常见递推数列的几个模型

合集下载

数列的递推公式及通项公式

数列的递推公式及通项公式

数列的递推公式及通项公式数列是数学中一个重要的概念,是由一组按照特定规律排列的数所组成的序列。

数列有两种常见的表示方式:递推公式和通项公式。

本文将从基本概念入手,详细介绍数列的递推公式和通项公式,并结合实例加深理解。

一、数列的基本概念数列是由一系列按照一定规律排列的数所组成的序列。

数列中的每一个数称为该数列的项,用an表示。

通常用字母n表示项的位置。

例如,1, 3, 5, 7, 9, ... 是一个递增的奇数数列。

其中1是第1项,3是第2项,5是第3项,以此类推。

二、递推公式递推公式也称为递推关系式或递推式,用于表示数列中的每一项与前一项之间的关系。

通过递推公式,可以通过给定的前几项,求解后面的任意项。

递推公式的一般形式为an = f(an-1),其中f表示规定的函数或运算。

可以根据数列的特点来确定递推公式。

例如,对于等差数列1, 3, 5, 7, 9, ...,我们可以观察到每一项与前一项之间的关系是+2。

因此,递推公式可以表示为an = an-1 + 2。

三、通项公式通项公式是用一个公式直接表示数列的第n项,无需通过前面的项推导得到。

通项公式更为简洁,可以方便地计算数列中任意一项的值。

通常用公式an = f(n)表示数列的通项公式,其中f(n)表示与项的位置n有关的函数或运算。

以等差数列为例,假设首项是a1,公差是d,那么通项公式可以表示为an = a1 + (n-1)d。

其中,a1表示首项的值,n表示项的位置,d表示公差。

四、使用递推公式和通项公式的实例1. 递推公式实例:考虑一个数列,首项是2,每一项都是前一项的3倍。

我们可以得到递推公式an = 3 * an-1。

根据递推公式,可以计算数列的前几项:a1 = 2a2 = 3 * a1 = 3 * 2 = 6a3 = 3 * a2 = 3 * 6 = 18a4 = 3 * a3 = 3 * 18 = 54...2. 通项公式实例:考虑一个等差数列,首项是1,公差是4。

常见递推数列通项的九种求解方法(1)

常见递推数列通项的九种求解方法(1)

常见递推数列通项的九种求解方法(1)高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。

是一类考查思维能力的好题。

要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。

类型一:an1解决方法累加法af(n)(fn可以求和)n例1、在数列an中,已知a1=1,当n2时,有anan12n1n2,求数列的通项公式。

解析:anan12n1(n2)a2a11aa332a4a35上述n1个等式相加可得:anan12n1∴ana1n21ann2评注:一般情况下,累加法里只有n-1个等式相加。

【类型一专项练习题】1、已知a11,anan1n(n2),求an。

2、已知数列an,a1=2,an1=an+3n+2,求an。

,a11,求数列{an}的通项公式。

3、已知数列{an}满足an1an2n14、已知{an}中,a13,an1an2n,求an。

11某5、已知a1,an1an(nN),求数列an通项公式.226、已知数列an满足a11,an3n1nan1n2,求通项公式an?7、若数列的递推公式为a13,an1an23n1(nN某),则求这个数列的通项公式8、已知数列{an}满足an1an23n1,a13,求数列{an}的通项公式。

9、已知数列an满足a111,an1an2,求an。

2nn,2,3,)10、数列an 中,a12,an1ancn(c是常数,n1,且a1,a2,a3成公比不为1的等比数列.(I)求c的值;(II)求an的通项公式.11、设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4);当n4时,f(n)(用n表示).n(n1)n(3n1)31答案:1.an2.an3.ann214.an2n15.an2222n1313n16.an7.an123n18.an3nn19.an10.(1)2(2)ann2n22n2n2n211.(1)5(2)2类型二:an1f(n)an(f(n)可以求积)累积法解决方法例1、在数列an中,已知a11,有nan1n1an,(n2)求数列an 的通项公式。

常见递推数列通项的求法七种

常见递推数列通项的求法七种

常见递推数列通项的求法类型1、 ()n g a a n n +=+1型解题思路:利用累差迭加法,将)1(1-=--n g a a n n ,--1n a 2-n a =)2(-n g ,…,-2a 1a =)1(g ,各式相加,正负抵消,即得n a . 例1、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a . 解:原递推式可化为:1111+-+=+n na a n n则,211112-+=a a 312123-+=a a413134-+=a a ,……,nn a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.例2.在数列{}n a 中,01=a 且121-+=+n a a n n ,求通项na .解:依题意得,01=a ,()32112,,3,112312-=--=-=-=--n n a a a a a a n n ,把以上各式相加,得()()()21232113231-=-+-=-+++=n n n n a n【评注】由递推关系得,若()n g 是一常数,即第一种类型,直接可得是一等差数列;若n n a a -+1非常数,而是关于n 的一个解析式,可以肯定数列n a 不是等差数列,将递推式中的n 分别用2,3,4,,2,1 --n n 代入得1-n 个等式相加,目的是为了能使左边相互抵消得n a ,而右边往往可以转化为一个或几个特殊数列的和。

例3、已知数列}a {n 满足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式。

解:由132a a nn 1n +⋅+=+得132a a nn 1n +⋅=-+则112232n 1n 1n n na )a a ()a a ()a a ()a a (a +-+-++-+-=---3)1n ()3333(23)132()132()132()132(122n 1n 122n 1n +-+++++=++⋅++⋅+++⋅++⋅=----所以1n 32n 31332a nnn-+=++--⋅=评注:本题解题的关键是把递推关系式132a a n n 1n +⋅+=+转化为132a a nn 1n +⋅=-+,进而求出112232n 1n 1n n a )a a ()a a ()a a ()a a (+-+-++-+---- ,即得数列}a {n 的通项公式。

数列递推关系

数列递推关系

数列递推关系数列递推关系是数学中一个重要的概念,它描述了数列中的每个元素与它的前一个或前几个元素的关系。

在数学和应用数学中,数列递推关系被广泛用于解决各种问题,比如计算机科学、物理学、经济学等领域。

数列递推关系有两种形式:线性递推和非线性递推。

线性递推是指数列中的每个元素都是前几个元素的线性组合。

比如斐波那契数列就是一个著名的线性递推数列,它的每个元素都是前两个元素的和。

非线性递推则指数列中的每个元素与它前几个元素之间存在非线性关系,比如几何数列和指数数列。

线性递推关系可以通过数学公式来描述,比如斐波那契数列的公式为An = An-1 + An-2,其中An表示数列中第n个元素,An-1表示第n-1个元素,An-2表示第n-2个元素。

