数列知识点和常用解题方法归纳总结

合集下载

数列知识点总结大全

数列知识点总结大全

数列知识点总结大全一、数列的概念与定义1. 数列的概念:数列是按照一定规律排列的一组数的集合,数列中的每个数称为数列的项。

2. 数列的定义:数列可以用一个通项公式或者递推公式来表示,通项公式指明了数列的第n个项与n的关系,递推公式则指明了数列的第n+1项与第n项的关系。

二、常见的数列类型1. 等差数列:如果一个数列中任意相邻两项的差都相等,那么这个数列就是等差数列。

等差数列的通项公式为an=a1+(n-1)d,其中a1为首项,d为公差。

2. 等比数列:如果一个数列中任意相邻两项的比值都相等,那么这个数列就是等比数列。

等比数列的通项公式为an=a1*r^(n-1),其中a1为首项,r为公比。

3. 调和数列:如果一个数列中任意相邻两项的倒数之差都相等,那么这个数列就是调和数列。

调和数列的通项公式为an=1/(1+d(n-1)),其中d为公差。

三、数列的性质1. 有限数列与无限数列:有限数列指数列中的项是有限个,无限数列指数列中的项是无限个。

2. 数列的奇偶性:如果数列的每一项的奇偶性相同,则称该数列为奇数列或偶数列。

3. 数列的首项和公差:首项指数列中的第一个元素,公差指等差数列中相邻两项之差。

4. 数列的前n项和:数列的前n项和可以用求和公式来表示,对于等差数列和等比数列有相应的公式。

5. 数列的递推公式:递推公式指明了数列的第n+1项与第n项的关系,可以通过递推公式求出数列的任意一项。

四、数列的应用1. 等差数列与等比数列的求和:等差数列和等比数列的前n项和在数学和物理问题中有广泛的应用,它们可以帮助我们简化复杂的计算。

2. 数学归纳法:数学归纳法是证明数学命题的一种方法,在数列中的应用尤其广泛。

3. 数列的模型应用:数列模型可以用来描述自然界和社会现象中的变化规律,比如人口增长、物种演化等。

五、数列的判断与证明1. 数列的判断:如何判断一个数列是等差数列、等比数列、调和数列等,需要根据数列的性质和通项公式进行分析。

(完整版)数列题型及解题方法归纳总结

(完整版)数列题型及解题方法归纳总结

1知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。

一、典型题的技巧解法 1、求通项公式 (1)观察法。

(2)由递推公式求通项。

对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。

(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。

求a n 。

例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)22434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。

数列知识点和常用解题方法归纳总结

数列知识点和常用解题方法归纳总结

数列知识点和常用解题方法归纳总结引言数列是数学中的一个重要概念,它描述了按照一定顺序排列的一列数。

数列的知识点广泛,解题方法多样,本文旨在对数列的基本知识点和常用解题方法进行归纳和总结。

数列的基本概念数列的定义数列是一系列按照一定顺序排列的数,可以是有限的,也可以是无限的。

通项公式数列中每一项与它的位置(即序号)之间的关系,通常用 ( a_n ) 表示第 ( n ) 项。

递推关系递推关系描述了数列中某一项与其前一项或几项之间的关系,常用于递推数列。

数列的基本类型等差数列等差数列的每一项与其前一项的差是一个常数,即 ( a_n - a_{n-1} = d )。

等比数列等比数列的每一项与其前一项的比是一个常数,即( \frac{a_n}{a_{n-1}} = r )。

调和数列调和数列的每一项是其序号的倒数,即 ( a_n = \frac{1}{n} )。

几何数列几何数列的每一项是前一项的 ( r ) 倍,即 ( a_n = a_1 \cdot r^{n-1} )。

数列的性质单调性数列的单调性指的是数列的项是单调递增、单调递减还是保持不变。

有界性有界性指的是数列的所有项都位于某个区间内。

收敛性收敛性指的是数列的项随着序号的增加无限接近于某个固定值。

数列求和等差数列求和等差数列的前 ( n ) 项和可以用公式 ( S_n = \frac{n(a_1 +a_n)}{2} ) 计算。

等比数列求和等比数列的前 ( n ) 项和可以用公式 ( S_n = a_1 \frac{1 -r^n}{1 - r} ) 计算(对于 ( r \neq 1 ))。

