高三数学数列解题方法集锦
高考数学数列题求解题技巧

高考数学数列题求解题技巧数学数列题是高考数学中常见的题型之一,也是考查学生对数列概念和性质的理解和运用能力的重要手段之一。
下面将给出一些解题技巧,帮助你在高考中更好地解答数列题。
1. 确定数列类型在解答数列题时,首先要明确数列的类型。
常见的数列类型包括等差数列、等比数列、斐波那契数列等。
通过观察数列的通项公式、公式中的递推关系或者数列中的规律,确定数列的类型,有助于我们更好地理解和解答问题。
2. 求解等差数列对于等差数列,我们通常可以使用以下几种方法进行求解:(1)已知前n项和:当已知等差数列的前n项和Sn 时,我们可以使用以下公式求解等差数列的的首项a1和公差d:Sn = (n/2)(a1 + an)Sn = (n/2)(2a1 + (n-1)d)其中n为项数,a1为首项,an为第n项,d为公差。
(2)已知前n项和的两倍:如果我们知道等差数列的前n项和Sn的两倍为2Sn,则可以使用以下公式求解首项a1:2Sn = n(2a1 + (n-1)d)(3)已知前n项和的平方:如果我们知道等差数列的前n项和Sn的平方为Sn²,则可以使用以下公式求解公差d:Sn² = n(2a1 + (n-1)d)²/43. 求解等比数列对于等比数列,我们通常可以使用以下几种方法进行求解:(1)已知前n项和:当已知等比数列的前n项和Sn 时,我们可以使用以下公式求解等比数列的的首项a1和公比q:Sn = a1(1 - qⁿ)/(1 - q)其中n为项数,a1为首项,q为公比。
(2)已知前n项积:若已知等比数列的前n项积为Pn,则可以使用以下公式求解首项a1和公比q: Sn = a1(1 - qⁿ)/(1 - q)4. 拆分序列有时,在解答数列题时,我们可以将给定的数列拆分为两个或多个较为简单的数列进行求解。
例如,当我们遇到递推关系较为复杂的数列时,可以考虑将数列拆分为两个或多个等差数列或等比数列,然后分别求解。
高中数学数列题型及解题方法

高中数学数列题型及解题方法高中数学中,数列是一个非常重要的概念。
对于数列题型的掌握和解题方法的运用,对于学生在数学学习中起到至关重要的作用。
常见的数列题型包括等差数列、等比数列和斐波那契数列等。
下面将介绍这几种数列的定义和解题方法。
1. 等差数列:等差数列是指数列中相邻两项之差都相等的数列。
常见的解题方法有:- 求通项公式:通过已知条件求出公差d和首项a1,然后利用通项公式an=a1+(n-1)d来求解。
- 求和公式:通过已知条件求出公差d、首项a1和项数n,然后利用求和公式Sn=n/2(a1+an)来求解。
2. 等比数列:等比数列是指数列中相邻两项之比都相等的数列。
常见的解题方法有:- 求通项公式:通过已知条件求出公比r和首项a1,然后利用通项公式an=a1*r^(n-1)来求解。
- 求和公式:通过已知条件求出公比r、首项a1和项数n,然后利用求和公式Sn=a1*(1-r^n)/(1-r)来求解。
3. 斐波那契数列:斐波那契数列是指数列中每一项都是前两项之和的数列。
常见的解题方法有:- 递推公式:利用递推关系an=an-1+an-2来计算斐波那契数列的每一项。
- 通项公式:通过特征方程x^2=x+1,求出两个根φ和1-φ,然后利用通项公式an=Aφ^n+B(1-φ)^n来求解,其中A和B为常数,通过已知条件求解得出。
在解题过程中,可以根据已知条件,选择合适的方法来求解数列问题。
同时,还需要注意理解数列的性质,例如等差数列的公差为常数,等比数列的公比为常数等。
通过对不同类型数列的学习和练习,可以提高对数列问题的理解和解题能力。
数列解题方法总结

