几类常见递推数列的解题方法
常见递推数列通项的九种求解方法

常见递推数列通项的九种求解方法高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。
是一类考查思维能力的好题。
要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。
类型一:1()n n a a f n +=+(()f n 可以求和)−−−−→解决方法累加法例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。
解析:121(2)n n a a n n --=-≥∴213243113521n n a a a a a a a a n --=⎧⎪-=⎪⎪-=⎨⎪⎪-=-⎪⎩ 上述1n -个等式相加可得: ∴211n a a n -=- 2n a n ∴=评注:一般情况下,累加法里只有n-1个等式相加。
【类型一专项练习题】1、已知11a =,1n n a a n -=+(2≥n ),求n a 。
2、已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a 。
3、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。
4、已知}{n a 中,nn n a a a 2,311+==+,求n a 。
5、已知112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式.6、 已知数列{}n a 满足11,a =()1132,n n n a a n --=+≥求通项公式n a ?7、若数列的递推公式为1*113,23()n n n a a a n N ++==-⋅∈,则求这个数列的通项公式8、 已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。
9、已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
最全的递推数列求通项公式方法

最全的递推数列求通项公式方法递推数列是指数列中的每一项都由前一项通过其中一种规律得出。
求递推数列的通项公式是数学中的重要问题,可以通过多种方法实现。
下面将介绍最常用的几种方法。
1.等差数列通项公式等差数列是指数列中的每一项与前一项之差都相等的数列。
设等差数列的第一项为a1,公差为d,则第n项为an=a1+(n-1)d。
这是等差数列的通项公式。
2.等比数列通项公式等比数列是指数列中的每一项与前一项之比都相等的数列。
设等比数列的第一项为a1,公比为r,则第n项为an=a1*r^(n-1)。
这是等比数列的通项公式。
3.斐波那契数列通项公式斐波那契数列是指数列中的每一项都是前两项之和。
设斐波那契数列的第一项为a1,第二项为a2,则第n项为an=a(n-1)+a(n-2)。
但通常情况下,我们将斐波那契数列的第一项设为0,第二项设为1,此时的通项公式为an=F(n-1),其中F(n-1)表示第n-1个斐波那契数。
4.龙贝尔数列通项公式龙贝尔数列是指数列中的每一项都是前一项与当前项索引之和。
设龙贝尔数列的第一项为a1,则第n项为an=a(n-1)+n。
这是龙贝尔数列的通项公式。
5.通项公式的递推法有些数列并没有明确的通项公式,但可以通过递推法求得通项公式。
递推法的核心思想是找到数列中的其中一种规律,通过前面的项得出后面的项。
这种方法比较灵活,可以适用于各种类型的数列。
总结起来,以上是求递推数列通项公式的几种常见方法。
在实际中,我们可以观察数列的规律,推测出通项公式,然后通过数学推导证明其正确性。
对于复杂的递推数列,我们可能需要运用更多的数学知识和技巧,如离散数学、线性代数等。
九类常见递推数列求通项公式方法

九类常见递推数列求通项公式方法递推数列通项求解方法类型一:an1panq(p1)思路1(递推法):anpan1qp(pan2q)qpppan3qqq……pn1a1q(1pp2…pn2qqn1。
)a1pp11p思路2(构造法):设an1pan,即p1q得qp1,数列an是以a1为首项、p为公比的等比数列,则anqn1qana1pp11pqn1a1p,即p1p1q例1已知数列an满足an2an13且a11,求数列an的通项公式。
解:方法1(递推法):an2an132(2an23)3222an3333……2n13(122…22n23n13n1)1223。
2112方法2(构造法):设an12an,即3,数列an3是以a134n1n1n1为首项、2为公比的等比数列,则an3422,即an23。
类型二:an1an思路1(递推法):f(n)anan1f(n1)an2f(n2)f(n1)an3f(n3)f(n2)f(n1)…a1f(n)。
i1n1思路2(叠加法):anan1f(n1),依次类推有:an1an2f(n2)、n1an2an3f(n3)、…、a2a1f(1),将各式叠加并整理得ana1i1f(n),即n1ana1i1f(n)。
