高三数列解题方法

高三数列解题方法
高三数列解题方法

数列解题方法

一、基础知识:

数列:

1.数列、项的概念:按一定 次序 排列的一列数,叫做 数列 ,其中的每一个数叫做数列

的项 .

2.数列的项的性质:① 有序性 ;② 确定性 ;③ 可重复性 .

3.数列的表示:通常用字母加右下角标表示数列的项,其中右下角标表示项的位置序号,

因此数列的一般形式可以写成a 1,a 2,a 3,…,a n ,(…),简记作 {a n } .其中a n 是该数列的第 n 项,列表法、 图象法、 符号法、 列举法、 解析法、 公式法(通项公式、递推公式、求和公式)都是表示数列的方法. 4.数列的一般性质:①单调性 ;②周期性 . 5.数列的分类:

①按项的数量分: 有穷数列 、 无穷数列 ;

②按相邻项的大小关系分:递增数列 、递减数列 、常数列、摆动数列 、其他; ③按项的变化规律分:等差数列、等比数列、其他; ④按项的变化范围分:有界数列、无界数列.

6.数列的通项公式:如果数列{a n }的第n 项a n 与它的序号n 之间的函数关系可以用一个

公式a n =f (n )(n ∈N +或其有限子集{1,2,3,…,n}) 来表示,那么这个公式叫做这个数列的 通项公式 .数列的项是指数列中一个确定的数,是函数值,而序号是指数列中项的位置,是自变量的值.由通项公式可知数列的图象是 散点图 ,点的横坐标是 项的序号值 ,纵坐标是 各项的值 .不是所有的数列都有通项公式,数列的通项公式

数列 数列的定义

数列的有关概念 数列的通项 数列与函数的关系

项数 通项

等差数列 等差数列的定义

等差数列的通项 等差数列的性质 等差数列的前n 项和

等比数列

等比数列的定义 等比数列的通项 等比数列的性质 等比数列的前n 项和

在形式上未必唯一.

7.数列的递推公式:如果已知数列{a n }的第一项(或前几项),且任一项a n 与它的前一项

a n -1(或前几项a n-1,a n -2,…)间关系可以用一个公式 a n =f (a 1n -)(n =2,3,…) (或 a n =f (a 1n -,a 2n -)(n=3,4,5,…),…)来表示,那么这个公式叫做这个数列的 递推公式 .

8.数列的求和公式:设S n 表示数列{a n }和前n 项和,即S n =

1

n

i

i a =∑=a 1+a 2+…+a n ,如果S

n

与项数n 之间的函数关系可以用一个公式 S n = f (n )(n =1,2,3,…) 来表示,那么

这个公式叫做这个数列的 求和公式 . 9.通项公式与求和公式的关系:

通项公式a n 与求和公式S n 的关系可表示为:11(1)

(n 2)

n n n S n a S S -=?=?

-≥?

等差数列与等比数列:

等差数列

等比数列

文字定义 一般地,如果一个数列从第二项起,每一项与它的前一项的差是同一个常数,那么这个数列就叫等差数列,这个常数叫等差数列的公差。 一般地,如果一个数列从第二项起,每一项与它的前一项的比是同一个常数,那么这个数列就叫等比数列,这个常数叫等比数列的公比。

符号定义

1n n a a d +-=

1

(0)n n

a q q a +=≠

递增数列:0d > 递减数列:0d < 常数数列:0d =

递增数列:1101001a q a q >><<<,或,

递减数列:1101001a q a q <<><<,或, 摆动数列:0q < 常数数列:1q =

项 1(1)()n m a a n d pn q a n m d =+-=+=+-

其中1,p d q a d ==-

11n n m n m a a q a q --==(0q ≠)

前n 项和 211()(1)22

n n n a a n n d

S na pn qn +-=

=+=+ 其中1,22

d d

p q a ==-

11

(1)

(1)1(1)n n a q q S q na q ?-≠?

=-??=?

中项

,,2a b c b a c =+成等差的充要条件: 2,,a b c b ac =成等比的必要不充分条件:

主要性质等和性:等差数列{}n a

若m n p q

+=+则

m n p q

a a a a

+=+

推论:若2

m n p

+=则2

m n p

a a a

+=

2

n k n k n

a a a

+-

+=

12132

n n n

a a a a a a

--

+=+=+=???

即:首尾颠倒相加,则和相等

等积性:等比数列{}n a

m n p q

+=+则

m n p q

a a a a

?=?