分组求和对于复杂的数列,可以将其分组后分别求和。

裂项求和裂项求和是一种将数列的项分解为几个部分,然后进行求和的方法。

常用解题方法定义法根据数列的定义,直接求解数列的项或和。

公式法利用等差数列、等比数列等的求和公式直接求解。

归纳法通过观察数列的前几项,归纳出数列的通项公式或求和公式。

(完整版)数列题型及解题方法归纳总结

(完整版)数列题型及解题方法归纳总结

知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。

一、典型题的技巧解法 1、求通项公式 (1)观察法。

(2)由递推公式求通项。

对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。

(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。

求a n 。

例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)2434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。

数列知识点归纳总结

数列知识点归纳总结

数列是数学中的一个重要概念,它是由一系列按照一定规律排列的数组成的。

数列知识点归纳总结如下:一、数列的定义1. 数列是由有限个或无限个数字组成的序列。

2. 数列中的数字按照一定的顺序排列。

3. 数列中的每个数字都有一个对应的位置或项数。

二、数列的分类1. 按项数分类:有限数列和无限数列。

2. 按项的性质分类:整数数列、实数数列、复数数列等。

3. 按项的规律分类:等差数列、等比数列、斐波那契数列等。

三、等差数列1. 等差数列是指从第二项起,每一项与它的前一项的差都相等的数列。

2. 等差数列的通项公式为:an = a1 + (n-1)d,其中an表示第n项,a1表示第一项,d表示公差。

3. 等差数列的求和公式为:Sn = n/2 * (a1 + an),其中Sn表示前n项和。

四、等比数列1. 等比数列是指从第二项起,每一项与它的前一项的比都相等的数列。

2. 等比数列的通项公式为:an = a1 * r^(n-1),其中an表示第n项,a1表示第一项,r表示公比。

3. 等比数列的求和公式为:Sn = a1 * (1 - r^n) / (1 - r),其中Sn表示前n项和。

五、斐波那契数列1. 斐波那契数列是指从第三项起,每一项都是前两项之和的数列。

2. 斐波那契数列的前几项为:1, 1, 2, 3, 5, 8, 13, ...3. 斐波那契数列没有通项公式,但可以用递归或循环的方式生成。

六、递推关系与通项公式1. 递推关系是指数列中相邻两项之间的关系。

2. 递推关系可以用来推导出数列的通项公式。

3. 通项公式是用来表示数列中任意一项的公式。

4. 通项公式可以通过递推关系、图形法、矩阵法等方式推导得出。

七、数列的应用1. 数列在数学中有广泛的应用,如级数求和、概率计算、线性方程组求解等。

2. 数列在自然科学、经济学、计算机科学等领域也有重要的应用。

八、数列的极限1. 数列的极限是指当项数趋向无穷大时,数列的项趋向于一个确定的数值。

(完整版)数列题型及解题方法归纳总结

(完整版)数列题型及解题方法归纳总结

(完整版)数列题型及解题方法归纳总结数列是数学中一个重要的概念,也是数学中常见的题型之一。

数列题目通常会给出一定的条件和规律,要求我们找出数列的通项公式、前n项和等相关内容。

下面对数列题型及解题方法进行归纳总结。

一、数列的基本概念1. 数列的定义:数列是按照一定规律排列的一列数,用通项公式a_n表示。

2. 首项和公差:对于等差数列,首项是指数列的第一个数,公差是指相邻两项之间的差值。