例2已知a11,anan1n,求an。
解:方法1(递推法):anan1nan2(n1)nan3(n2)(n1)nn……a1[23…(n2)(n1)n]i1nn(n1)2。
方法2(叠加法):anan1n,依次类推有:an1an2n1、an2an3n2、…、nnna2a12,将各式叠加并整理得ana1i2n,ana1i2ni1nn(n1)2。
类型三:an1f(n)an思路1(递推法):anf(n1)an1f(n1)f(n2)an2f(n1)f(n2)f(n3)an3…f(1)f(2)f(3)…f(n2)f(n1)a1。
anan1a2a1an1an2ana1思路2(叠乘法):f(n1),依次类推有:f(n2)、an2an3f(n3)、…、f(1),将各式叠乘并整理得f(1)f(2)f(3)…f(n2)f(n1),即anf(1)f(2)f(3)…f(n2)f(n1)a1。
递推法解数列整除问题的常用方法

递推法解数列整除问题的常用方法递推法是解决数列问题的常用方法之一,其核心思想是根据已知的前项推导出后项,直到得到所求的项。
在解决数列整除问题中,递推法同样适用。
首先,我们需要明确题目所给的数列条件。
在数列整除问题中,常见的条件包括等差数列(公差为d的数列)、等比数列(公比为r的数列),以及递推关系。
我们以这些常见的数列为例进行讲解。
1.等差数列的整除问题:等差数列的通项公式为:an = a1 + (n-1)d,其中an为第n项,a1为第一项,d为公差。
例如题目给定的等差数列为1,4,7,10,13,...,其中公差d=3、我们需要找出该数列中可以整除一些特定数的项。
解决方法:(1)首先,我们找到该等差数列的第一项a1和公差d。
(2)观察题目给定的数是否为公差d的倍数。
如果是,说明数列中存在满足题目要求的项;如果不是,说明数列中不存在符合要求的项。
(3)如果题目要求找到满足一些条件的特定项,可以通过递推法得到满足要求的项。
例如,题目要求找到该数列中可以整除6的项:我们首先计算公差d=3,发现6不是3的倍数,所以该数列中不存在可以整除6的项。
2.等比数列的整除问题:等比数列的通项公式为:an = a1 * r^(n-1),其中an为第n项,a1为第一项,r为公比。
例如题目给定的等比数列为1,2,4,8,16,...,其中公比r=2、我们需要找出该数列中可以整除一些特定数的项。
解决方法:(1)首先,我们找到该等比数列的第一项a1和公比r。
(2)观察题目给定的数是否等于一些项的值。
如果是,说明数列中存在满足题目要求的项;如果不是,说明数列中不存在符合要求的项。
(3)如果题目要求找到满足一些条件的特定项,可以通过递推法得到满足要求的项。
例如,题目要求找到该数列中可以整除32的项:我们首先计算公比r=2,发现32等于第5项的值,即32=2^4、所以该数列中存在可以整除32的项。
3.递推关系的整除问题:有些数列的递推关系不仅包含等差或等比关系,还可能包含其他递推关系,例如斐波那契数列。
几类常见递推数列的解题方法

类型一:累加法 形如a 1+n =a n + f (n ), 其中f (n ) 为关于n 的多项式或指数形式(a n )或可裂项成差的分式形式.——可移项后叠加相消.类型二: 累积法 形如)(1n f a a n n =+.其中f (n ) =ppc mn b mn )()(++ (p ≠0,m ≠0,b –c = km ,k ∈Z )或 n n a a 1+=kn (k ≠0)或nn a a 1+= km n ( k ≠ 0, 0<m 且m ≠ 1).类型三:形如1+n n a a = 1++n n qa pa ,(pq ≠ 0).且0≠n a 的数列,——可通过倒数变形为基本数列问题.当p = -q 时,则有:p a a n n 1111=-+ 转化为等差数列; 当p ≠ -q 时,则有:p pa q a n n 111+-=+.同类型五转化为等比数列. 类型四:特征根法 形如a 1+n =pa n + q ,pq ≠0 ,p 、q 为常数.当p =1时,为等差数列;当p ≠1时,可在两边同时加上同一个数x ,即a 1+n + x = pa n + q + x⇒a 1+n + x = p (a n + p x q +), 令x =px q + ∴x =1-p q 时,有a 1+n + x = p (a n + x ), 从而转化为等比数列 {a n +1-p q } 求解. 类型五:形如a 1+n =pa n + f (n ),p ≠0且 p 为常数,f (n )为关于n 的函数.当p =1时,则 a 1+n =a n + f (n ) 即类型一.当p ≠1时,f (n )为关于n 的多项式或指数形式(a n)或指数和多项式的混合形式.⑴若f (n )为关于n 的多项式(f (n ) = kn + b 或kn 2+ bn + c ,k 、b 、c 为常数),——可用待定系数法转化为等比数列.⑵若f (n )为关于n 的指数形式(a n ).①当p 不等于底数a 时,可转化为等比数列;②当p 等于底数a 时,可转化为等差数列.。