推论:若2

m n p

+=则2

()

m n p

a a a

?=

2

()

n k n k n

a a a

+-

?=

12132

n n n

a a a a a a

--

?=?=?=???

即:首尾颠倒相乘,则积相等

其它性质1、等差数列中连续m项的和,组成的新数列

是等差数列。即:

232

,,,

m m m m m

s s s s s

--???等差,公差为

2

m d则有32

3()

m m m

s s s

=-

2、从等差数列中抽取等距离的项组成的数列是

一个等差数列。

如:

14710

,,,,

a a a a???(下标成等差数列)

3、{}{}

,

n n

a b等差,则{}2n a,{}

21

n

a

-

{}

n

ka b

+,{}

n n

pa qb

+也等差。

4、等差数列{}n a的通项公式是n的一次函数,

即:

n

a dn c

=+(0

d)

等差数列{}n a的前n项和公式是一个没有常

数项的n的二次函数,

即:2

n

S An Bn

=+(0

d)

5、项数为奇数21

n-的等差数列有:

1

s n

s n

=

-

n

s s a a

-==

奇偶中

21

(21)

n n

s n a

-

=-

项数为偶数2n的等差数列有:

1

n

n

s a

s a

+

=

,s s nd

-=

偶奇

1、等比数列中连续项的和,组成的新数列是

等比数列。即:

232

,,,

m m m m m

s s s s s

--???等比,

公比为m

q。

2、从等比数列中抽取等距离的项组成的数列

是一个等比数列。

如:

14710

,,,,

a a a a???(下标成等差数列)

3、{}{}

,

n n

a b等比,则{}2n a,{}

21

n

a

-

,{}n ka

也等比。其中0

k≠

4、等比数列的通项公式类似于n的指数函数,

即:n

n

a cq

=,其中1

a

c

q

=

等比数列的前n项和公式是一个平移加振

幅的n的指数函数,即:(1)

n

n

s cq c q

=-≠

5、等比数列中连续相同项数的积组成的新数

列是等比数列。

21()n n n s n a a +=+

6、,n m a m a n ==则0m n a += n m s s =则0()m n s n m +=≠

,n m s m s n ==则()m n s m n +=-+

证明方法

证明一个数列为等差数列的方法: 1、定义法:1()n n a a d +-=常数 2、中项法:112(2)n n n a a a n -++=≥

证明一个数列为等比数列的方法: 1、定义法:

1

()n n

a q a +=常数 2、中项法:11(2,0)n n n n a a a n a -+?=≥≠2

()

元技巧

三数等差:,,a d a a d -+

四数等差:3,,,3a d a d a d a d --++ 三数等比:

2,,,,a

a aq a aq aq q

或 四数等比:23,,,a aq aq aq

联系

1、若数列{}n a 是等差数列,则数列{}n

a C

是等比数列,公比为d

C

,其中C 是常数,d 是{}

n a 的公差。

2、若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且0,1a a >≠,q 是{}n a 的公比。

数列的项n a 与前n 项和n S 的关系:11(1)(2)n n n s

n a s s n -=?=?-≥?

数列求和的常用方法:

1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。

2、错项相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b 叫做差比

数列)

即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,

转化为等比数列求和。

3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。

适用于数列11n n a a +???????和11n n a a +?????

?+????

(其中{}n a 等差) 可裂项为:

111111()n n n n a a d a a ++=-?,1111

()n n n n a a d

a a ++=-+

等差数列前n 项和的最值问题:

1、若等差数列{}n a 的首项10a >,公差0d <,则前n 项和n S 有最大值。 (ⅰ)若已知通项n a ,则n S 最大?10

n n a a +≥??

≤?;

(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2q

p

-

的非零自然数时n S 最大; 2、若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值 (ⅰ)若已知通项n a ,则n S 最小?10

n n a a +≤??

≥?;

(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2q

p

-

的非零自然数时n S 最小; 数列通项的求法:

⑴公式法:①等差数列通项公式;②等比数列通项公式。 ⑵已知n S (即12()n a a a f n +++= )求n a ,用作差法:{

11,(1)

,(2)

n n n S n a S S n -==

-≥。

已知12()n a a a f n = 求n a ,用作商法:(1),(1)()

,(2)

(1)

n f n f n a n f n =??=?