通常用a1表示首项,d表示公差。

3. 首项和公比:对于等比数列,首项是指数列的第一个数,公比是指相邻两项之间的比值。

通常用a1表示首项,r表示公比。

二、等差数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公差,求第n项的值。

使用通项公式a_n = a1 + (n-1)d。

(2)已知相邻两项的值,求公差。

根据 a_(n+1) - a_n = d,解方程即可。

(3)已知首项和第n项的值,求公差。

根据 a_n = a1 + (n-1)d,解方程即可。

2. 找前n项和:(1)已知首项、公差和项数,求前n项和。

使用公式S_n= (n/2)(a1 + a_n)。

(2)已知首项、末项和项数,求公差。

由于S_n =(n/2)(a1 + a_n),可以列方程求解。

(3)已知首项、公差和前n项和,求项数。

可以列方程并解出项数。

3. 找满足条件的项数:(1)已知首项、公差和条件,求满足条件的项数。

可以列方程,并解出项数。

三、等比数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公比,求第n项的值。

使用通项公式a_n = a1 * r^(n-1)。

(2)已知相邻两项的值,求公比。

根据 a_n / a_(n-1) = r,解方程即可。

(3)已知首项和第n项的值,求公比。

根据 a_n = a1 * r^(n-1),解方程即可。

2. 找前n项和:(1)已知首项、公比和项数,求前n项和。

使用公式S_n = (a1 * (1 - r^n)) / (1 - r)。

数列的概念知识点归纳总结

数列的概念知识点归纳总结

数列的概念知识点归纳总结一、数列的定义数列是由一系列按照一定顺序排列的数字组成的集合。

每个数字称为数列的项,用a1, a2, a3,...表示。

二、等差数列1. 等差数列的定义:如果一个数列从第二项开始,每一项与它的前一项的差都相等,那么这个数列就是等差数列。

2. 公差的定义:等差数列相邻两项之间的差值称为公差,用d表示。

3. 等差数列的通项公式:设等差数列首项为a1,公差为d,那么第n项的值可以表示为an=a1+(n-1)d。

4. 等差数列的常用性质:- 第n项的值可以表示为an=a1+(n-1)d。

- 第n项和的通项公式为Sn=n(a1+an)/2。

三、等比数列1. 等比数列的定义:如果一个数列从第二项开始,每一项与它的前一项的比值都相等,那么这个数列就是等比数列。

2. 公比的定义:等比数列相邻两项之间的比值称为公比,用q表示。

3. 等比数列的通项公式:设等比数列首项为a1,公比为q,那么第n项的值可以表示为an=a1*q^(n-1)。

4. 等比数列的常用性质:- 第n项的值可以表示为an=a1*q^(n-1)。

- 前n项和的通项公式为Sn=a1*(q^n-1)/(q-1),其中q不等于1。

四、数列的求和1. 等差数列的求和公式:设等差数列首项为a1,公差为d,前n 项和为Sn,那么Sn=n(a1+an)/2。

2. 等比数列的求和公式:设等比数列首项为a1,公比为q,前n 项和为Sn,那么Sn=a1*(q^n-1)/(q-1),其中q不等于1。

五、常见数列1. 自然数数列:1, 2, 3, 4, ...2. 完全平方数数列:1, 4, 9, 16, ...3. 斐波那契数列:1, 1, 2, 3, 5, 8, ...4. 等差数列:如1, 3, 5, 7, ...5. 等比数列:如2, 6, 18, 54, ...六、数列应用数列可以在实际问题中发挥重要作用,常见的数列应用包括:1. 等差数列可以用于描述物体的运动轨迹、成长过程等。