这个公式表达了斐波那契数列中每个元素与前两个元素之间的关系。

非线性递推关系则无法用简单的公式来表示,通常需要通过递归或迭代的方式来计算。

比如几何数列的递推关系为An = An-1 * r,其中r为公比,表示数列中每个元素与前一个元素的比值。

这个递推关系说明了几何数列中每个元素与前一个元素之间的关系。

数列递推关系在实际问题中的应用非常广泛。

比如在计算机科学中,递推关系常被用于算法设计和性能分析。

在物理学中,递推关系可以描述连续物理系统的运动规律。

在经济学中,递推关系可以解释市场供求关系和经济变量之间的相互作用。

总之,数列递推关系是数学中一个重要的概念,它描述了数列中每个元素与它的前一个或前几个元素的关系。

它可以通过线性递推和非线性递推两种形式来表示。

数列递推关系在各个学科中都有广泛的应用,对于理解和解决实际问题都具有重要意义。

五种典型的递推关系

五种典型的递推关系

五种典型的递推关系1.Fibonacci数列在所有的递推关系中,Fibonacci数列应该是最为⼤家所熟悉的。

在最基础的程序设计语⾔Logo 语⾔中,就有很多这类的题⽬。

⽽在较为复杂的Basic、Pascal、C语⾔中,Fibonacci数列类的题⽬因为解法相对容易⼀些,逐渐退出了竞赛的舞台。

可是这不等于说Fibonacci数列没有研究价值,恰恰相反,⼀些此类的题⽬还是能给我们⼀定的启发的。

数列的代表问题是由意⼤利著名数学家Fibonacci于1202年提出的“兔⼦繁殖问题”(⼜Fibonacci数列称“Fibonacci问题”)。

问题的提出:有雌雄⼀对兔⼦,假定过两个⽉便可繁殖雌雄各⼀的⼀对⼩兔⼦。

问过n个⽉后共问题有多少对兔⼦?解:设满x个⽉共有兔⼦Fx对,其中当⽉新⽣的兔⼦数⽬为Nx对。

第x-1个⽉留下的兔⼦数 解⽬设为Fx-1对。

则:Fx=Nx+ Fx-1 Nx=Fx-2 (即第x-2个⽉的所有兔⼦到第x个⽉都有繁殖能⼒) ∴ Fx=Fx-1+Fx-2 边界条件:F0=0,F1=1由上⾯的递推关系可依次得到: F2=F1+F0=1,F3=F2+F1=2,F4=F3+F2=3,F5=F4+F3=5,……。