≥?-?。 ⑶已知条件中既有n S 还有n a ,有时先求n S ,再求n a ;有时也可直接求n a 。

⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++- 1a +(2)n ≥。

⑸已知1()n n a f n a +=求n a ,用累乘法:121121

n n n n n a a a

a a a a a ---=???? (2)n ≥。

⑹已知递推关系求n a ,用构造法(构造等差、等比数列)。

特别地,(1)形如1n n a ka b -=+、1n n n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a ;形如1n n n a ka k -=+的递推数列都可以除以n

k 得到一个等差数列后,再求n a 。

(2)形如1

1n n n a a ka b

--=

+的递推数列都可以用倒数法求通项。

(3)形如1k

n n a a +=的递推数列都可以用对数法求通项。

(7)(理科)数学归纳法。

(8)当遇到q a a d a a n n n n ==--+-+1

1

11或

时,分奇数项偶数项讨论,结果可能是分段形式。

数列求和的常用方法:

(1)公式法:①等差数列求和公式;②等比数列求和公式。

(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和。

(3)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).

(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).

(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:

111(1)1n n n n =-++; ②1111()()n n k k n n k =-++; ③2211111()1211k k k k <=---+,21111111

1(1)(1)1k k k k k k k k k

-=<<=-++--;

④1111

[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤11(1)!!(1)!

n n n n =-

++; ⑥2122(1)2(1)11

n n n n n n n n n +-=

<<=--+++- 二、解题方法:

求数列通项公式的常用方法:

1、公式法

2、n n a S 求由

(时,,时,)n a S n a S S n n n ==≥=--12111 3、求差(商)法

{}如:满足……a a a a n n n n 12121

2251122+++=+<>

解:n a a ==?+=11

22151411时,,∴

n a a a n n n ≥+++=-+<>--212121

2

215

212211时,……

<>-<>=121

2

2得:n n a

∴a n n =+2

1

∴a n n n n ==≥???+1412

21()

()

[练习]

{}数列满足,,求a S S a a a n n n n n +=

=++1115

3

4 (注意到代入得:

a S S S S n n n n n

+++=-=111

4 {}又,∴是等比数列,S S S n n n 144== n a S S n n n n ≥=-==--23411时,……· 4、叠乘法

{}例如:数列中,,

,求a a a a n

n a n n n n 1131

==++ 解:

a a a a a a n n a a n

n n n 213211122311

·……·……,∴-=-= 又,∴a a n

n 133

== 5、等差型递推公式

由,,求,用迭加法a a f n a a a n n n -==-110()

n a a f a a f a a f n n n ≥-=-=-=?

??

?

?

??-22321321时,…………两边相加,得:()()()

a a f f f n n -=+++123()()()…… ∴……a a f f f n n =++++023()()() [练习]

{}()数列,,,求a a a a n a n n n n n 111132==+≥-- ()

()a n n

=

-12

31 6、等比型递推公式

()

a ca d c d c c d n n =+≠≠≠-1010、为常数,,, ()可转化为等比数列,设a x c a x n n +=+-1 ()?=+--a ca c x n n 11

令,∴()c x d x d c -==-11

∴是首项为,为公比的等比数列a d c a d

c c n +

-???

???+-11

1

∴·a d c a d c c n n +

-=+-?? ???-1111

∴a a d c c d

c n n =+-??

???

---1111

[练习]

{}数列满足,,求a a a a a n n n n 11934=+=+

()a n n =-?? ?

?

?

+-84311

7、倒数法

例如:,,求a a a a a n n

n n 11122

==

++

由已知得:

122121

1

a a a a n n n n

+=

+=+

111

2

1

a a n n +-

= ∴??

????

=1111

21a a n 为等差数列,,公差为

()()∴

=+-=+111121

2

1a n n n · ∴a n n =

+2

1

数列前n 项和的常用方法:

1、公式法:等差、等比前n 项和公式

2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。 {}如:是公差为的等差数列,求

a d a

a n k k k n

1

1

1

+=∑ 解:()()由

·11111011a a a a d d a a d k k k k k k ++=+=-?? ?

?

?≠

∴11111111a a d a a k k k n

k

k k n

+=+=∑∑=-?? ?

??

=-?? ???+-?? ???++-?? ???????

??=

-?? ?

?