数列基础知识点和方法归纳

数列基础知识点和方法归纳

数列基础知识点和方法归纳 1. 等差数列的定义与性质定义:1n n a a d +-=(d 为常数),()11n a a n d =+-,推论公式:等差中项:x A y ,,成等差数列2A x y ⇔=+,等差数列前n 项和:()()11122n na a n n n S nad +-==+性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(下标和定理) 注意:要求等式左右两边项数相等 (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,,; (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m m m a S b T --=; (5){}n a 为等差数列2n S an bn ⇔=+(a b ,为常数,是关于n 的常数项为0的二次函数)n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项,即:当100a d ><,,解不等式组100n n a a +≥⎧⎨≤⎩可得n S 达到最大值时的n 值.当100a d <>,,由100n n a a +≤⎧⎨≥⎩可得n S 达到最小值时的n 值.(6)项数为偶数n 2的等差数列{}n a ,有),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S nd S S =-奇偶,1+=n na a S S 偶奇. (7)项数为奇数12-n 的等差数列{}n a ,有)()12(12为中间项n n n a a n S -=-,n a S S =-偶奇, .1-=n n S S 偶奇2. 等比数列的定义与性质定义:1n na q a +=(q 为常数,0q ≠),11n n a a q -=.推论公式:等比中项:x G y 、、成等比数列2G xy ⇒=,或G xy=±.等比数列中奇数项同号,偶数项同号等比数列前n 项和公式:性质:{}n a 是等比数列(1)若m n p q +=+,则mn p q a a a a =··(下标和定理) 注意:要求等式左右两边项数相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列知识点和常用解题方法归纳总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII数列知识点及常用解题方法归纳总结一、 等差数列的定义与性质() 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ⇔=+2 ()()前项和n S a a n nan n d n n =+=+-11212{}性质:是等差数列a n()若,则;1m n p q a a a a m n p q +=++=+ {}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232-- ()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则;42121a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52a S an bn a b n n n ⇔=+ 0的二次函数){}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2项,即:当,,解不等式组可得达到最大值时的值。

a d a a S n n n n 110000><≥≤⎧⎨⎩+当,,由可得达到最小值时的值。

a d a a S n n n n 110000<>≤≥⎧⎨⎩+{}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123(由,∴a a a a a n n n n n ++=⇒==----12113331()又·,∴S a a aa 31322233113=+===()()∴·S a a n a a n nn n n =+=+=+⎛⎝ ⎫⎭⎪=-12122131218 ∴=n 27) 二、等比数列的定义与性质 定义:(为常数,),a a q q q a a q n nn n +-=≠=1110 等比中项:、、成等比数列,或x G y G xy G xy ⇒==±2()前项和:(要注意)n S na q a q qq n n ==--≠⎧⎨⎪⎩⎪111111()()!{}性质:是等比数列a n()若,则··1m n p q a a a a m n p q +=+= (),,……仍为等比数列2232S S S S S n n n n n -- 三、求数列通项公式的常用方法1、公式法2、n n a S 求由;(时,,时,)n a S n a S S n n n ==≥=--121113、求差(商)法{}如:满足……a a a a n n n n 121212251122+++=+<>解:n a a ==⨯+=1122151411时,,∴n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a ,∴a n n =+21,∴a n n n n ==≥⎧⎨⎩+141221()()[练习]{}数列满足,,求a S S a a a n n n n n +==++111534(注意到代入得:a S S S S n n n n n+++=-=1114 {}又,∴是等比数列,S S S n n n 144== n a S S n n n n ≥=-==--23411时,……·4、叠乘法{}例如:数列中,,,求a a a a nn a n n n n 1131==++ 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 又,∴a a nn 133==5、等差型递推公式由,,求,用迭加法a a f n a a a n n n -==-110()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n -=+++123()()()…… ∴……a a f f f n n =++++023()()() [练习]{}()数列,,,求a a a a n a n n n n n 111132==+≥--()()a n n=-1231 6、等比型递推公式()a ca d c d c c d n n =+≠≠≠-1010、为常数,,, ()可转化为等比数列,设a x c a x n n +=+-1()⇒=+--a ca c x n n 11令,∴()c x d x d c -==-11∴是首项为,为公比的等比数列a d c a d c c n +-⎧⎨⎩⎫⎬⎭+-111∴·a d c a d c c n n +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c d c n n =+-⎛⎝ ⎫⎭⎪---1111[练习]{}数列满足,,求a a a a a n n n n 11934=+=+()a n n =-⎛⎝ ⎫⎭⎪+-843117、倒数法例如:,,求a a a a a n n n n 11122==++ ,由已知得:1221211a a a a n n n n+=+=+ ∴11121a a n n +-= , ∴⎧⎨⎩⎫⎬⎭=111121a a n 为等差数列,,公差为 ()()∴=+-=+11112121a n n n · ,∴a n n =+21三、 求数列前n 项和的常用方法1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