数列常出现在⽐较简单的组合计数问题中,例如以前的竞赛中出现的“⾻牌覆盖”问Fabonacci数列题。

在优选法中,Fibonacci数列的⽤处也得到了较好的体现。

2.Hanoi塔问题问题的提出:Hanoi塔由n个⼤⼩不同的圆盘和三根⽊柱a,b,c组成。

开始时,这n个圆盘由⼤到问题⼩依次套在a柱上,如图3-11所⽰。

要求把a柱上n个圆盘按下述规则移到c柱上: (1)⼀次只能移⼀个圆盘; (2)圆盘只能在三个柱上存放; (3)在移动过程中,不允许⼤盘压⼩盘。

问将这n个盘⼦从a柱移动到c柱上,总计需要移动多少个盘次?解:设hn为n个盘⼦从a柱移到c柱所需移动的盘次。

显然,当n=1时,只需把a 柱上的盘⼦直接移动到c柱就可以了,故h1=1。

最全的递推数列求通项公式方法

最全的递推数列求通项公式方法

最全的递推数列求通项公式方法递推数列是指数列中的每一项都由前一项通过其中一种规律得出。

求递推数列的通项公式是数学中的重要问题,可以通过多种方法实现。

下面将介绍最常用的几种方法。

1.等差数列通项公式等差数列是指数列中的每一项与前一项之差都相等的数列。

设等差数列的第一项为a1,公差为d,则第n项为an=a1+(n-1)d。

这是等差数列的通项公式。

2.等比数列通项公式等比数列是指数列中的每一项与前一项之比都相等的数列。

设等比数列的第一项为a1,公比为r,则第n项为an=a1*r^(n-1)。

这是等比数列的通项公式。

3.斐波那契数列通项公式斐波那契数列是指数列中的每一项都是前两项之和。

设斐波那契数列的第一项为a1,第二项为a2,则第n项为an=a(n-1)+a(n-2)。

但通常情况下,我们将斐波那契数列的第一项设为0,第二项设为1,此时的通项公式为an=F(n-1),其中F(n-1)表示第n-1个斐波那契数。

4.龙贝尔数列通项公式龙贝尔数列是指数列中的每一项都是前一项与当前项索引之和。

设龙贝尔数列的第一项为a1,则第n项为an=a(n-1)+n。

这是龙贝尔数列的通项公式。

5.通项公式的递推法有些数列并没有明确的通项公式,但可以通过递推法求得通项公式。

递推法的核心思想是找到数列中的其中一种规律,通过前面的项得出后面的项。

这种方法比较灵活,可以适用于各种类型的数列。

总结起来,以上是求递推数列通项公式的几种常见方法。

在实际中,我们可以观察数列的规律,推测出通项公式,然后通过数学推导证明其正确性。

对于复杂的递推数列,我们可能需要运用更多的数学知识和技巧,如离散数学、线性代数等。

第31讲 数列的递推

第31讲  数列的递推

第12讲 数列的递推本节主要内容两个基本递推:a n +1=a n +d ,a n =qa n ;线性递推,二阶或高阶递推的特征方程与特征根;其他递推.1.基本概念:①递归式:一个数列}{n a 中的第n 项n a 与它前面若干项1-n a ,2-n a ,…,k n a -(nk <)的关系式称为递归式.②递归数列:由递归式和初始值确定的数列成为递归数列. 2.常用方法:累加法,迭代法,代换法,代入法等. 3.思想策略:构造新数列的思想. 4.常见类型: 类型Ⅰ:⎩⎨⎧=≠+=+为常数)a aa n p n q a n p a n n ()0)(()()(11(一阶递归)其特例为:(1))0(1≠+=+p q pa a n n (2))0()(1≠+=+p n q pa a n n (3))0()(1≠+=+p q a n p a n n解题方法:利用待定系数法构造类似于“等比数列”的新数列.①形如)(1n q a a n n +=+的递归式,其通项公式求法为:1111111()()n n n k k k k a a a a a q k --+===+-=+∑∑②形如n n a n p a)(1=+的递归式,其通项公式求法为: 3211121(1)(2)(1)n n n a a a a a a p p p n a a a -=⋅⋅⋅=⋅⋅-③形如)1()(1≠+=+p n q pa a n n 的递推式,两边同除以1+n p 得111)(++=+=n nn n n pn q pa pa ,令n nn b pa =则句可转化为①来处理. 类型Ⅱ:⎩⎨⎧==≠≠+=++为常数)b a b a a a q p qa pa a nn n ,(,)0,0(2112(二阶递归)解题方法:利用特征方程q px x +=2,求其根α、β,构造n n n B A a βα+=,代入初始值求得B A ,. ①若p+q=1时,有q a a n n -=-+1)(1--n n a a 可知}{1n n a a -+是等比数列,先求得n n a a -+1,再求出n a . ②若p+q ≠l ,则存在α,β满足=α-+n n a a 1)(1--βn n a a 整理得11)(-+αβ-β+α=n n n a a a 从而α+β=p , αβ=q ,可解出α、β,这样可先求出}{1n n a a α-+的通项表达式,再求出n a .注意α、β实质是二次方程q px x +=2的两个根,将方程q px x +=2叫做递归式n n n qa pa a +=++12的特征方程. 在数列{n a }中,给出a 1, a 2,且n n n qa pa a +=++12 ,它的特征方程q px x +=2的两根为α与β.如果α≠β,则n n n B A a βα+=;如果α=β则nnB An aα+=)(,其中A 与B 是常数,可由初始值a 1,a 2 求出.类型Ⅲ. 如果递归数列{a n }满足 a n+1dca b aa n n ++=,其中c ≠0,ad -bc ≠0,以及初始值a 0≠f (a 1),则称此数列为分式线性递归数列.我们称方程dcx b ax x ++=的根为该数列的不动点.若该数列有两个相异的不动点p 、q ,则}{qa p a n n --为等比数列;若该数列仅有惟一的不动点p ,则}1{pa n -是等差数列·5.求递归数列通项的常用方法有:换元法、特征根法、数学归纳法等.A 类例题例1 一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)N (*1∈>+n a a n n ,则该函数的图象是( )(2005年辽宁卷)(A ) (B) (C)(D) 分析 利用递推式意义及数形结合,分析清楚函数值与自变量的关系,即可判断. 解 由)(1n n a f a =+,n n a a >+1,得n n a a f >)(,即x x f >)(,故选A . 例2已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式. (2004年全国高考题)分析 由于给出两个递推关系与奇数项、偶数项有关,因此因从奇数项或偶数项之间的关系入手. 解(I )a 2=a 1+(-1)1=0, a 3=a 2+31=3.a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k = a 2k -1+(-1)k +3k ,所以a 2k+1-a 2k -1=3k +(-1)k, 同理a 2k -1-a 2k -3=3k -1+(-1)k -1, …… a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1) =(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1],于是a 2k+1=.1)1(21231--++kka 2k = a 2k -1+(-1)k=2123+k(-1)k -1-1+(-1)k=2123+k(-1)k =1.{a n }的通项公式为:当n 为奇数时,a n =;121)1(232121-⨯-+-+n n当n 为偶数时,.121)1(2322-⨯-+=nnna说明 这种给出递推关系,求通项公式问题,一般是转化为等差数列或等比数列,或者通过观察、归纳,或者通过顺次迭代,以求通项公式.情景再现1.已知数列{a n }满足a 1=1,a n =2a n -1+n -2(n ≥2),求通项a n . (2004年四川省高中数学联赛) 2.设cbx x x f +=)((c b ,为常数),若21)2(=f ,且02)(=-x x f 只有唯一实数根(1)求)(x f 的解析式(2)令)(,111-==n na f a a 求数列{}na 的通项公式.B 类例题例3 (1)一次竞赛在n(n >1)轮中共发了m 枚奖章.第一轮发了1枚及余下的m -1枚的71,第2轮发了2枚及余下的71,…,直至第n 轮正好发了n 枚而没有余下奖章.这个竞赛共包括几轮?一共发了多少枚奖章?(第9届国际数学奥林匹克)(2)把一个圆分成n 个不同的扇形(n ≥2),依次记为S 1,S 2,…, S n ,每个扇形都可以用红、蓝、白三种颜色中任一种涂色,要求相邻的扇形颜色互不相同,问有多少种涂法?