?++11111111111223111d a a a a a a d a a n n n ……

[练习] 求和:…………111211231123+

++++++++++n

(…………,)a S n n n ===-+21

1

3、错位相减法:

{}{}{}若为等差数列,为等比数列,求数列(差比数列)前项a b a b n n n n n

{}和,可由求,其中为的公比。S qS S q b n n n n -

如:……S x x x nx n n =+++++<>-12341231

()x S x x x x n x nx n n n ·……=+++++-+<>-234122341

()<>-<>-=++++--121121:……x S x x x nx n n n ()()

x S x x nx x

n

n

n

≠=---

-11112

时,

()x S n n n n ==++++=

+112312

时,……

4、倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

S a a a a S a a a a n n n n n n =++++=++++???

?

?--121121…………相加

()()()21211S a a a a a a n n n n =++++++-………… [练习]

已知,则f x x x f f f f f f f ()()()()()=+++?? ???++?? ???++?? ?

??=

22

11212313414

(由f x f x x x x x x x x ()+?? ?

??=++

?? ??

?+?? ?

?

?=+++=1111111112

2

2

2222 ∴原式=++?? ?????????++?? ?????

????++?? ??

???

???

?f f f f f f f ()()()()1212313414

=+++=12111312

高考数列万能解题方法

数列的项n a 与前n 项和n S 的关系:1 1 (1)(2)n n n s n a s s n -=?=?-≥? 数列求和的常用方法: 1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。 2、错项相减法:适用于差比数列(如果 {}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数列) 即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比 数列求和。 3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。 适用于数列11n n a a +???????和??(其中{}n a 等差) 可裂项为: 11 1111 ()n n n n a a d a a ++=-?,

1 d = 等差数列前n项和的最值问题: 1、若等差数列{}n a的首项10 a>,公差0 d<,则前n项和 n S有最大值。 (ⅰ)若已知通项 n a,则 n S最大? 1 n n a a + ≥ ? ? ≤ ? ; (ⅱ)若已知2 n S pn qn =+,则当n取最靠近 2 q p -的非零自然数时 n S最大; 2、若等差数列{}n a的首项10 a<,公差0 d>,则前n项和 n S有最小值 (ⅰ)若已知通项 n a,则 n S最小? 1 n n a a + ≤ ? ? ≥ ? ; (ⅱ)若已知2 n S pn qn =+,则当n取最靠近 2 q p -的非零自然数时 n S最小; 数列通项的求法: ⑴公式法:①等差数列通项公式;②等比数列通项公式。 ⑵已知 n S(即 12 () n a a a f n +++= L)求 n a,用作差法:{11,(1),(2) n n n S n a S S n - = =-≥。 已知 12 () n a a a f n = g g L g求 n a,用作商法: (1),(1) () ,(2) (1) n f n f n a n f n = ?? =?≥ ?- ? 。 ⑶已知条件中既有 n S还有 n a,有时先求 n S,再求 n a;有时也可直接求 n a。 ⑷若 1 () n n a a f n + -=求 n a用累加法: 11221 ()()() n n n n n a a a a a a a --- =-+-++- L 1 a +(2) n≥。 ⑸已知1() n n a f n a +=求 n a,用累乘法:12 1 121 n n n n n a a a a a a a a - -- =???? L(2) n≥。 ⑹已知递推关系求 n a,用构造法(构造等差、等比数列)。 特别地,(1)形如 1 n n a ka b - =+、 1 n n n a ka b - =+(,k b为常数)的递推数列都可以用待 定系数法转化为公比为k的等比数列后,再求n a;形如1n n n a ka k - =+的递推数列都可以除以 n k得到一个等差数列后,再求 n a。 (2)形如1 1 n n n a a ka b - - = + 的递推数列都可以用倒数法求通项。

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

数列解题技巧归纳总结---好(5份)

知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-? ?-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ??????????????????? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和 求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握 了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =?

