高考数列万能解题方法

合集下载

高考数学数列题求解题技巧

高考数学数列题求解题技巧

高考数学数列题求解题技巧数学数列题是高考数学中常见的题型之一,也是考查学生对数列概念和性质的理解和运用能力的重要手段之一。

下面将给出一些解题技巧,帮助你在高考中更好地解答数列题。

1. 确定数列类型在解答数列题时,首先要明确数列的类型。

常见的数列类型包括等差数列、等比数列、斐波那契数列等。

通过观察数列的通项公式、公式中的递推关系或者数列中的规律,确定数列的类型,有助于我们更好地理解和解答问题。

2. 求解等差数列对于等差数列,我们通常可以使用以下几种方法进行求解:(1)已知前n项和:当已知等差数列的前n项和Sn 时,我们可以使用以下公式求解等差数列的的首项a1和公差d:Sn = (n/2)(a1 + an)Sn = (n/2)(2a1 + (n-1)d)其中n为项数,a1为首项,an为第n项,d为公差。

(2)已知前n项和的两倍:如果我们知道等差数列的前n项和Sn的两倍为2Sn,则可以使用以下公式求解首项a1:2Sn = n(2a1 + (n-1)d)(3)已知前n项和的平方:如果我们知道等差数列的前n项和Sn的平方为Sn²,则可以使用以下公式求解公差d:Sn² = n(2a1 + (n-1)d)²/43. 求解等比数列对于等比数列,我们通常可以使用以下几种方法进行求解:(1)已知前n项和:当已知等比数列的前n项和Sn 时,我们可以使用以下公式求解等比数列的的首项a1和公比q:Sn = a1(1 - qⁿ)/(1 - q)其中n为项数,a1为首项,q为公比。

(2)已知前n项积:若已知等比数列的前n项积为Pn,则可以使用以下公式求解首项a1和公比q: Sn = a1(1 - qⁿ)/(1 - q)4. 拆分序列有时,在解答数列题时,我们可以将给定的数列拆分为两个或多个较为简单的数列进行求解。