分析 第(1)题,每一轮发的奖章数具有一定规律,因而可以建立每一轮发的奖章数的关系或每一轮余下的奖章数的关系.第(2)题,设法建立涂法总数的递推关系和求得初始值,进而求得涂法总数. 解 (1)设竞赛进行了k 轮后,余下a k 枚奖章.因为第k 轮发出奖章数k+17(a n -1 -k )具有a k =a k -1- [k+17(a k -1 -k )]即a k = 67a k -1-67 k 且a 0=m, a n =0.进一步变形为a k +6k -36= 67[a k -1+6(k -1)-36]从而a n +6n -36= (a 0-36)n)76(= (m -36)n)76(即a n = (m -36)n)76(-(6n -36),又因为a n =0,故(m -36)=(n -6)167-n n而n -6<6n -1,且7n 与6n -1互质,m,n ∈N +,故n=6,m=36. 因此,这个竞赛共包括6轮,一共发了36枚奖章.(2)设涂法总数为a n (n ≥2)当n=2时,先对S 1涂法色,有3种涂法,继而得S 2只有两种涂法,因而a 2=6.当时n ≥3, S 1有3种涂法, S 2有2种涂法, S 3有2种涂法,…, S n -1有2种涂法, S n 仍有2种涂法. (不论是否S 1与同色),这样共有3×2n -1种涂法,但这3×2n -1种涂法分为两类:一类是S n 与S 1同色,认为S n 与S 1合为一个扇形,此时涂法有a n -1种涂法;另一类是S n 与S 1不同色,此时涂法有a n 种涂法.因而有a n + a n -1=3×2n -1(n ≥3)令p n =a n2n , 则2p n +p n -1=3 (n ≥3)于是有1-np =)1(211---n p , (n ≥3) p 2=a 222从而有1-n p =)1()21(22---p n =121-⎪⎭⎫ ⎝⎛--n于是1=n p 121-⎪⎭⎫⎝⎛--n 得a n =2n p n =2n +(-1)n ·2 (n ≥3)但当n=2时也适合上式,故得a n =2n +(-1)n ·2 (n ≥2) 故共有种a n =2n +(-1)n ·2 (n ≥2)涂法说明 这类试题经常在全国高中数学联赛及国际数学奥林匹克中出现.这两个问题都是用递推方法解决计数问题,希望读者对这类问题能够进行较为深入的钻研. 例4 数列{a n }定义如下:a 1=1,a n+1 =161(1+4 a n +na 241+),求它的通项公式.分析 带根号的部分不好处理,平方会导致较繁的关系式,容易想到作代换:令=nbn a 241+解 设=nb n a 241+,则2412-=n n b a ,.51=b 于是原递推式可化为41(16124121+=-+n b 2412-⋅n b +)nb即(2b n+1)2=(b n +3)2,由于b n 、b n+1非负,所以2b n+1=b n +3. 故b n+1-3=21(b n -3).所以b n+1-3= (b n -3)(21)n -2即2)21(3-+=n nb所以2412-=n nb a=nn 212313112+⋅+-说明 这是1981年IMO 的预选题,解题的关键是换元、转化.例5设{x n }、{y n }为如下定义的两个数列:x 0=1,x 1=1,x n+1=x n +2 x n -1,y 0=1,y 1=7,y n+1=2y n +3y n -1,(n=1,2,3…),于是这两个数列的前n 项为x n :1,1,3,5,11,21…, y n :1,7,17,55,161,487,….证明:除了“1”这项外,不存在那样的项,它同时出现在两个数列之中. (第二届美国中学生数学竞赛试题) 分析 本题题均属于线性递归数列问题,可用特征根的方法来解决.解 数列{x n }的通项公式形如nnnC C x β+α=21,其中βα、是数列的特征方程x 2=x +2的两根,即1,2-=β=α,故nnnC C x )1(221-+=.由x 0=1,x 1=1得C 1=23,C 2=13,所以 =nx 23×2n +13(-1)n = 13[2n+1+(-1)n ]同理可得数列的{y n }通项公式为 y n =2×3n -(-1)n .用反证法证明两个数列无其它公共项. 假设 x m =y n ,即13[2m+1+(-1)m ]= 2×3n -(-1)n ,则 2(3n+1-2m )=(-1)m +3(-1)n ①若奇偶性相同,则①式右边为4或-4.左边=2(奇-偶)=2×奇数,故左边不是4的倍数,因此左边不等于右边.同理若m 、n 奇偶性不相同时左边也不等于右边.说明 在求得特征方程的根以后,要依据根的重数正确写出数列通项的一般表达式,再根据初始值求得待定系数的值.例6 数列{a n }满足a 0=1,23645721-+=+n n n a a a,N n ∈,证明:(1)对于任意N n ∈,a 为整数;(2)对于任意N n ∈,11-+n n a a 为完全平方数. (2005年高中数学联赛) 证明:(1)由题设得a 1=5,且数列{a n }严格单调递增,将条件变形得36457221-=-+n n n a a a ,两边平方法整理得0972121=++-++n n n n a a a a①∴0972112=++---n nn na a a a ② ①-②得0)7)((111=-+--++n n n n n a a a a a∵1+<n na a , ∴0711=-+-+nn n a a a , 117-+-=n nn a a a ③由③及a 0=1, a 1=5可得a n 为正整数.(2)将①两边配方得=++21)(n na a )1(91-+n n a a∴11-+n n a a =21)3(nn a a ++④因为是n a 整数,故11-+n n a a 为整数,故④右边是整数的平方.即为为完全平方数. 所以对于任意N n ∈,11-+n n a a 为完全平方数.情景再现3.小伟和小明来到咖啡店,他们买了一杯咖啡和一杯牛奶各150ml,每个杯子的容积为200ml,甲杯盛牛奶,乙杯盛咖啡,想将二者混合,兑换成近乎相同的奶咖啡,没有其它的容器,只得利用二个杯子中的剩余空间倒来倒去,使其混合.规定将乙杯里的部分倒入甲杯中,使甲杯盛满饮料,充分搅匀,再将甲杯里的饮料倒入乙杯中,使甲、乙杯中的饮料相等.这叫做一次操作.请你回答下列四个问题: Ⅰ、一次操作后甲杯里的饮料中牛奶的体积百分比为多少?Ⅱ、求第n 次操作后甲杯里的饮料中牛奶的体积百分比的数学表达式. Ⅲ 至少几次操作后甲杯里的饮料中牛奶的体积百分比不超过51%?Ⅳ、你能否设计新操作,得到更优的方案以减少操作次数? (2003年北京应用知识竞赛题) 4. 已知a 1=1,a 2=3,a n+2=(n+3)a n+1-(n+2)a n ,若当m ≥n ,a m 的值都能被9整除,求n 的最小值.(湖南省2002年高中数学竞赛)C 类例题例7 数列{a n }按如下法则定义:a 1=1nn n a a a 41211+=+, 证明:对n >1,1222-n a 均为正整数·(1991年全苏数学冬令营)分析 因为结论中涉及到根号及a 2n项,因而令1222-=n na b ,并对已给递推关系两边平方就容易找到解题思路. 解 令1222-=n na b , 则12222-=n na b ,因此221nnb a=+12,因为++=+222116141nn n a a a14于是++211n b 12 = 14 (++211n b12)+⎪⎪⎭⎫ ⎝⎛+2111612n b +14即 )2(22221+=+n n n b b b①所以]2)2((2[22121221++=--+n n n n b b b b=2212)1(4+-n n b b . ②4122222=-=a b ,24122233=-=a b ,由②及b 2 、b 3∈N*, 知道对n >1,1222-n a 均为正整数.说明 这道试题,通过换元,将关于如的问题转化为关于b n 的问题,得到①式后,再用)2(221212+=--n n n b b b 代入可证明21+n b是一个完全平方数的关键一步,通过这一步代入可使问题得到顺利解决.例8. 设a 1=1,a 2=3,对一切正整数n 有 a n+2=(n+3)a n+1-(n+2)a n ,求所有被11整除的如的值. 分析 先根据给定的递推关系,通过换元,把问题转化,最后求得a n 的通项公式,进而完成本题. 解 由已知条件得(a n+2-a n+1)= (n+2)(a n+1-a n )设b n+1=a n+1-a n (n ≥1),则由条件有b n+1=(n+1)(a n -a n -1)=(n+1) b n (n ≥2),故b n = nb n -1=n(n -1) b n -2= n(n -1)(n -2)…3 b 2 =n !(n ≥2) 所以a n =(a n -a n -1 )+(a n -1-a n -2)+ …+(a 2-a 1)+a 1=b n + b n -1 +…+b 2+1=1nk k =∑!