2020届高三数学复习 数列解题方法集锦

2020届高三数学复习 数列解题方法集锦 数列是高中数学的重要内容之一,也是高考考查的重点。而且往往还以解答题的形式出 现,所以我们在复习时应给予重视。近几年的高考数列试题不仅考查数列的概念、等差数列和等比数列的基础知识、基本技能和基本思想方法,而且有效地考查了学生的各种能力。 一、数列的基础知识 1.数列{a n }的通项a n 与前n 项的和S n 的关系 它包括两个方面的问题:一是已知S n 求a n ,二是已知a n 求S n ; 1.1 已知S n 求a n 对于这类问题,可以用公式a n =???≥-=-) 2()1(11 n S S n S n n . 1.2 已知a n 求S n 这类问题实际上就是数列求和的问题。数列求和一般有三种方法:颠倒相加法、错位相 减法和通项分解法。 2.递推数列:?? ?==+) (11n n a f a a a ,解决这类问题时一般都要与两类特殊数列相联系,设 法转化为等差数列与等比数列的有关问题,然后解决。 例1 已知数列{a n }的前n 项和S n =n 2-2n+3,求数列{a n }的通项a n ,并判断数列{a n }是否为 等差数列。 解:由已知:S n =n 2-2n+3,所以,S n-1=(n-1)2-2(n-1)+3=n 2-4n+6, 两式相减,得:a n =2n-3(n ≥2),而当n=1时,a 1=S 1=2,所以a n =???≥-=) 2(32)1(2 n n n . 又a 2-a 1≠a 3-a 2,故数列{a n }不是等差数列。 注意:一般地,数列{a n }是等差数列?S n =an 2 +bn ?S n 2 ) (1n a a n +. 数列{a n }是等比数列?S n =aq n -a. 例2 已知数列{a n }的前n 项的和S n = 2 ) (1n a a n +,求证:数列{a n }是等差数列。 证明:因为S n = 2)(1n a a n +,所以,2 ) )(1(111++++=n n a a n S

数列知识点及常用解题方法归纳总结

数列知识点及常用解题方法归纳总结 一、 等差数列的定义与性质 () 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ?=+2 ()()前项和n S a a n na n n d n n = +=+ -112 12 {}性质:是等差数列a n ()若,则;1m n p q a a a a m n p q +=++=+ {}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232-- ()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则 ;421 21 a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52 a S an bn a b n n n ?=+ 0的二次函数) {}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2 项,即: 当,,解不等式组可得达到最大值时的值。a d a a S n n n n 11 000 0><≥≤?? ?+ 当,,由可得达到最小值时的值。a d a a S n n n n 11000 <>≤≥?? ?+ {}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123 (由,∴a a a a a n n n n n ++=?==----12113331 ()又·,∴S a a a a 3132 22 33113 = +===

高考数学经典解题技巧和方法复习(等差数列等比数列)

高中数学经典的解题技巧和方法(等差数列、等比数列) 【编者按】等差数列、等比数列是高中数学考试的必考内容,而且是这几年考试的热点跟增长点,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。因此,马博士教育网数学频道编辑部特意针对这两个部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。好了,下面就请同学们跟我们一起来探讨下等差数列、等比数列的经典解题技巧。 首先,解答等差数列、等比数列这两个方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题: 1.数列的概念和简单表示法 (1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式)。 (2)了解数列是自变量为正整数的一类函数。 2.等差数列、等比数列 (1)理解等差数列、等比数列的概念。 (2)掌握等差数列、等比数列的通项公式与前n 项和公式。 好了,搞清楚了等差数列、等比数列的上述内容之后,下面我们就看下针对这两个内容的具体的解题技巧。 一、有关等差数列的基本问题 考情聚焦:1.等差数列作为高考中数学的重点内容,在历年高考中都有所考查。 2.该类问题一般独立命题,考查等差数列的概念、性质、通项公式、前n 项公式,有时与函数的单调性、不等式知识结合在一起命题。 3.多以选择题、填空题的形式出现,属中、低档题。 解题技巧:1.涉及等差数列的有关问题往往用等差数列的通项公式和求和公式“知三求二”解决问题; 2.等差数列前n 项和的最值问题,经常转化为二次函数的最值问题;有时利用数列的单调性(d >0,递增;d <0,递减); 3.证明数列{n a }为等差数列有如下方法:①定义法;证明1n n a a d +-=(与n 值无关 的常数);②等差中项法:证明112(2,)n n n a a a n n N *-+=+≥∈。 例1:(2010·浙江高考文科·T19)设a 1,d 为实数,首项为a 1,公差为d 的等差数

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

数列知识点和常用解题方法归纳总结

数列知识点和常用解题方法 归纳总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

数列知识点及常用解题方法归纳总结 一、 等差数列的定义与性质 () 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ?=+2 ()()前项和n S a a n na n n d n n = +=+ -112 12 {}性质:是等差数列a n ()若,则;1m n p q a a a a m n p q +=++=+ {}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232-- ()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则 ;421 21 a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52a S an bn a b n n n ?=+ 0的二次函数) {}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2 项,即: 当,,解不等式组可得达到最大值时的值。a d a a S n n n n 11000 0><≥≤???+ 当,,由可得达到最小值时的值。a d a a S n n n n 11 000 0<>≤≥???+ {}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123 (由,∴a a a a a n n n n n ++=?==----12113331 ()又·,∴S a a a a 3132 22 3311 3 = +===

