⑦由013121225a 11≠=+=+⋅+及⑦式,得0225a nn ≠+⋅+,则3225a 225a nn 1n 1n =+⋅++⋅+++,故数列}225a {n n +⋅+是以13121225a 11=+=+⋅+为首项,以3为公比的等比数列,因此1n n n 313225a -⋅=+⋅+,则225313a n 1n n -⋅-⋅=-。

评注:本题解题的关键是把递推关系式425a 3a n n 1n +⋅+=+转化为)225a (3225a n n 1n 1n +⋅+=+⋅+++,从而可知数列}225a {n n +⋅+是等比数列,进而求出数列}225a {n n +⋅+的通项公式,最后再求数列}a {n 的通项公式。

例9 已知数列}a {n 满足1a 5n 4n 3a 2a 12n 1n =++⋅+=+,,求数列}a {n 的通项公式。

解:设z )1n (y )1n (x a 21n ++++++)z yn xn a (22n +++=⑧将5n 4n 3a 2a 2n 1n ++⋅+=+代入⑧式,得z )1n (y )1n (x 5n 4n 3a 222n +++++++⋅⋅+ )z yn xn a (22n +++=,则z2yn 2xn 2a 2)5z y x (n )4y x 2(n )x 3(a 22n 2n +++=+++++++++等式两边消去n a 2,得z 2yn 2xn 2)5z y x (n )4y x 2(n )x 3(22++=++++++++,则得方程组⎪⎩⎪⎨⎧=+++=++=+z25z y x y 24y x 2x2x 3,则⎪⎩⎪⎨⎧===18z 10y 3x ,代入⑧式,得18)1n (10)1n (3a 21n ++++++)18n 10n 3a (22n +++=⑨由0323111811013a 21≠=+=+⋅+⋅+及⑨式,得018n 10n 3a 2n ≠+++则218n 10n 3a 18)1n (10)1n (3a 2n 21n =+++++++++,故数列}18n 10n 3a {2n +++为以323111811013a 21=+=+⋅+⋅+为首项,以2为公比的等比数列,因此1n 2n 23218n 10n 3a -⋅=+++,则18n 10n 32a 24n n ---=+。

相关文档
最新文档