根据递推关系求数列通项公式的几种方法

根据递推关系求数列通项公式的几种方法要求根据递推关系求解数列的通项公式,其实是要求找到一个能将数列的每一项都表示为n(项数)的函数的公式。
在数学中,有几种方法可以求解这类问题。
一、代数方法:对于一些简单的递推关系,可以尝试使用代数方法来求解数列的通项公式。
这种方法通过观察数列中的模式,尝试将递推关系转化为代数方程,然后解方程得到通项公式。
例如,我们考虑求解斐波那契数列的通项公式。
斐波那契数列的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1我们假设通项公式为Fn=k1a^n+k2b^n,其中k1、k2为常数,a、b为待定数。
k1a^n+k2b^n=k1a^(n-1)+k2b^(n-1)+k1a^(n-2)+k2b^(n-2)整理得:k1a^2-k1a-k2=0。
解这个方程,可以得到a和b的值,然后将a和b的值代入通项公式中,即可求解斐波那契数列的通项公式。
二、特征根法:特征根法是求解一阶线性递推关系(如Fn=aFn-1+b)的通项公式的常用方法。
该方法的基本思想是,将递推关系转化为一个一阶线性常微分方程,然后解方程得到通项公式。
例如,我们考虑求解斐波那契数列的通项公式。
斐波那契数列满足的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1将递推关系转化为一阶线性常微分方程得到:y''-y'-y=0其中y=Fn。
解这个方程得到的特征根为α1=(1+√5)/2,α2=(1-√5)/2通项公式可以表示为:Fn=k1(α1)^n+k2(α2)^n其中k1、k2为常数。
利用初始条件F1=1,F2=1,可以求解出k1和k2的值,进而求解出斐波那契数列的通项公式。
三、母函数法:母函数法是一种求解递推关系的高效方法,尤其适用于求解求和问题。
该方法的基本思想是,将数列视为一个幂级数的系数列,通过构造母函数来解决递推关系。
例如,我们考虑求解斐波那契数列的通项公式。
斐波那契数列的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1我们假设母函数为F(x)=F0+F1x+F2x^2+F3x^3+...F(x)=x(F(x)-F0)+x^2F(x)整理得:F(x)=F0+xF(x)+x^2F(x)移项得:F(x)=F0/(1-x-x^2)。
数列递推公式的九种方法

求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法例1 在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n 则,211112-+=a a 312123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.二、作商求和法例2 设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题) 解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0 ∵ n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,n n a a n n 11-=- 逐项相乘得:n a a n 11=,即n a =n1. 三、换元法例3 已知数列{n a },其中913,3421==a a ,且当n ≥3时,)(31211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编).解:设11---=n n n a a b ,原递推式可化为: }{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31.故n n n n b b )31()31(91)31(2211==⋅=---.故n n n a a )31(1=--.由逐差法可得:nn a )31(2123-=.例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。
十类递推数列的通项公式的求法

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&
文!黄爱民
一、an+1= an+ f(n)型 这类递推数列可通过累加法求得其通项公式.当 f(n)
为常数时,通过累加法可求得等差数列的通项公式;当
f(n)为等差数列形式时,an+1= an+ f(n)为二阶等差数列, 它的通项公式的形式为 an=an2+bn+c.同时要注意它与等 差数列求和公式的一般形式的区别,后者是 Sn=an2+bn, 它的常数项一定为 0.
对数,得 lgan=lg2an4- 1 ,则有 lgan=4lgan-1+lg2.