由此可以算出a 4=41k k =∑!=33=11×3,a 8=81k k =∑!=46233=11×4203,a 10=101k k =∑!=4037913=11×367083.当n ≥11时,注意到11nk k =∑!能被11整除,因而a n =101k k =∑!+11nk k=∑!也能被11整除.故当n=4,n=8或当n ≥10时, a n 均被11整除.说明 这是1990年巴尔干地区的数学奥林匹克试题,本题中换元起了重要的作用.这是阿贝尔求和法.情景再现5.3个数列{a n }、{ b n }、{ c n }存在下列关系:a 1=1, b 1=21,b n =a n+1-a n , c n =b n+1-b n =np n --13(n=1,2,3…)这里的p 为正常数. (1)求a n ;(2)证明:若c n ≥0,则c n+1>0;(3)若数列{b n }的最小项为b 4,求p 取值范围.6.数列{a n }、{ b n }满足0<a 1<b 1,nnn b a a 21111+=+nn n b a b +=+2121 (n=1,2,3…)证明下列命题:(1) a 2<b 2<b 1;(2) 对任何正整数n 有b n > a n+1; (3) 对任何整数n ≥2,有b n <b 1.习题12A 类习题1. 已知数列{a n }满足a 1=1,a n +1=a n +n 2(n ≥2),求通项a n .2.(2003年全国高考题)已知数列).2(3,1}{111≥+==--n a a a a n n n n 满足(Ⅰ)求;,32a a (Ⅱ)证明.213-=nn a3.(2001上海春季高考)某公司全年的利润为b 元,其中一部分作为奖金发给n 位职工,奖金分配方案如下:首先将职工按工作业绩(工作业绩均不相同)从大到小,由1到n 排序,第1位职工得奖金nb 元,然后再将余额除以n 发给第2位职工,按此方法将奖金逐一发给每位职工,并将最后剩余部分作为公司发展基金. (1)设a k (1≤k ≤n )为第k 位职工所得奖金金额,试求a 2,a 3,并用k 、n 和b 表示a k (不必证明); (2)证明a k >a k +1(k =1,2,…,n -1),并解释此不等式关于分配原则的实际意义; (3)发展基金与n 和b 有关,记为P n (b ),对常数b ,当n 变化时,求lim ∞→n P n (b ).4.已知点的序列A n (x n ,0),n ∈N*,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,….(1)写出x n 与x n -1、x n -2之间关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1,a 2,a 3,由此推测数列{a n }的通项公式,并加以证明; (3) 求lim ∞→n x n .5.已知+++∈-===N n a a aa a n n n ,22,4,01221求数列{a n }的通项公式.6.已知++++∈-+====N n a a a aa a a n n n n ,22,6,2,0123321求数列{a n }的通项公式.B 类习题7.已知++++∈+-====N n a a a aa a a n n n n ,8126,8,2,1123321求数列{a n }的通项公式. 8.已知++++∈+-=-===N n a a a aa a a n n n n ,12167,13,1,2123321求数列{a n }的通项公式.9.有一条n 级楼梯,如果每步只能跨上一级或两级,问欲登上去,共有几种走法?10.(1)是否存在正整数的无穷数列{a n },使得对任意正憨整数n 都有a 2n+1≥2 a n a n+2. (2)是否存在正无理数的无穷数列{a n },使得对任意正憨整数n 都有a 2n+1≥2 a n a n+2.(首届中国东南地区数学奥林匹克试题)C 类习题11.设数列}{n a 满足条件:2,121==a a ,且 ,3,2,1(12=+=++n a a a n n n )求证:对于任何正整数n ,都有nnnn a a 111+≥+ (湖南省2004年高中数学竞赛)12.求所有a ∈R,使得由a n+1=2n -3a n (n ∈N)所确定的数列a 0, a 1, a 2,…是递增数列.(1980年英国中学生数学竞赛试题)本节“情景再现”解答:1.解:由已知可得:a n +n =2(a n -1+n -1)(n ≥2)令b n =a n +n ,则b 1=a 1+1=2,且b n =2b n -1(n ≥2) 于是b n =2·2n -1=2n ,即a n +n =2n 故a n =2n -n (n ≥2), 因为a 1=1也适合上述式子, 所以a n =2n -n (n ≥1) 2.解:(1)bc cb f 242122)2(-=∴=+=,又cbx bx c x x x f 22)2(2)(+--=-令02)(=-x x f 得0)2(=--bx c x当0≠b 时得方程的实数根0=x 和bc x -=2 于是1,2==b c , 当0=b 时4=c 方程有唯一实数根0=xxx x f +=∴2)(或4)(x x f =(2)当xxx f +=2)(时,211+=--n n n a a a ,令,1nna b =则121+=-n nbb ,)1(211+=+∴-n n b b 12112-=∴-=∴nn nn a b 当4)(x x f =时,141-=n n a a {}n a ∴为等比数列,1)41(-=n n a 121-=∴nn a 或nn a -=143.解:Ⅰ.设 p=150 , %pp p a 7543311==+=Ⅱ. 设n 次操作前、后甲杯里的饮料中牛奶的体积百分比分别为、a n 1-n a ,则n 次操作前、后乙杯里的饮料中牛奶的体积百分比分别为、a n 11--n a -1,pp pa p a a n n n 3131)1(11+⋅-+=--=41211+-n a , ∴法 ①)(21211----=-n n n n a a a a ∴12121++=n n a∴ 法②)21(21211-=--n n a a∴12121++=n naⅢ. ∴1005121211≤++n ∴n ≥6.Ⅳ. 规定将乙杯里的部分倒入甲杯中,使甲杯盛满饮料,充分搅匀,再将甲杯里的饮料倒入乙杯中,使乙杯盛满饮料,充分搅匀.这叫做一次操作.设n 次操作后甲杯里的饮料中牛奶的体积百分比分别为n a ,乙杯里的饮料中牛奶的体积百分比为n b .43311=+=p p pa , 83323232431=+⨯=p p pb . 1693232328332432=+⨯+⨯=pp p p a 321532323283321692=+⨯+⨯=pp p p b∴ppb p a a n n n 34323211⨯+⨯=-- 第n 次操作后甲杯里的饮料p 32,乙杯里的饮料p 34.∴p b p a p n n =⨯+⨯3432∴343=+n n b a .n a =83411+-n a , ∴nn n a 212212+=-∴10051212212≤+-nn , ∴n ≥4.至少4操作后甲杯里的饮料中牛奶的体积百分比不超过51%.4.解:由)(12++-n n a a=11)2()3(-+-+-+n n n a a n an ))(2(1n n a a n -+=+))(1)(2(1--++=n n a a n n)(34)1)(2(12a a n n n -⋅⋅⋅⋅++=)2(+=n !故++-+-+= )()(23121a a a a a a n)(1--n na a=1+2!+3!+…+n !(n ≥1),由于153,33,9,3,154321=====a a a a a ,此时153被9整除.当m ≥5时∑=+=mk m ka a 15!而k ≥6时6!被9整除.于是当m ≥5时a n 被9整除,故所求的n 的最小值为55. (1)因为c n =b n+1-b n =3n -1-np,故b n =b 1+ (b 2-b 1)+ (b 3-b 2)+ …+(b n -b n -1) =12 +(1+3+…+3n -2)-[1+2+3+…+(n -1)]p=12 [3n -1-n(n -1)p], 即b n =a n+1-a n =12[3n -1-n(n -1)p]故a n =a 1+ (a 2-a 1)+ (a 3-a 2)+ …+(a n -a n -1)= 3n -1+34- p6-1)(n -2)(2)若c n =b n+1-b n =3n -1-np ≥0, 则3n -1≥np,c n+1=b n+2-b n+1=3n -(n+1)p ≥3np -(n+1)p =(2n -1)p >0.(3)因为b n =12 [3n -1-n(n -1)p]≥b 4,故应有c 3=b 4-b 3≤0,c 4=b 5-b 4≥0,即c 3=9-3p ≤0, c 4=27-4p ≥0,故3≤p≤274.