{}如:是公差为的等差数列,求a d a a n k k k n111+=∑解:()()由·11111011a a a a d d a a d k k k kk k ++=+=-⎛⎝ ⎫⎭⎪≠ ∴11111111a a d a a k k k nk k k n+=+=∑∑=-⎛⎝ ⎫⎭⎪=-⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥=-⎛⎝ ⎫⎭⎪++11111111111223111d a a a a a a d a a n n n ……[练习] 求和:…………111211231123+++++++++++n(…………,)a S n n n ===-+2113、错位相减法:{}{}{}若为等差数列,为等比数列,求数列(差比数列)前项a b a b n n n n n{}和,可由求,其中为的公比。

S qS S q b n n n n -如:……S x x x nx n n =+++++<>-12341231()x S x x x x n x nx n n n ·……=+++++-+<>-234122341()<>-<>-=++++--121121:……x S x x x nx n n n ()()x S x x nx xnnn≠=----11112时,()x S n n n n ==++++=+112312时,……4、倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

S a a a a S a a a a n n n n n n =++++=++++⎫⎬⎪⎭⎪--121121…………相加()()()21211S a a a a a a n n n n =++++++-………… [练习]已知,则f x x x f f f f f f f ()()()()()=+++⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪=2211212313414(由f x f x x x x x x x x ()+⎛⎝ ⎫⎭⎪=++⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪=+++=1111111112222222 ∴原式=++⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥++⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥++⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥f f f f f f f ()()()()1212313414=+++=12111312)例1设{a n }是等差数列,若a 2=3,a 7=13,则数列{a n }前8项的和为( )A .128B .80C .64D .56 (福建卷第3题) 略解:∵ a 2 +a 7= a 1+a 8=16,∴{a n }前8项的和为64,故应选C .例2 已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( ) A .64B .81C .128D .243 (全国Ⅰ卷第7题)答案:A .例3 已知等差数列{}n a 中,26a =,515a =,若2n n b a =,则数列{}n b 的前5项和等于( )A .30B .45C .90D .186 (北京卷第7题)略解:∵a 5-a 2=3d=9,∴ d=3,b 1=26a =,b 5=a 10=30,{}n b 的前5项和等于90,故答案是C .例4 记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( )A .2B .3C .6D .7 (广东卷第4题)略解:∵422412,3S S S d d --===,故选B.例5在数列{}n a 中,542n a n =-,212n a a a an bn +++=+,*n N ∈,其中,a b 为常数,则ab = .(安徽卷第15题)答案:-1.例6 在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a =( )A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++(江西卷第5题) 答案:A .例7 设数列{}n a 中,112,1n n a a a n +==++,则通项n a = ___________.(四川卷第16题)此题重点考查由数列的递推公式求数列的通项公式,抓住11n n a a n +=++中1,n n a a +系数相同是找到方法的突破口.略解:∵112,1n n a a a n +==++ ∴()111n n a a n -=+-+,()1221n n a a n --=+-+,()2331n n a a n --=+-+,,3221a a =++,2111a a =++,1211a ==+.