高考数学数列答题技巧解析

2019-2019高考数学数列答题技巧解析 数列是高中数学的重要内容,又是学习高等数学的基础。下面是查字典数学网整理的数学数列答题技巧,请考生学习。 高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。 有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。 探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。 近几年来,高考关于数列方面的命题主要有以下三个方面; (1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。 (2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。 (3)数列的应用问题,其中主要是以增长率问题为主。 试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

1、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关 问题。 2、在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力。进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。 单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。 3、培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法. 其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,

数列通项公式方法大全很经典

1,数列通项公式的十种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222 n n n n a a ++-= ,故数列{}2n n a 是以1 2 22a 11==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31 ()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22 n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出 11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法 例3已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。

高考数学答题万能公式及解题技巧:公式篇

高考数学答题万能公式及解题技巧:公式篇1.诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(π2-a)=cos(a) cos(π2-a)=sin(a) sin(π2+a)=cos(a) cos(π2+a)=-sin(a) sin(π-a)=sin(a) cos(π-a)=-cos(a) sin(π+a)=-sin(a) cos(π+a)=-cos(a) 2.两角和与差的三角函数 sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b) tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b) 3.和差化积公式 sin(a)+sin(b)=2sin(a+b2)cos(a-b2) sin(a)?sin(b)=2cos(a+b2)sin(a-b2) cos(a)+cos(b)=2cos(a+b2)cos(a-b2) cos(a)-cos(b)=-2sin(a+b2)sin(a-b2) 4.二倍角公式 sin(2a)=2sin(a)cos(b) cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a) 5.半角公式 sin2(a2)=1-cos(a)2 cos2(a2)=1+cos(a)2 tan(a2)=1-cos(a)sin(a)=sina1+cos(a) 6.万能公式 sin(a)=2tan(a2)1+tan2(a2) cos(a)=1-tan2(a2)1+tan2(a2) tan(a)=2tan(a2)1-tan2(a2) 7.其它公式(推导出来的 )

高考数列万能解题方法定稿版

高考数列万能解题方法 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

数列的项n a 与前n 项和n S 的关系:1 1(1)(2)n n n s n a s s n -=?=?-≥? 数列求和的常用方法: 1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。 2、错项相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数 列) 即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比数列求和。 3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。 适用于数列11n n a a +???????和??(其中{}n a 等差)

可裂项为: 111111()n n n n a a d a a ++=-? 1 d = 等差数列前n 项和的最值问题: 1、若等差数列{}n a 的首项10a >,公差0d <,则前n 项和n S 有最大值。 (ⅰ)若已知通项n a ,则n S 最大?10 n n a a +≥??≤?; (ⅱ)若已知2n S pn qn =+,则当n 取最靠近2q p - 的非零自然数时n S 最大; 2、若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值 (ⅰ)若已知通项n a ,则n S 最小?1 0n n a a +≤??≥?; (ⅱ)若已知2n S pn qn =+,则当n 取最靠近2q p - 的非零自然数时n S 最小; 数列通项的求法: ⑴公式法:①等差数列通项公式;②等比数列通项公式。 ⑵已知n S (即12()n a a a f n +++=)求n a ,用作差法:{ 11,(1) ,(2) n n n S n a S S n -== -≥。 已知12 ()n a a a f n =求n a ,用作商法:(1),(1)() ,(2) (1) n f n f n a n f n =??=?≥?-?。 ⑶已知条件中既有n S 还有n a ,有时先求n S ,再求n a ;有时也可直接求n a 。