例如,当我们遇到递推关系较为复杂的数列时,可以考虑将数列拆分为两个或多个等差数列或等比数列,然后分别求解。

高考数学技巧如何快速计算复杂的数列题

高考数学技巧如何快速计算复杂的数列题

高考数学技巧如何快速计算复杂的数列题数列是高考数学中常见的考点之一,也是很多同学感到头疼的难题。

在高考中,能够快速而准确地计算数列题目是取得高分的关键之一。

本文将介绍几种应用数学技巧的方法,以便快速计算复杂的数列题目。

一、等差数列等差数列是高考数学中最基础且常见的数列之一。

在解决等差数列的题目时,可以运用以下技巧:1. 求通项公式如果给定了等差数列的前几项或者某一项的值,我们可以通过求解通项公式来快速计算任意项的值。

通项公式的一般形式为:An = a1 + (n-1)d,其中An表示第n项,a1为首项,d为公差。

将已知条件代入,就可以得到计算结果。

2. 利用性质等差数列有一些性质,比如相邻两项的差值始终为常数,前n项和的公式等。

在解决题目时,可以善用这些性质,简化计算步骤,提高计算速度。

二、等比数列等比数列是高考数学中另一个常见的数列。

解决等比数列题目时,可以运用以下技巧:1. 求通项公式与等差数列类似,等比数列也有通项公式。

通项公式的一般形式为:An = a1 * q^(n-1),其中An表示第n项,a1为首项,q为公比。

通过将已知条件代入通项公式,可以求得任意项的值。

2. 利用性质等比数列也有一些性质,如相邻两项的比值为常数,前n项和的公式等。

在解决题目时,利用这些性质可以简化计算过程,提高效率。

三、斐波那契数列斐波那契数列是一种特殊的数列,其定义为:F(1) = 1,F(2) = 1,F(n) = F(n-1) + F(n-2)(n ≥ 3)。

在解决斐波那契数列问题时,可以运用以下技巧:1. 利用递推关系斐波那契数列的递推关系非常明显,每一项都是前两项的和。

这个特点可以帮助我们快速计算第n项的值。

如果需要计算较大的斐波那契数列的项数,可以利用循环或递归的方法进行计算。

2. 利用性质斐波那契数列也有一些特殊性质,如相邻两项的比值逐渐趋近于黄金比例等。

在解决题目时,利用这些性质可以得到更多的信息,进一步简化计算过程。

高考数列万能解题方法

高考数列万能解题方法

数列的项na与前n项和nS的关系:11(1)(2)nn ns nas s n-=⎧=⎨-≥⎩数列求和的常用方法:1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和;2、错项相减法:适用于差比数列如果{}n a等差,{}n b等比,那么{}n na b叫做差比数列即把每一项都乘以{}n b的公比q,向后错一项,再对应同次项相减,转化为等比数列求和;3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和;适用于数列11n na a+⎧⎫⎨⎬⋅⎩⎭和⎧⎫其中{}n a等差可裂项为:111111()n n n na a d a a++=-⋅1d=等差数列前n项和的最值问题:1、若等差数列{}n a的首项10a>,公差0d<,则前n项和nS有最大值;ⅰ若已知通项na,则nS最大⇔1nnaa+≥⎧⎨≤⎩;ⅱ若已知2nS pn qn=+,则当n取最靠近2qp-的非零自然数时nS最大;2、若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值ⅰ若已知通项n a ,则n S 最小⇔10n n a a +≤⎧⎨≥⎩;ⅱ若已知2nS pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最小; 数列通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式; ⑵已知n S 即12()n a a a f n +++=求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥;已知12()n a a a f n =求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩;⑶已知条件中既有n S 还有n a ,有时先求n S ,再求n a ;有时也可直接求n a ;⑷若1()n na a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++-1a +(2)n ≥;⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a aa a a a a a ---=⋅⋅⋅⋅(2)n ≥; ⑹已知递推关系求n a ,用构造法构造等差、等比数列;特别地,1形如1nn a ka b -=+、1n n n a ka b -=+,k b 为常数的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a ;形如1n n n a ka k -=+的递推数列都可以除以n k 得到一个等差数列后,再求n a ;2形如11n nn a a ka b--=+的递推数列都可以用倒数法求通项;3形如1k n n a a +=的递推数列都可以用对数法求通项;7理科数学归纳法; 8当遇到q a a d a a n n n n ==--+-+1111或时,分奇数项偶数项讨论,结果可能是分段形式; 数列求和的常用方法:1公式法:①等差数列求和公式;②等比数列求和公式;2分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和; 3倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和这也是等差数列前n 和公式的推导方法. 4错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法这也是等比数列前n 和公式的推导方法.5裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有: ①111(1)1n n n n =-++; ②1111()()n n k k n n k=-++;③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k-=<<=-++--;④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤11(1)!!(1)!n n n n =-++;⑥=<<= 二、解题方法:求数列通项公式的常用方法: 1、公式法 2、n n a S 求由 3、求差商法 解:n a a ==⨯+=1122151411时,,∴练习4、叠乘法 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 5、等差型递推公式 练习6、等比型递推公式 练习7、倒数法数列前n 项和的常用方法:1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项; 解:()()由·11111011a a a a d d a a d k k k k k k ++=+=-⎛⎝ ⎫⎭⎪≠练习3、错位相减法:4、倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加; 练习 深圳一模深圳二模 广州一模 广州二模 韶关调研。

高中物理数学高中数列10种解题技巧

高中物理数学高中数列10种解题技巧

高中物理数学高中数列10种解题技巧
当涉及到高中物理和数学中的数列问题时,以下是10种解题技巧:
确定数列类型:首先,确定数列是等差数列、等比数列还是其他类型的数列。