将以上各式相加,得()()()123211n a n n n n =-+-+-+++++⎡⎤⎣⎦()()111122n n n n n -+=++=+,故应填(1)2n n ++1.例8 若(x +12x)n 的展开式中前三项的系数成等差数列,则展开式中x 4项的系数为( )A .6B .7C .8D .9 (重庆卷第10题) 答案:B .使用选择题、填空题形式考查的文科数列试题,充分考虑到文、理科考生在能力上的差异,侧重于基础知识和基本方法的考查,命题设计时以教材中学习的等差数列、等比数列的公式应用为主,如,例4以前的例题.例5考查考生对于等差数列作为自变量离散变化的一种特殊函数的理解;例6、例7考查由给出的一般数列的递推公式求出数列的通项公式的能力;例8则考查二项展开式系数、等差数列等概念的综合运用.重庆卷第1题,浙江卷第4题,陕西卷第4题,天津卷第4题,上海卷第14题,全国Ⅱ卷第19题等,都是关于数列的客观题,可供大家作为练习.例9 已知{a n }是正数组成的数列,a 1=11n a +)(n ∈N*)在函数y =x 2+1的图象上. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)若数列{b n }满足b 1=1,b n +1=b n +2na ,求证:b n ·b n +2<b 2n +1. (福建卷第20题)略解:(Ⅰ)由已知,得a n +1-a n =1,又a 1=1,所以数列{a n }是以1为首项,公差为1的等差数列.故a n =1+(n -1)×1=n.(Ⅱ)由(Ⅰ)知,a n =n ,从而b n +1-b n =2n ,b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=2n -1+2n -2+…+2+1=2n -1.∵. b n •b n +2-b 21+n =(2n -1)(2n +2-1)-(2n+1-1)2= -2n<0, ∴ b n ·b n +2<b 21+n .对于第(Ⅱ)小题,我们也可以作如下的证明:∵ b 2=1,b n ·b n +2- b 21+n =(b n +1-2n )(b n +1+2n +1)- b 21+n =2n +1·b n +1-2n ·b n +1-2n ·2n +1=2n (b n +1-2n +1)=2n (b n +2n -2n +1)=2n (b n -2n )=…=2n (b 1-2)=-2n <0,∴ b n -b n +2<b 2n +1.例10 在数列{}n a 中,11a =,122n n n a a +=+.(Ⅰ)设12n n n ab -=.证明:数列{}n b 是等差数列;(Ⅱ)求数列{}n a 的前n 项和n S .(全国Ⅰ卷第19题)略解:(Ⅰ)1n n b b +-=1122n n n n a a +--=122n n na a +-=22nn =1,则{}n b 为等差数列,11b =, n b n =,12n n a n -=.(Ⅱ)01211222(1)22n n n S n n --=+++-+,12121222(1)22n n n S n n -=+++-+.两式相减,得01121222221n n n n n S n n -=----=-+=(1)21n n -+.对于例10第(Ⅰ)小题,基本的思路不外乎推出后项减前项差相等,即差是一个常数.可以用迭代法,但不可由b 2-b 1=1,b 3-b 2=1等有限个的验证归纳得到{}n b 为等差数列的结论,犯“以偏盖全”的错误.第(Ⅱ)小题的“等比差数列”,在高考数列考题中出现的频率很高,求和中运用的“错项相减”的方法,在教材中求等比数列前n 项和时给出,是“等比差数列”求和时最重要的方法.一般地,数学学习中最为重要的内容常常并不在结论本身,而在于获得这一结论的路径给予人们的有益启示.例9、例10是高考数学试卷中数列试题的一种常见的重要题型,类似的题目还有浙江卷第18题,江苏卷第19题,辽宁卷第20题等,其共同特征就是以等差数列或等比数列为依托构造新的数列.主要考查等差数列、等比数列等基本知识,考查转化与化归思想,考查推理与运算能力.考虑到文、理科考生在能力上的差异,与理科试卷侧重于理性思维,命题设计时以一般数列为主,以抽象思维和逻辑思维为主的特点不同;文科试卷则侧重于基础知识和基本方法的考查,以考查具体思维、演绎思维为主.例11 等差数列{}n a 的各项均为正数,13a =,前n 项和为n S ,{}n b 为等比数列, 11b =,且2264,b S =33960b S =.(Ⅰ)求n a 与n b ; (Ⅱ)求和:12111nS S S +++.