数列题型及解题方法归纳总结

累加累积 归纳猜想证明 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了 典型 题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 ⑴递推式为a n+i =3+d 及a n+i =qa n (d ,q 为常数) 例1、 已知{a n }满足a n+i =a n +2,而且a i =1。求a n 。 例1、解 ■/ a n+i -a n =2为常数 ??? {a n }是首项为1,公差为2的等差数列 /? a n =1+2 (n-1 ) 即 a n =2n-1 1 例2、已知{a n }满足a n 1 a n ,而a 1 2,求a n =? 佥 1 2 解■/^ = +是常数 .■-傀}是以2为首顶,公比为扌的等比数 把n-1个等式累加得: .' ? an=2 ? 3n-1-1 ji i ? / ] — 3 ⑷ 递推式为a n+1=p a n +q n (p ,q 为常数) s 1 1 【例即己知何沖.衍二右札+ 吧求% 略解在如十冷)*的两边乘以丹得 2 严‘ *珞1 = ~〔2怙血)+1.令亠=2n 召 则也€%乜于是可得 2 2 n b n 1 n 1 n b n 1 b n (b n b n 1)由上题的解法,得:b n 3 2(—) ? a . n 3(—) 2(—) 3 3 2 2 3 ★说明对于递推式辺曲=+屮,可两边除以中叫得蹲= Q 計/斗引辅助财如(%=芒.徼十氣+护用 (5) 递推式为 a n 2 pa n 1 qa n 知识框架 数列 的概念 数列的分类 数列的通项公式 数列的递推关系 函数角度理解 (2)递推式为 a n+1=a n +f (n ) 1 2 例3、已知{a n }中 a 1 a n 1 a n 1 ,求 a n . 4n 2 1 等差数列的疋义 a n a n 1 d(n 2) 等差数列的通项公式 a n a 1 (n 1)d 等差数列 等差数列的求和公式 S n (a 1 a n ) na 1 n(n 1)d 2 2 等差数列的性质 a n a m a p a q (m n p q) 两个基 本数列 等比数列的定义 a n 1 q(n 2) 等比数列的通项公式 a n n 1 a 1q 数列 等比数列 a 1 a n q 3(1 q ) (q 1) 等比数列的求和公式 S n 1 q 1 q / n a 1(q 1) 等比数列的性质 S n S m a p a q (m n p q) 公式法 分组求和 错位相减求和 裂项求和 倒序相加求和 解:由已知可知a n 1 a n (2n 1)(2n 1)夕2n 1 2n 令n=1,2,…,(n-1 ),代入得(n-1 )个等式累加,即(a 2-a 1) + 1广 K z 1】、 =-[(1-" + J J 5 _■ 冷(一 Jr ★ 说明 只要和f ( 1) +f (2) 入,可得n-1个等式累加而求a n 。 ⑶ 递推式为a n+1=ps n +q (p , q 为常数) 1 a n a 1 (1 2 +?…+f 例 4、{a n }中,ai 1,对于 n > 1 (n € N) 有a n (a 3-a 2) + ? + (a n -a n-1) L )也 2n 1 4n 2 (n-1 )是可求的,就可以由 a n+1=a n +f (n )以n=1,2,…, 3a n 1 2 ,求 a n ? 数列 求和 解法一: 由已知递推式得 a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3 (a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为 a 2-a 1= (3X 1+2) -1=4 --a n+1 -a n =4 ? 3 - a n+1 =3a n +2 - - 3a n +2-a n =4 ? 3 即 a n =2 ? 3 -1 解法_ : 上法得{a n+1-a n }是公比为 3 的等比数列,于是有: a 2-a 1=4, a 3-a 2=4 ? 3, a 4-a 3=4 ? 3 ? 3 , 数列的应用 分期付款 其他

高考数列解题技巧归纳总结

高考数列解题技巧归纳总结 知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和 求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握 了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =?

高中数学数列复习题型归纳解题方法整理

数列 典型例题分析 【题型1】 等差数列与等比数列的联系 例1 (2010陕西文16)已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数 列.(Ⅰ)求数列{a n }的通项;(Ⅱ)求数列{2an } 的前n 项和S n . 解:(Ⅰ)由题设知公差d ≠0, 由a 1=1,a 1,a 3,a 9成等比数列得121d +=1812d d ++, 解得d =1,d =0(舍去), 故{a n }的通项a n =1+(n -1)×1=n. (Ⅱ)由(Ⅰ)知2m a =2n ,由等比数列前n 项和 公式得 S m =2+22+23+…+2n =2(12) 12 n --=2n+1-2. 小结与拓展:数列{}n a 是等差数列,则数列}{n a a 是 等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。(a>0且a ≠1).