∴lgan+
1 3
lg2=4(lgan-
1+
1 3
lg2).从而知{lgan+
1 3
lg2}是
首项为 1 lg2,公比为 4 的等比数列. 3
∴lgan=
(4n-1- 1)lg2 3
=(4n-1- 1)lg#3 2
,即
高中生·高考指导 13
×(3 2
)n- 1=(3 2
)n,即
an=
2n 3n- 2n
.
九、a n+1=
Aan+B Can+D
(A,B,C,D 为非零常数)型
这类递推数列的通项公式是利用函数的不动点来
求的.尽管这个知识点高考不作要求,但考题往往就从
这些地方出,只需增加一些铺垫.
例 9 若 f(x0)=x0,则称 x0 为 f(x)的不动点.已知函 数 f(x)= 2x+3 .
+1 2
.令
bn=
an 2n
,则有
bn+1=
3 2
bn+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
叠加、 叠乘、迭代递推、代数转化——几类常见递推数列的教学随笔已知数列的递推关系式求数列的通项公式的方法大约分为两类:一类是根据前几项的特点归纳猜想出a n 的表达式,然后用数学归纳法证明;另一类是将已知递推关系,用代数法、迭代法、换元法,或是转化为基本数列(等差或等比)的方法求通项.第一类方法要求学生有一定的观察能力以及足够的结构经验,才能顺利完成,对学生要求高.第二类方法有一定的规律性,只需遵循其特有规律方可顺利求解.在教学中,我针对一些数列特有的规律总结了一些求递推数列的通项公式的解题方法. 一、叠加相消.类型一:形如a 1+n =a n + f (n ), 其中f (n ) 为关于n 的多项式或指数形式(a n )或可裂项成差的分式形式.——可移项后叠加相消.例1:已知数列{a n },a 1=0,n ∈N +,a 1+n =a n +(2n -1),求通项公式a n . 解:∵a 1+n =a n +(2n -1)∴a 1+n =a n +(2n -1) ∴a 2-a 1 =1 、a 3-a 2=3 、…… a n -a 1-n =2n -3 ∴a n = a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a 1-n )=0+1+3+5+…+(2n -3) =21[1+(2n -3)]( n -1)=( n -1)2 n ∈N + 练习1:⑴.已知数列{a n },a 1=1, n ∈N +,a 1+n =a n +3 n , 求通项公式a n .⑵.已知数列{a n }满足a 1=3,)1(21+=-+n n a a n n ,n ∈N +,求a n .二、叠乘相约.类型二:形如)(1n f a a n n =+.其中f (n ) =p pc mn b mn )()(++ (p ≠0,m ≠0,b –c = km ,k ∈Z )或 n n a a 1+=kn (k ≠0)或nn a a 1+= km n( k ≠ 0, 0<m 且m ≠ 1).例2:已知数列{a n }, a 1=1,a n >0,( n +1) a 1+n 2 -n a n 2+a 1+n a n =0,求a n . 解:∵( n +1) a 1+n 2 -n a n 2+a 1+n a n =0 ∴ [(n +1) a 1+n -na n ](a 1+n +a n )= 0 ∵ a n >0 ∴ a 1+n +a n >0 ∴ (n +1) a 1+n -na n =0 ∴11+=+n n a an n∴nn n n n nn a a a a a a a a a a n n n n n n n 11212312111232211=⨯⨯⨯--⨯--⨯-=⨯⨯⨯⨯⨯=-----练习2:⑴已知数列{a n }满足S n =2n a n ( n ∈N *), S n 是{ a n }的前n 项和,a 2=1,求a n .⑵.已知数列{a n }满足a 1+n = 3 n a n ( n ∈N *),且a 1=1,求a n .三、逐层迭代递推.类型三:形如a 1+n = f (a n ),其中f (a n )是关于a n 的函数.——需逐层迭代、细心寻找其中规律.例3:已知数列{a n },a 1=1, n ∈N +,a 1+n = 2a n +3 n ,求通项公式a n . 