(江西卷第19题) 略解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,依题意有22233(6)64,(93)960.S b d q S b d q =+=⎧⎨=+=⎩解之,得2,8;d q =⎧⎨=⎩或6,540.3d q ⎧=-⎪⎪⎨⎪=⎪⎩(舍去,为什么) 故132(1)21,8n n n a n n b -=+-=+=. (Ⅱ)35(21)(2)n S n n n =++++=+,∴121111111132435(2)n S S S n n +++=++++⨯⨯⨯+111111(1232435=-+-+-+11)2n n +-+1111(1)2212n n =+--++32342(1)(2)n n n +=-++.“裂项相消”是一些特殊数列求和时常用的方法.使用解答题形式考查数列的试题,其内容还往往是一般数列的内容,其方法是研究数列通项及前n 项和的一般方法,并且往往不单一考查数列,而是与其他内容相综合,以体现出对解决综合问题的考查力度.数列综合题对能力有较高的要求,有一定的难度,对合理区分较高能力的考生起到重要的作用.例12 设数列{}n a 的前n 项和为22n n n S a =-,(Ⅰ)求14,a a ;(Ⅱ)证明: {}12n n a a +-是等比数列;(Ⅲ)求{}n a 的通项公式.(四川卷第21题)略解:(Ⅰ)∵1111,22a S a S ==+,所以112,2a S ==.由22n n n a S =+知,11122n n n a S +++=+ 112n n n a S ++=++得,112n n n a S ++=+ ①∴222122226,8a S S =+=+==,3332328216,24a S S =+=+==,443240a S =+=.(Ⅱ)由题设和①式知,()()11222n n n n n n a a S S ++-=+-+122n n +=-2n =,∴ {}12n n a a +-是首项为2,公比为2的等比数列.(Ⅲ)()()()21112211222222n n n n n n n a a a a a a a a -----=-+-++-+()112n n -=+⋅此题重点考查数列的递推公式,利用递推公式求数列的特定项,通项公式等.推移脚标,两式相减是解决含有n S 的递推公式的重要手段,使其转化为不含n S 的递推公式,从而有针对性地解决问题.在由递推公式求通项公式时,首项是否可以被吸收是易错点.同时,还应注意到题目设问的层层深入,前一问常为解决后一问的关键环节,为求解下一问指明方向.例13 数列{}n a 满足,2,021==a a 222(1cos )4sin ,1,2,3,,22n n n n a a n ππ+=++=(I )求43,a a ,并求数列{}n a 的通项公式;(II )设1321k k S a a a -=+++,242k k T a a a =+++,2(2kk kS W k T =∈+)N *,求使1k W >的所有k 的值,并说明理由.(湖南卷第20题)略解:(I )22311(1cos )4sin 44,22a a a ππ=++=+=22422(1cos )4sin 24,a a a ππ=++==一般地, 当21()n k k N *-∈=时,22212121(21)(21)[1cos ]4sin 4,22k k k k k a a a ππ+----=++=+即2121 4.k k a a +--= 所以数列{}21k a -是首项为0、公差为4的等差数列,因此214(1).k a k -=-当2()n k k N *∈=时,22222222(1cos )4sin 2,22k k k k k a a a ππ+=++=所以数列{}2k a 是首项为2、公比为2的等比数列,因此22.k k a =故数列{}n a 的通项公式为22(1),21(),2,2().n n n n k k N a n k k N **⎧-=-∈⎪=⎨⎪=∈⎩(II )由(I )知,1321k k S a a a -=+++=044(1)2(1),k k k +++-=-242k kT a a a =+++2122222,k k +++=-12(1).22k k k k S k k W T --==+ 于是,10,W =21,W =33,2W =43,2W =55,4W =61516W =.下面证明: 当6k ≥时, 1.k W <事实上, 当6k ≥时,11(1)(1)(3)0,222k k k k kk k k k k k W W +-+---=-=<即1.k k W W +<又61,W <所以当6k ≥时,1.k W <故满足1k W >的所有k 的值为3,4,5.数列知识点回顾第一部分:数列的基本概念1.理解数列定义的四个要点⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项a n 与项数n 是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列.2.数列的通项公式一个数列{ a n }的第n 项a n 与项数n 之间的函数关系,如果用一个公式a n =)(n f 来表示,就把这个公式叫做数列{ a n }的通项公式。

相关文档
最新文档