利用(2)的结论验算可知,当3≤p ≤274时,对一切正整数n,均有b n ≥b 4.故p 的取值范围是[3,274] 6.(1)⎪⎪⎩⎪⎪⎨⎧+=+=++nn n n n n ba b b a a 212211111②① 因为110b a <<由①②可知n n b a ,皆正.①×②得242142121211=⋅+≥+++=++nn nn nn nn n n b a a b b a a b a b ,所以,11++≥n n a bn=1时,22a b ≥但若2111224b a a b a b =⇔=112b a =⇔,这与110b a <<矛盾,故只可能有,22a b >又由②可得1111122321212b b b b a b =+<+=,即 11243b b b <<,因此122b b a <<.(2)由(1)可知,11++≥n n a b即nna b ≥,由②得n n n b a b241+=+nn n n b a b b 2)(41-=-+=nnnb b a --)(<0,故nn b b<+1,即nn n b b a <≤++11所以n n b a<+1.(3)由(2)知nn b b<+1故{b n }卓单调递减,从而121b b bb n n<<<<- ,因此1b b n<.本节“习题12”解答: 1.∵a n +1=a n +n 2,∴a n +1-a n =n 2,故a n =(a n -a n -1 )+(a n -1-a n -2)+ …+(a 2-a 1)+a 1=-1+16n(n-1)(2n-1)= 16(n 3-3n 2+n-6)2.(Ⅰ)∵a 1=1 . ∴a 2=3+1=4, a 3=32+4=13 .(Ⅱ)证明:由已知a n -a n -1=3n -1,故.2131333)()()(21112211-=++++=+-++-+-=-----nn n n n n n n a a a a a a a a所以证得213-=nn a .3.(1)第1位职工的奖金a 1=nb ,第2位职工的奖金a 2=n1(1-n1)b ,第3位职工的奖金a 3=n1(1-n1)2b ,…,第k 位职工的奖金a k =n1 (1-n1)k -1b ;(2)a k -a k +1=21n(1-n1)k -1b >0,此奖金分配方案体现了“按劳分配”或“不吃大锅饭”的原则.(3)设f k (b )表示奖金发给第k 位职工后所剩余数,则f 1(b )=(1-n1)b ,f 2(b )=(1-n1)2b ,…,f k (b )=(1-n1)k b .得P n (b )=f n (b )=(1-n1)nb ,故eb b P n n =∞→)(lim .4.(1)当n ≥3时,x n =221--+n n x x ;=-=--=-+=-==-=212212232121,21)(212,)2(a a x x x x x x x a a x x aaa x x x x x x x 41)21(21)(2122332334=--=--=-+=-=, 由此推测a n =(-21)n -1a (n ∈N . 证:因为a 1=a >0,且1111121)(2122----+-=-=-=-+=-=n n n nn n n n n n n a x x x x x x x x x a (n ≥2)所以a n =(-21)n -1a .(3)当n ≥3时,有x n =(x n -x n -1)+(x n -1-x n -2)+…+(x 2-x 1)+x 1=a n -1+a n -2+…+a 1,由(2)知{a n }是公比为-21的等比数列,所以32)21(1lim 1=--=∞→a x n n a .5.特征方程x 2=2x -2有两个相异实根x 1=1+i,x 2=1-i.则数列{a n }的通项公式为:n n n i C i C a )1()1(21-++=,代入前两项的值,得⎩⎨⎧=-++=-++4)1()1(0)1()1(222121i C i C i C i C解此方程组得:C 1=-1-i,C 2=-1+i, 故π+-=--+-=+++41cos2)1()1(2311n i i an n n n.6.特征方程x 3=2x 2+x -2有三个相异实根x 1=1,x 2=-1, x 2=2,则数列{a n }的通项公式为:nn n C C C a 2)1(321+-+=,代入前三项的值,得⎪⎩⎪⎨⎧=+-=++=+-,68,24,02321321321C C C C C C C C C解此方程组得:C 1=-2,C 2=0,C 3=1 故22-=nna.7.特征方程x 3=6x 2-12x +2有三重实根x =2,则数列{a n }的通项公式为:nn C n nC C a 2)(3221⋅++=,代入前三项的值,得⎪⎩⎪⎨⎧=++=++=++,872248,21684,1222321321321C C C C C C C C C解此方程组得:C 1=1,C 2=43-,C 3=41 故222)34(-+-=n nn n a.8.特征方程x 3=7x 2-16x +12有x 1=x 2=2, x 3=3,,则数列{a n }的通项公式为:32132)(C nC C a nn n +⋅+=,代入前三项的值,得⎪⎩⎪⎨⎧-=++=++=++,1327248,1984,2322321321321C C C C C C C C C 解此方程组得:C 1=4,C 2=23,C 3=-3, 故.3232112+-+-⋅+=n n n n n a9. 由于登上n 级台阶可以从第n -2直接上来,也可以通过第n -1级分步上来,这样登上n 级台阶的走法不仅与登上n -1级走法有关,且也与登上n -2级台阶的走法有关,故这里可以考虑通过二阶递推式来进行求解.登上第一级只有一种走法,记a 1=1,登上第二级,有两种走法,记a 2=2,如果要登上第n 级,那么可能是第n -1级走上来,也可能是第n -2级跨上两级上来的,故有a n =a n -1+a n -2, 显然这是缺了F 0项的Fibonacci 数列,它的通项为 F n =51[(251+)n+1-(251-)n+1]所n 级楼梯,共有F n 种不同的走法.10.假设存在正整数列{a n }满足条件. ∵2212++≥n n n a a a , a n >0∴211≤-n n a a 22121≤--n n a a 23221---≤≤n n n a a 12a a ,n=3,4,5,又∵12a a 122221a a ⋅≤-所以有≤-1n n a a 221-n 12a a ⋅,n=2,3,4,5,∴≤⎪⎪⎭⎫ ⎝⎛⋅=--112221n n n a a a a ≤⎪⎪⎭⎫ ⎝⎛--+-2212)3()2(21n n n a a a ≤⎪⎪⎭⎫⎝⎛≤-++-+-22121)3()2(21a a a n n n∴212122212---⋅⎪⎭⎫⎝⎛≤n n n n a a a设[)Z k a k k∈∈+,2,2122取N=k+3则有<⋅⎪⎭⎫ ⎝⎛≤---212122212N N N Na a a,1122112211≤⋅⎪⎭⎫⎝⎛++++k k k k a 这Na 与是正整数矛盾.所以不存在正整数列{a n }满足条件.11.证明:令 10=a ,则有 11-++=k k k a a a ,且 ),2,1(1111=+=+-+k a a a a k k k k于是 ∑∑=+-=++=nk k k nk k k a a a a n 11111由算术-几何平均值不等式,可得 nn n a a a a a a 132211+⋅⋅⋅≥+nn n a a a a a a 113120+-⋅⋅⋅注意到 110==a a ,可知nn n nn a a a 11111+++≥,即nnnn a a 111+≥+12.令b n =a n 2n ,则b n+1=-32b n +12,两边减去 15 , 得b n+1-15=-32(b n -15),即数列{ b n -15}是公比为-32的等比数列,所以b n -15=(b 0-15)(-32)n =(a 0-15)(-32n ,a n =2n b n =2n (a 0-15)·(-32)n +15·2n , 即a n =(a 0-15)·(-3)n +15·2n (n ≥0),从而a n+1-a n = 2n10[ 403 (a 0-15)·(-32)n +1] ,设A=403 (a 0-15)则a n+1-a n = 2n10[ A(-32)n +1] ,若a 0>15, 则A >0,对充分大的奇数n 有(-32)n >1A a n <a n -1, 若a 0<15,则A <0. 对充分大的偶数n 有(32)n >-1A于是a n <a n -1.综上所述,当a 0≠15时,数列{a n }不是单调递增.仅当a 0= 15时a n+1-a n = 2n10>0,数列{a n }是单调递增.。