解: ∵a 1+n = 2 a n +3 n∴ a n =2 a 1-n +3 n -1 =2(2 a 2-n +3 n -2)+3 n -1 = 22(2 a 3-n +3 n -3)+2·3 n -2+3 n -1=……=2 n -2(2 a 1+3 )+2 n -3·3 2+2 n -4·3 3+2 n-5·3 4+…+22·3 n-3+2·3 n -2+3 n-1 =2 n -1+2 n -2·3 +2 n -3·3 2+2 n-4·3 3+…+22·3 n -3+2·3 n -2+3 n -1 n n n n 2323123121-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=- 练习3:⑴.若数列{a n }中,a 1=3,且a 1+n =a 2n (n ∈N +),求通项a n .⑵.已知数列{a n }的前n 项和S n 满足S n =2a n +()n1-,n ∈N +,求通项a n .四、运用代数方法变形,转化为基本数列求解.类型四:形如1+n n a a = 1++n n qa pa ,(pq ≠ 0).且0≠n a 的数列,——可通过倒数变形为基本数列问题.当p = -q 时,则有:p a a n n 1111=-+ 转化为等差数列; 当p ≠ -q 时,则有:ppa q a n n 111+-=+.同类型五转化为等比数列. 例4:若数列{a n }中,a 1=1,a 1+n =22+n na a n ∈N +,求通项a n . 解: ∵ 221+=+n n n a a a又,011>=a ∴0>n a ,∴n n a a 12111+=+ ∴21111=-+n n a a ∵111=a∴数列{ a n }是首项为1,公差为21的等差数列. ∴n a 1=1+()121-n ∴a n =12+n n ∈N + 练习4:已知f (n ) = x x +32,数列{ a n }满足 a 1=1,a n =23f (a 1-n ),求a n .类型五:形如a 1+n =pa n + q ,pq ≠0 ,p 、q 为常数.当p =1时,为等差数列;当p ≠1时,可在两边同时加上同一个数x ,即a 1+n + x = pa n + q + x⇒a 1+n + x = p (a n +p x q +), 令x =px q + ∴x =1-p q时,有a 1+n + x = p (a n + x ),从而转化为等比数列 {a n +1-p q} 求解. 例5:已知数列{a n }中,a 1=1,a n =21a 1-n + 1,n = 1、2、3、…,求通项a n . 解:∵ a n = 21a 1-n + 1 ⇒ a n -2 =21(a 1-n -2)又∵a 1-2 = -1≠0 ∴数列{ a n -2}首项为-1,公比为21的等比数列.∴ a n -2 = -11)21(-⨯n 即 a n = 2 -2n -1 n ∈N +练习5:⑴.已知 a 1=1,a n = 2 a 1-n + 3 (n = 2、3、4…) ,求数列{a n }的通项.⑵. 已知数列{a n }满足a 1=21,a 1+n =12+n n a a ,求a n .类型六:形如a 1+n =pa n + f (n ),p ≠0且 p 为常数,f (n )为关于n 的函数.当p =1时,则 a 1+n =a n + f (n ) 即类型一.当p ≠1时,f (n )为关于n 的多项式或指数形式(a n )或指数和多项式的混合形式.⑴若f (n )为关于n 的多项式(f (n ) = kn + b 或kn 2+ bn + c ,k 、b 、c 为常数),——可用待定系数法转化为等比数列.例6:已知数列{ a n }满足a 1=1,a 1+n = 2a n +n 2,n ∈N +求a n . 