这将有助于你选择正确的解题方法。

寻找通项公式:对于等差数列和等比数列,寻找通项公式是解题的关键。

通过观察数列中的规律,尝试找到递推关系式,从而得到通项公式。

求和公式:对于需要求和的数列,使用相应的求和公式可以简化计算过程。

例如,等差数列的求和公式是Sn = (n/2)(2a + (n-1)d),其中Sn表示前n项和,a表示首项,d表示公差。

利用递推关系求解:对于一些复杂的数列问题,可以利用递推关系式逐步求解。

通过已知的前几项,推导出后续项的值。

利用数列性质:数列有许多性质和特点,例如对称性、周期性等。

利用这些性质可以简化问题,找到解题的突破口。

利用数列图像:将数列表示为图像,有时可以更直观地理解数列的规律。

通过观察图像,可以得到一些有用的信息。

利用数列的性质进行变形:有时,对数列进行一些变形可以使问题更容易解决。

例如,将等差数列转化为等比数列,或者将复杂的数列转化为简单的数列。

利用数列的对称性:如果数列具有对称性,可以利用对称性来简化问题。

例如,利用等差数列的对称性可以减少计算量。

利用数列的周期性:如果数列具有周期性,可以利用周期性来简化问题。

通过观察周期内的规律,可以推断出整个数列的性质。

多角度思考:对于复杂的数列问题,尝试从不同的角度思考,采用不同的解题方法。

有时,换一种思路可能会带来新的启示。

高考数学数列的万能解法全归纳

高考数学数列的万能解法全归纳

高考数学数列的万能解法全归纳!
数列作为历年的重点考查内容之一,估测试题会出现在数列的知识、函数知识、不等式的知识和解析几何知识等的交汇点处命题,从而使数列试题呈现综合性强、立意新、角度新、难度大的特点。

直白点说,高考的20多道题目中,无论是最基本的题型还是最后的解答压轴题,考到数列部分的几率是相当大的,毕竟数列作为每年高考热点元老的存在。

在复习数列单元时,一定要以等差、等比数列为载体,以通项公式、求和公式为主线,注重基础,联系实际.通过对试题的练习,提高其运算能力、思辨能力、解决实际问题的能力,才能以不变应万变,在高考中立于不败之地。

简单2个字来形容掌握数列的要诀那就是规律。

这里我提供一份通过对历年来数列部分的解法归纳,希望能帮助冲刺阶段的同学更上一层楼。

▍ ▍ ▍。

高中数学数列方法及技巧

高中数学数列方法及技巧

高中数学数列方法及技巧1高中数学数列方法和技巧一.公式法如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.注意等比数列公示q的取值要分q=1和q≠1.二.倒序相加法如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.三.错位相减法如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.四.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.五.分组求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.2高中数学数列问题的答题技巧高中数列,有规律可循的类型无非就是两者,等差数列和等比数列,这两者的题目还是比较简单的,要把公式牢记住,求和,求项也都是比较简单的,公式的运用要熟悉。

题目常常不会如此简单容易,稍微加难一点的题目就是等差和等比数列的一些组合题,这里要采用的一些方法有错位相消法。

题目变化多端,往往出现的压轴题都是一些从来没有接触过的一些通项,有些甚至连通项也不给。

针对这两类,我认为应该积累以下的一些方法。

对于求和一类的题目,可以用柯西不等式,转化为等比数列再求和,分母的放缩,数学归纳法,转化为函数等方法等方法对于求通项一类的题目,可以采用先代入求值找规律,再数学归纳法验证,或是用累加法,累乘法都可以。