几种递推数列通项公式的求法

几种递推数列通项公式的求法

一阶线性递推数列主要有如下几种形式: (1)1()n n x x f n +=+ (2)1()n n x g n x +=(3)1(,0,1)n+n x =qx +d q,d q q ≠≠为常数;[例1]已知数列n x {}中,11121(2)n n x x x n -==+≥,,求n x {}的通项公式. [例2]已知函数1()22(1)2f x x x =-+≤≤的反函数为121(),1,()yg x x x g x ===,321(),,(),,n n x g x x g x -== 求数列n x {}的通项公式. (4)1(,nn n cx x c d x d+=+为非零常数); (5)1(,1,1)nn+n x =qx +d q,d q d ≠≠为非零常数;[例3]设数列11132(*)nn n n x x x x n N +==+∈.{}满足:,求数列n x {}的通项公式.[例5]设数列12215521(*)333n n n n x x x x x x n N ++===-∈.{}满足:,,求数列n x {}的通项公式.[解析]由2152(*)33n n n x x x n N ++=-∈,可得 2111222()(*)333n n n n n n x x x x x x n N ++++=-=-∈.-设11212521333n n n n y x x y y x x +=-=-=-=,则{}是公比为的等比数列,且,故2(*)3n y n N =∈n ().即12(2)3n n x x n --=≥n-1().用累加法得 12111221222()()()()()333n n n n n n n x x x x x x x x ------=-+-++-=+++ ,或 11221112()()()222()()1333n n n n n n n x x x x x x x x -----=-+-++-+=++++21()233[1()]2313nn -==--). [例6]在数列12211(*)n n n n x x x x x x n N ++===+∈{}中,已知,,求数列n x {}的通项公式.[例9]数列{n x }满足21121,2n n x x x x n x =+++= ,求数列{n x }的同项公式.一、构造等差数列求数列通项公式例1 在数列{}n a 中,1a =12,133n n n a a a +=+(n N +∈),求数列{}n a 通项公式.解析:由313n n a n a a ++=得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,=-+n n a a 11131,设b n =n a 1,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }是首项b 1=2,公差d=31的等差数列,根据等差数列的通项公式得b n =2+31(n-1)=31n +35∴数列通项公式为a n =53+n例2 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1222-n n S S (n ≥2),求S n 与a n 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2与例3 10
a1 = 105 a 例2.已知数列{ an }中, n 1 100
a
2 n
求通项 解: 由
an
100
2 an
得lg
an1
an1 2∴由例1得
an
bn=7×2n-1 ﹣2
n 1
则bn+1=2bn+2

lg an 7 2
2
于是
an 10
以上的
an

n 1
个式子连乘得
an f (1) f (2) f (3) ……f(n a1

1)
an
bf(1)f(2) ……
f(n-1)
特例.a1=5,an+1= 3n an,求通项公式 .
或例5 12
例5.已知数列{ 求通项
n a an }中, a = 4, a 2 n 1 n 1
作代换 则
bn =
an 2
b1
=5+2=7,
bn 1=2 bn
于是{bn}是等比数列
由等比数列的通项公式得 由所作代换得 反思
bn an
=7× 2
n 1
=7×
2 n 1- 2
17
1, an1 2an 3(n 1) 则该数列的通项an ______________
练习1:在数列{an} 中,若 a1
解法2:取对数(变模型5),用叠加法(自去练) 21
例6(2004,全国I,理15.)已知数列{an},满足a1=1, n≥2,
an a1 2a2 3a3 (n 1)an1
则{an}的通项 an
1 ___
n 1 n2
解:由已知,得
an1 a1 2a2 3a3 (n 1)an1 nan
bn an n
an 1 an 1 解: (I)由已知有 n 1 n 2n
bn 1 bn
利用累差迭加即可求出数列 {bn } 的通项公式: bn 2
1 2n
(II)由(I)得