解:令a 1+n + x [a (n +1)2+ b (n +1) + c ] = 2(a n + an 2+ bn + c )即 a 1+n = 2 a n + (2a –ax )n 2+ (2b -2ax – bx )n +2c –ax –bx – cx 比较系数得:⎪⎩⎪⎨⎧=---=--=-0202212cx bx ax c bx ax b ax a ⇒ ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-=-=x bx ax c x ax b x a 22221 ⇒ 令x = 1,得:⎪⎩⎪⎨⎧===321c b a ∴ a 1+n + (n +1)2+2(n +1) + 3 = 2(a n + n 2+2n + 3) ∵ a 1+1+2×1+3 = 7令b n = a n + n 2+2n + 3 则 b 1+n = 2b n b 1= 7 ∴数列{ b n }为首项为7,公比为2德等比数列 ∴ b n = 7× 21-n 即 a n + n 2+2n + 3 = 7× 21-n ∴ a n = 7× 21-n -( n 2+2n + 3 ) n ∈N +⑵若f (n )为关于n 的指数形式(a n). ①当p 不等于底数a 时,可转化为等比数列; ②当p 等于底数a 时,可转化为等差数列. 例7:(同例3)若a 1=1,a n = 2 a 1-n + 31-n ,(n = 2、3、4…) ,求数列{a n }的通项a n .解: ∵ a n = 2 a 1-n + 31-n ∴ 令a n + x ×3n = 2(a 1-n +x ×31-n ) 得 a n = 2 a 1-n -x ×31-n 令-x ×3n = 3n ⇒x = -1 ∴ a n -3n = 2(a 1-n -31-n ) 又 ∵ a 1-3 = - 2∴数列{nn a 3-}是首项为-2,公比为2的等比数列.∴nn a 3-=-2·21-n 即a n = 3n -2n n ∈N +例8:数列{ a n }中,a 1=5且a n =3a 1-n + 3n -1 (n = 2、3、4…) 试求通项a n . 解: a n =3a 1-n + 3n -1 ⇒ a n +-=--)21(3211n a 3n⇒132132111+-=---n n n n a a ⇒{nn a 321-}是公差为1的等差数列. ⇒n n a 321-=3211-a +(1-n ) = 3215-+(1-n ) = n +21 ⇒a n = (213)21+⨯+n n n ∈N +⑶若f (n )为关于n 的多项式和指数形式(a n )的混合式,则先转换多项式形式在转换指数形式.例如上面的例8.练习6:⑴.已知数列{a n }中a 1= 1,a 1+n = 3 a n + n ,+∈N n ; 求{a n }的通项.⑵设a 0为常数,且a n = 31-n -2 a 1-n (n ∈N +且n ≥ 2 ). 证明:对任意n ≥ 1,a n =51[3n+ (-1)1-n 2n ] +(-1)n 2n a 0. 类型七:形如a 2+n = p a 1+n + q a n ( pq ≠ 0, p 、q 为常数且p 2+ 4q > 0 ),——可用待定系数法转化为等比数列.例9: 已知数列{a n }中a 1= 1, a 2= 2且n n n a a a 212+=++ ,+∈N n ; 求{a n }的通项. 解:令a 2+n +x a 1+n = (1+x ) a 1+n + 2 a n ⇒ a 2+n +x a 1+n = (1+x )( a 1+n +x+12a n)令x =x+12 ⇒x 2+ x – 2 = 0 ⇒x = 1或 -2当x = 1时,a 2+n + a 1+n =2(a 1+n + a n ) 从而a 2+ a 1= 1 + 2 = 3 ∴数列{ a 1+n + a n }是首项为3且公比为2的等比数列. ∴ a 1+n + a n = 312-⨯n …… …… ①当x = - 2时, a 2+n - 2a 1+n = - (a 1+n -2a n ) , 而 a 2- 2a 1= 0 ∴ a 1+n - 2a n = 0 …… …… ② 由①、②得:a n = 21-n , +∈N n练习7:⑴已知: a 1= 2, a 2= 35, n n n a a a 323512-=++ ,(n = 1、2、3、……),求数列{ a n }的通项.⑵已知数列:1、1、2、3、5、8、13、……,根据规律求出该数列的通项. 五、数列的简单应用.例10:设棋子在正四面体ABCD 的表面从一个顶点移向另外三个顶点时等可能的.现抛掷骰子,根据其点数决定棋子是否移动,若投出的点数是奇数,则棋子不动;若投出的点数是偶数,棋子移动到另外一个顶点.若棋子初始位置在顶点A ,则:⑴投了三次骰子,棋子恰巧在顶点B 的概率是多少? ⑵投了四次骰子,棋子都不在顶点B 的概率是多少? ⑶投了四次骰子,棋子才到达顶点B 的概率是多少? 