总之,每次碰到一道陌生的数列题,要进行总结,得出该类的解题方法,或者从中学会一种放缩方法,这对于以后很有帮助。

3高考数学解题方法解题过程要规范高考数学计算题要保证既对且全,全而规范。

应为高考数学计算题表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。

高考数列解题技巧

高考数列解题技巧

高考数列解题技巧数列是高中数学的重要内容之一,也是高考数学的热点之一。

在解决数列问题时,学生需要掌握一些常用的解题技巧,以提高解题效率和准确性。

1. 公式法公式法是解决数列问题的基本方法之一。

对于等差数列和等比数列,学生需要熟记它们的通项公式和求和公式,以便在解题时能够迅速运用。

例如,对于等差数列{an},其通项公式为a_n=a_1+(n-1)d,其中a_1为首项,d为公差。

求和公式为S_n=n/2(a_1+a_n)。

2. 裂项相消法裂项相消法是一种常用的求和技巧,适用于一些看似复杂的数列求和问题。

通过将每一项都拆分成两个部分,然后抵消掉中间的部分,可以简化计算过程。

例如,对于数列1/2, 2/3, 3/4, ..., n/(n+1),学生可以使用裂项相消法进行求和。

将每一项都拆分成两个部分,即分子和分母,然后抵消掉中间的部分,得到结果为1-1/(n+1)。

3. 错位相减法错位相减法是一种常用的求和方法,适用于一些周期性变化的数列。

通过错位相减法,可以将一个复杂的数列转化为一个简单的数列,从而简化计算过程。

例如,对于数列1, 1/2, 1/3, 1/4, ..., 1/n,学生可以使用错位相减法进行求和。

将每一项都乘以10,得到数列10, 5, 3, 2, ..., 1/n,然后将两个数列相减,得到结果为9+4+2+...+1-1/n。

4. 倒序相加法倒序相加法是一种求解递推关系式的常用方法。

通过将一个数列的顺序倒过来,然后将正序和倒序的两个数列相加,可以得到一个常数列的和,进而求出原数列的和。

例如,对于数列a_n=S_{n-1}+S_n,学生可以使用倒序相加法求解。

将数列a_n的顺序倒过来得到a_n=S_n+S_{n-1}......(B),然后将(A)式和(B)式相加得到2a_n=2S_n+S_{n-1}+S_{n-2}+......+S_2+S_1=S_n+S_{n-1}+......+S_2+S_1+ S_0=2^n-1。

高考数学数列解题技巧必备

高考数学数列解题技巧必备

高考数学数列解题技巧必备各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,运用,数学作为最烧脑的科目之一,也是一样的。

下面是小编给大家整理的一些高考数学数列解题技巧的学习资料,希望对大家有所帮助。

高考数学重点:数列公式及结论总结数学中有很多的概念和公式,只有理解这些概念,才能正确解题。

数列中有很多性质和公式,这些是我们做题的基础,很多同学觉得数列的性质公式太多太杂,记不住。

其实按照一定方法将数列性质公式进行归纳总结,记住它们就简单多了。

下面是小编为大家整理的高中数列基本公式,希望对大家有帮助。

一、高中数列基本公式:1、一般数列的通项an与前n项和Sn的关系:an=2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

3、等差数列的前n项和公式:Sn=Sn=Sn=当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

4、等比数列的通项公式: an= a1 qn-1 an= ak qn-k(其中a1为首项、ak为已知的第k项,an≠0)5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);当q≠1时,Sn=Sn=三、高中数学中有关等差、等比数列的结论1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。

2、等差数列{an}中,若m+n=p+q,则3、等比数列{an}中,若m+n=p+q,则4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。

5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。

6、两个等比数列{an}与{bn}的积、商、倒数组成的数列{anbn}、、仍为等比数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列的项n a 与前n 项和n S 的关系:11(1)(2)n n n s n a s s n -=⎧=⎨-≥⎩数列求和的常用方法:1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。

2、错项相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数列)即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比数列求和。

3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。

适用于数列11n n a a +⎧⎫⎨⎬⋅⎩⎭和⎧⎫(其中{}n a 等差) 可裂项为:111111()n n n n a a d a a ++=-⋅,1d=等差数列前n项和的最值问题:1、若等差数列{}n a的首项10a>,公差0d<,则前n项和nS有最大值。

(ⅰ)若已知通项na,则nS最大⇔1nnaa+≥⎧⎨≤⎩;(ⅱ)若已知2nS pn qn=+,则当n取最靠近2qp-的非零自然数时nS最大;2、若等差数列{}n a的首项10a<,公差0d>,则前n项和nS有最小值(ⅰ)若已知通项na,则nS最小⇔1nnaa+≤⎧⎨≥⎩;(ⅱ)若已知2nS pn qn=+,则当n取最靠近2qp-的非零自然数时nS最小;数列通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式。

⑵已知nS(即12()na a a f n+++=L)求na,用作差法:{11,(1),(2)nn nS na S S n-==-≥。

已知12()na a a f n=g g L g求na,用作商法:(1),(1)(),(2)(1)nf nf na nf n=⎧⎪=⎨≥⎪-⎩。

⑶已知条件中既有nS还有na,有时先求nS,再求na;有时也可直接求na。

⑷若1()n na a f n+-=求na用累加法:11221()()()n n n n na a a a a a a---=-+-++-L 1a+(2)n≥。

⑸已知1()nnaf na+=求na,用累乘法:121121n nnn na a aa aa a a---=⋅⋅⋅⋅L(2)n≥。

⑹已知递推关系求na,用构造法(构造等差、等比数列)。

特别地,(1)形如1n na ka b-=+、1nn na ka b-=+(,k b为常数)的递推数列都可以用待定系数法转化为公比为k的等比数列后,再求n a;形如1nn na ka k-=+的递推数列都可以除以nk得到一个等差数列后,再求na。