易得 于是
n an 2n n 1 2 n n n k Sn = (2k k 1 ) (2k ) k k 1 2 k 1 k 1 k 1 2
4
递推数列的题目常常是给出递推公式让你求解,或是给出 前n项和Sn与an的关系式让你求解。求解的问题或是求an,Sn 或是求an、Sn的极限等,不论是哪类问题,往往是通项 an 一 旦出来,其它问题就迎刃而解了。
6
二、递推公式转化通项公式的几个常见模型 及例子
注意几点: (一)有关概念:我们在研究数列{an}时,如果任一项an与它的前一项 a n(或几项)间的关系可以用一个公式来表示,则此公式就称为数列 1 的递推公式。通过递推公式给出的数列,一般我们也称之为递推数列。 递推公式是给出数列的一种重要方法。 (二)求递推数列的通项公式的方向,是将其转化为等差数列或等比数 列的问题来解决。 (三)求递推数列的通项公式的手段,是连续代换,层层化简,最终化 为等差数列或等比数列的问题来解决。 (四)求递推数列的通项公式的数学思想是转化化归,高化低、隐化 显、生化熟、繁化简。 (五)求递推数列的通项公式的捷径,是记住常见模型、记住相应手段。
an 。
解。 由
an1
2 an
n

an a2 n 1 a n 1 n2 1 ∴ 2 ,……, 2 , 2 an2 a1 an1
将上述n – 1个式子连乘得
n ( n1) 2
an1 2n an
an 2 a1
n ( n 1) 2

an 4 2
2
n2 n 4 2
n1
sn (n 1)2n1 1
例8:已知a1 5, an 5an1 5 , (n 2)求an
n1
答案:an (5n 4) 5
1 练习:已知 a1 1, an an 1 21 n , (n 2)求an 2
1 1 答案:an 2n n 2 2
1 1 1 1 1 an 1 3 an
1 1 是以 an
2 3
1 为首项, 为公比的等比数列. 3
1 2 1 2 1 n1 n an 3 3 3
n(n-1)
an = n(n 1) + 3
20
模型6. 解:
a1 b,a n1 = an f (n) ( an ≠0 ) a n1 = a 由 f ( n) n 1 an f (n) 得
an an1 f (n 1), f (n 2) an1 an2
a ………… 2 f (1) a1
n k 1
n
1 2 n 1
n N*
(2k ) n(n 1)
k n2 4 k 1 2n1 k 1 2
k k 1 又 k 1 2
n
是一个典型的错位相减法模型
Sn = n(n 1) n 1 4 2
n2
评析:09年高考理科数学全国(一)试题将数列题前置,考查构造 新数列和利用错位相减法求前n项和,一改往年的将数列结合 不等式放缩法问题作为押轴题的命题模式。具有让考生和一线 教师重视教材和基础知识、基本方法基本技能,重视两纲的导向 作用。也可看出命题人在有意识降低难度和求变的良苦用心。
用此式减去已知式,得 当 即 又
n2

an1 an nan
an1 (n 1)an
a2 a1 1
a3 an a2 a4 a1 1, 1, 3, 4, , n a1 a2 a3 an1
将以上n个式子相乘,得
n! an 2
(n 2)
模型7.
a2 a1 f (1)
以上的
n-1 个式子叠加得
an a1 f (1) f (2) ……

f (n 1)
an a1 f (1) f (2) f (3) …… f (n 1)
特例.a1=3,an+1=an+2n,求通项公式. 例4
11
例4.已知数列{
(Ⅲ)证明: a1
x0
n a2 an n 1
3an 2an 1
1 1 2 an ≥ x , 2, n 1 1 x (1 x) 2 3n 2
解:(Ⅰ) an 1

1 2 1 an1 3 3a n


1 2 1 an 3
72n1 2
18
例3. a1=2,an+1=2an4,求通项an . 解. 由已知易知各项均为正数,于是将 an+1=2an4 两边取以2为底的对数得 log2an+1=1+4log2an 令log2an=bn,则有bn+1=1+4bn 令bn+1+x=4(bn+x)则x=1/3 于是bn+1+1/3=4(bn+1/3) 令cn=bn+1/3则cn+1=4cn 而b1=1,c1=4/3,所以cn=(4/3)4n-1 bn=(4/3)4n-1-1/3
特例: a1= 5, an+1= 2 an + 4n , 求通项公式.(请自己去完成) 13
例7:08全国卷文1.22
在数列{an}中,a1=1,an+1=2an+2n
an (Ⅰ)设 bn n 1 2
证明:数列{bn}是等差数列;
(Ⅱ)求数列{an}的前n项和Sn。
bn n
an n2
高考复习专题讲座
浅议求递推数列的通项公式的数学思想
禄劝民族实验中学
付贵有
王自存
2
一、浅谈递推数列在高考中的地位和 对策
二、几个常见模型的通项公式的求法及例子
2
一、浅谈递推数列在高考试题中的
地位与对策
3
数列在高中数学课本上篇幅很小,, 然而在高考试题中的 情况却相反。 1981年、1982年、1984年、1986年、1987年、1999年、 2000年、2002年、2003年、2004年、2005年、2006年,这些 年的题中都有考递推数列的题,且常常是大题,甚至是压轴题。 2006年的36 套题中,考递推数列的大题有25 题。2007年的38 套题中有22题,2008年的38套题中有27题,09 年的文科18套 题中有9道题。理科18套题中有15道题 关于递推公式,在《考试说明》中的考试要求是:“了解递 推公式是给出数列的一种方法,并能根据递推公式写出数列的前 几项”。但实际上,从近些年各地高考试题来看,是加大了对 “递推公式”的考查。
a1 =3,an1 an }中,
an+2n,求通项 an

解。 由 an1
an +2n

an1 an 2n
∴ an an1 2(n-1)
…………………………
, ,
an1 an2 2(n-2)
a3 a2 2 2
a 2 a1=2×1
叠加得
于是
an a1
整理得
an 2
4 n1 1 4 3 3
19
模型5.
a1 b, a n 1
=
an f (n)

解: 由 ∴
a n1 = an f (n)
an an1 f (n 1) an1 an2 f (n 2)
a n1 an
= f ( n)
……………………………… a3 a2 f (2)
相关文档
最新文档