分析:考虑最后一次投骰子分为两种情况①最后一次棋子动;②最后一次棋子不动. 解:∵ 事件投一次骰子棋子不动的概率为21;事件投一次骰子棋子动且到达顶点B 的概率为3121⨯ =61. ⑴.投了三次骰子,棋子恰巧在顶点B 分为两种情况①.最后一次棋子不动,即前一次棋子恰在顶点B ;②.最后一次棋子动,且棋子移动到B 点.设投了i 次骰子,棋子恰好在顶点B 的概率为p i ,则棋子不在顶点B 的概率为(1- p i ).所以,投了i +1次骰子,棋子恰好在顶点B 的概率:p 1+i = p i ×21+ (1- p i )×61i = 1、2、3、4、…… ∴ p 1+i = 61 + 31×p i ∵ p 1= 3121⨯=61 ∴ p 2=92 ∴ p 3=5413⑵.投了四次骰子,棋子都不在顶点B ,说明前几次棋子都不在B 点,应分为两种情况①最后一次棋子不动;②最后一次棋子动,且不到B 点.设投了i 次骰子,棋子都不在顶点B 的概率为i p ',则投了i +1次骰子,棋子都不在顶点B 的概率为:1+'i p =i p '×21+ i p '×21×(1﹣31) i = 1、2、3、4、…… 即:1+'i p =65i p ' 又∵1p '= 21+21×(1﹣31) = 65 ∴ 4p ' = (65)4 ⑶.投了四次骰子,棋子才到达顶点B ;说明前三次棋子都不在B 点,最后一次棋子动且到达顶点B .设其概率为P 则: P =3121⨯×3p ' = 61×(65)3= 1296125答:(略).例11:用砖砌墙,第一层(底层)用去了全部砖块的一半多一块;第二层用去了剩下的一半多一块,…,依次类推,每层都用去了上层剩下的一半多一块.如果第九层恰好砖块用完,那么一共用了多少块砖?分析:本题围绕两个量即每层的砖块数a i 和剩下的砖块数b i ,关键是找出a i 和b i 的关系式,通过方程(组)求解.解:设第i 层所用的砖块数为a i ,剩下的砖块数为b i (i = 1、2、3、4、…… )则b 9= 0,且设b 0为全部的砖块数,依题意,得a 1=21b+ 1,a2=21b1+ 1,……ai=21b1-i+ 1 …………①又b1-i = ai+ bi……………②联立①②得b1-i -bi=21b1-i+ 1 即bi=21b1-i- 1∴bi + 2 =21(b1-i+ 2) ∴b9+2 = (21)9(b+ 2 ) ∴b+2 = 2×29∴b= 1022练习8:⑴十级台阶,可以一步上一级,也可以一步上两级;问上完十级台阶有多少种不同走法?⑵. 三角形内有n个点,由这n个点和三角形的三个顶点,这n + 3个点可以组成多少个不重叠(任意两个三角形无重叠部分)的三角形?⑶.甲、乙、丙、丁四人传球,球从一人手中传向另外三个人是等可能的.若开始时球在甲的手中.若传了n次球,球在甲手中的概率为an ;球在乙手中的概率为bn.(n = 1、2、3、4、……).①问传了五次球,球恰巧传到甲手中的概率a5和乙手中的概率b5分别是多少?②若传了n次球,试比较球在甲手中的概率an 与球在乙手中的概率bn的大小.③传球次数无限多时,球在谁手中的概率大?参考答案练习1:⑴. an =21(3 n-1) ⑵. a n=nn2+练习2:⑴. a n= n -1 ⑵. a n= 32)1(-nn练习3:⑴. an = 321-n(提示:可两边取对数) ⑵. an=32[22-n+ (-1)1-n]练习4:an =23+n练习5:⑴a n= 21+n-3 ⑵a n=12211+--nn练习6:⑴可得a1+n +21(n+1)+41= 3(a n+21n +41) 从而a n=47×31-n-(21n +41) ⑵(略)练习7:⑴an = 3 -132-nn,⑵由已知得a2+n= a1+n+ a n⇒a n=55[(251+)n-(251-)n]练习8:⑴∵a2+n= a1+n+ a n,a1= 1,a2= 2,∴a10= 89 ⑵∵a1+n= a n+ 2 ,a1= 3 ∴a n= 2n+1⑶①∵a1+n =31(1 - a n) b1+n=31(1 - b n) a1= 0 b1=31∴a5=8120;b5=24361.②可解得an =41-41×1)31(--n bn=41+121×1)31(--n∴当n为奇数时,an <41<b n;当n为偶数时,a n>41>b n③当n →∞时,an →41,b n→41故球在各人手中的概率一样大.。