(2)形如11nnnaaka b--=+的递推数列都可以用倒数法求通项。

(3)形如1k n n a a +=的递推数列都可以用对数法求通项。

(7)(理科)数学归纳法。

(8)当遇到q a a d a a n n n n ==--+-+1111或时,分奇数项偶数项讨论,结果可能是分段形式。

数列求和的常用方法:(1)公式法:①等差数列求和公式;②等比数列求和公式。

(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和。

(3)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:①111(1)1n n n n =-++; ②1111()()n n k k n n k=-++; ③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k kk k k k -=<<=-++--;④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤11(1)!!(1)!n n n n =-++;⑥=<<= 二、解题方法:求数列通项公式的常用方法: 1、公式法 2、n n a S 求由(时,,时,)n a S n a S S n n n ==≥=--121113、求差(商)法{}如:满足……a a a a n n n n 121212251122+++=+<>解:n a a ==⨯+=1122151411时,,∴n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a∴a n n =+21∴a n n n n ==≥⎧⎨⎩+141221()()[练习]{}数列满足,,求a S S a a a n n n n n +==++111534(注意到代入得:a S S S S n n n n n+++=-=1114 {}又,∴是等比数列,S S S n n n 144==n a S S n n n n ≥=-==--23411时,……·4、叠乘法{}例如:数列中,,,求a a a a nn a n n n n 1131==++ 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-=又,∴a a nn 133==5、等差型递推公式由,,求,用迭加法a a f n a a a n n n -==-110()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n -=+++123()()()……∴……a a f f f n n =++++023()()()[练习] {}()数列,,,求a a a a n a n n n n n 111132==+≥--()()a n n=-1231 6、等比型递推公式 ()a ca d c d c c d n n =+≠≠≠-1010、为常数,,,()可转化为等比数列,设a x c a x n n +=+-1()⇒=+--a ca c x n n 11令,∴()c x d x d c -==-11∴是首项为,为公比的等比数列a d c a d c c n +-⎧⎨⎩⎫⎬⎭+-111∴·a d c a d c c n n +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c d c n n =+-⎛⎝ ⎫⎭⎪---1111[练习]{}数列满足,,求a a a a a n n n n 11934=+=+()a n n =-⎛⎝ ⎫⎭⎪+-843117、倒数法例如:,,求a a a a a n nn n 11122==++由已知得:1221211a a a a n n n n+=+=+∴11121a a n n +-=∴⎧⎨⎩⎫⎬⎭=111121a a n 为等差数列,,公差为()()∴=+-=+11112121a n n n ·∴a n n =+21数列前n 项和的常用方法:1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

{}如:是公差为的等差数列,求a d a a n k k k n111+=∑解:()()由·11111011a a a a d d a a d k k k k k k ++=+=-⎛⎝ ⎫⎭⎪≠∴11111111a a d a a k k k nkk k n+=+=∑∑=-⎛⎝ ⎫⎭⎪=-⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥=-⎛⎝ ⎫⎭⎪++11111111111223111d a a a a a a d a a n n n ……[练习]求和:…………111211231123+++++++++++n(…………,)a S n n n ===-+2113、错位相减法:{}{}{}若为等差数列,为等比数列,求数列(差比数列)前项a b a b n n n n n{}和,可由求,其中为的公比。

S qS S q b n n n n -如:……S x x x nx n n =+++++<>-12341231()x S x x x x n x nx n n n·……=+++++-+<>-234122341()<>-<>-=++++--121121:……x S x x x nx n n n()()x S x x nx xnnn≠=----11112时,()x S n n n n ==++++=+112312时,……4、倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

S a a a a S a a a a n n n n n n =++++=++++⎫⎬⎪⎭⎪--121121…………相加()()()21211S a a a a a a n n n n =++++++-…………[练习]已知,则f x x xf f f f f f f ()()()()()=+++⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪=2211212313414(由f x f x x x x x x x x ()+⎛⎝ ⎫⎭⎪=++⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪=+++=1111111112222222∴原式=++⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥++⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥++⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥f f f f f f f ()()()()1212313414=+++=12111312)深圳一模深圳二模广州一模广州二模韶关调研。

相关文档
最新文档