【题型2】与“前n项和Sn与通项an”、 常用求通项公式的结合 例 2 已知数列{a n}的前三项与数列{b n}的前 三项对应相同,且a1+2a2+22a3+…+2n-1a n= 8n对任意的n∈N*都成立,数列{b n+1-b n}是等 差数列.求数列{a n}与{b n}的通项公式。 解:a1+2a2+22a3+…+2n-1a n=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2a n-1=8(n -1)(n∈N*) ② ①-②得2n-1a n=8,求得a n=24-n, 在①中令n=1,可得a1=8=24-1, ∴a n=24-n(n∈N*).由题意知b1=8,b2=4, b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{b n+1-b n}的公差为-2-(-4)=2,∴b n

数列题型及解题方法归纳总结

知识框架 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常 数) 例1、已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解∵a n+1-a n =2为常数∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1)即a n =2n-1 例2、已知{}n a 满足11 2n n a a +=,而12a =,求 n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112 a = ,12 141 n n a a n +=+ -,求n a . 解:由已知可知 )12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) ★ 说明只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有 132n n a a -=+,求n a . 解法一:由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1∵a n+1=3a n +2∴3a n +2-a n =4·3n-1 即a n =2·3n-1-1 解法二:上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2, 把n-1个等式累加得:∴an=2·3n-1-1 (4)递推式为a n+1=pa n +qn (p ,q 为常数) )(3 2 11-+-=-n n n n b b b b 由上题的解法, 得:n n b )3 2(23-=∴ n n n n n b a )31(2)21(32 -== (5)递推式为21n n n a pa qa ++=+ 思路:设21n n n a pa qa ++=+,可以变形为: 211()n n n n a a a a αβα+++-=-, 想 于是{a n+1-αa n }是公比为β的等比数列,就转化 为前面的类型。 求n a 。 (6)递推式为S n 与a n 的关系式 系;(2)试用n 表示a n 。 ∴)2121( )(1 2 11 --++- +-=-n n n n n n a a S S ∴1 11 2 1 -+++ -=n n n n a a a ∴ n n n a a 2 1 211+= + 上式两边同乘以2n+1得2n+1a n+1=2n a n +2则{2n a n }是公差为2的等差数列。 ∴2n a n =2+(n-1)·2=2n 数列求和的常用方法: 1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。

高中数列方法与解题技巧(学生版)

高中数列方法与解题技巧 一、数列求通项的10种方法 二、数列求和的7种方法 三、6道高考数列大题 数列求通项的10种方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式. 方法:等式两边同时除以12n + ,构造成等差数列,利用等差数列公式求解。 形式:n a 项系数与后面所加项底数相同 二、累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式. 方法: 12121 ........................ 211n n a a n a a +--=+=?- 将上述各式累加,中间式子首尾项相抵可求得n a 形式:()1 n n a a f n +=+; 要求1n a +、n a 的系数均为1,对于n a 不为1时,需除以系 数化为1。 例3 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式. 方法:同例2 例4 已知数列{}n a 满足1132313n n n a a a +=+?+=,,求数列{}n a 的通项公式. 方法:等式的两边同除以3,,将n a 系数化为1,再用累加法。 三、累乘法 例5 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式.。

方法:()()11 21 215..........................2115n n n a n a a a +=+=+ 将上述各式累乘,消除中间各项,可求得n a 形式:()1n n a f n a +=?;1n n a +是a 的关于n 的倍数关系。 例6 已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥L ,,求{}n a 的通项公式. 方法:本题与例5不同之处是想要通过错位相减法,求出1n n a a +与 的递推关系,然后才能用累成法求。 四、待定系数法(X,Y,Z 法) 例7 已知数列{}n a 满足112356n n n a a a +=+?=,,求数列{}n a 的通项公式. 方法:构造数列()11 525,n n n n a x a x x +++?=+?反解。 形式:()1n n a ka f n +=+ 例8 已知数列{}n a 满足1135241n n n a a a +=+?+=,,求数列{}n a 的通项公式. 方法:构造数列()11232n n n n a x y a x y +++?+=+?+ ,本题中递推关系中含常 数4,对于常数项,可看成是0n 。对于不同形式的n 要设不同的参数。 例9 已知数列{}n a 满足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式. 方法:同例8,但它的参数要设3个。 五、对数变换法 例10 已知数列{}n a 满足5123n n n a a +=??,17a =,求数列{}n a 的通项公式. 方法:等式两边同取对数得到1 lga lg2lg35lg n n n a +=++ ,然后可利用待定系数法或者累加法求之。 形式:()1 x n n a f n a += ,其中对与n a 的高次方特别有效。 六、迭代法

相关文档
最新文档