数列解题方法总结数列是数学中一个重要的概念,它是由一组按照一定规律排列的数所组成的序列。
解决数列问题是数学学习中的一个重要内容,也是数学建模和应用问题中常常遇到的情况。
本文将总结一些常见的数列解题方法,并且展开讨论它们的应用。
一、等差数列的解题方法:等差数列是最常见的一类数列,它的特点是任意两个相邻的项之间的差值都相等。
解决等差数列问题的方法非常简单,可以利用等差数列的通项公式来求解。
通项公式为:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
应用等差数列的解题方法可以解决一些简单的数学问题,如求和、确定项数等。
二、等比数列的解题方法:等比数列是一种特殊的数列,它的特点是任意两个相邻的项之间的比值都相等。
解决等比数列问题的方法也比较简单,可以利用等比数列的通项公式来求解。
通项公式为:an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比。
应用等比数列的解题方法可以解决一些和增长、衰减、利率等有关的问题。
三、斐波那契数列的解题方法:斐波那契数列是一种特殊的数列,它的特点是每一项都是前两项的和。
解决斐波那契数列问题的方法相对复杂一些,可以利用递推关系式来求解。
递推关系式为:an = an-1 + an-2,其中an表示第n项。
应用斐波那契数列的解题方法可以解决一些和排列组合、递归、动态规划等有关的问题。
四、其他数列的解题方法:除了上述三种常见的数列,还有一些其他类型的数列,如等差等差数列、等比等比数列、二次数列等等。
解决这些数列问题的方法也各不相同,需要根据具体情况来选择。
可以利用数列的性质、递推关系、通项公式等方法来解决问题。
总之,解决数列问题需要灵活运用数学知识和方法,理解数列的特点和规律,并且应用数列的解题方法来进行推理和计算。
通过不断的练习和探索,可以提高解决数列问题的能力,培养数学思维和解决实际问题的能力。
高考数列万能解题方法

数列的项na与前n项和nS的关系:11(1)(2)nn ns nas s n-=⎧=⎨-≥⎩数列求和的常用方法:1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和;2、错项相减法:适用于差比数列如果{}n a等差,{}n b等比,那么{}n na b叫做差比数列即把每一项都乘以{}n b的公比q,向后错一项,再对应同次项相减,转化为等比数列求和;3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和;适用于数列11n na a+⎧⎫⎨⎬⋅⎩⎭和⎧⎫其中{}n a等差可裂项为:111111()n n n na a d a a++=-⋅1d=等差数列前n项和的最值问题:1、若等差数列{}n a的首项10a>,公差0d<,则前n项和nS有最大值;ⅰ若已知通项na,则nS最大⇔1nnaa+≥⎧⎨≤⎩;ⅱ若已知2nS pn qn=+,则当n取最靠近2qp-的非零自然数时nS最大;2、若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值ⅰ若已知通项n a ,则n S 最小⇔10n n a a +≤⎧⎨≥⎩;ⅱ若已知2nS pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最小; 数列通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式; ⑵已知n S 即12()n a a a f n +++=求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥;已知12()n a a a f n =求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩;⑶已知条件中既有n S 还有n a ,有时先求n S ,再求n a ;有时也可直接求n a ;⑷若1()n na a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++-1a +(2)n ≥;⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a aa a a a a a ---=⋅⋅⋅⋅(2)n ≥; ⑹已知递推关系求n a ,用构造法构造等差、等比数列;特别地,1形如1nn a ka b -=+、1n n n a ka b -=+,k b 为常数的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a ;形如1n n n a ka k -=+的递推数列都可以除以n k 得到一个等差数列后,再求n a ;2形如11n nn a a ka b--=+的递推数列都可以用倒数法求通项;3形如1k n n a a +=的递推数列都可以用对数法求通项;7理科数学归纳法; 8当遇到q a a d a a n n n n ==--+-+1111或时,分奇数项偶数项讨论,结果可能是分段形式; 数列求和的常用方法:1公式法:①等差数列求和公式;②等比数列求和公式;2分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和; 3倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和这也是等差数列前n 和公式的推导方法. 4错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法这也是等比数列前n 和公式的推导方法.5裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有: ①111(1)1n n n n =-++; ②1111()()n n k k n n k=-++;③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k-=<<=-++--;④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤11(1)!!(1)!n n n n =-++;⑥=<<= 二、解题方法:求数列通项公式的常用方法: 1、公式法 2、n n a S 求由 3、求差商法 解:n a a ==⨯+=1122151411时,,∴练习4、叠乘法 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 5、等差型递推公式 练习6、等比型递推公式 练习7、倒数法数列前n 项和的常用方法:1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项; 解:()()由·11111011a a a a d d a a d k k k k k k ++=+=-⎛⎝ ⎫⎭⎪≠练习3、错位相减法:4、倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加; 练习 深圳一模深圳二模 广州一模 广州二模 韶关调研。
高中物理数学高中数列10种解题技巧

高中物理数学高中数列10种解题技巧
当涉及到高中物理和数学中的数列问题时,以下是10种解题技巧:
确定数列类型:首先,确定数列是等差数列、等比数列还是其他类型的数列。
这将有助于你选择正确的解题方法。
寻找通项公式:对于等差数列和等比数列,寻找通项公式是解题的关键。
通过观察数列中的规律,尝试找到递推关系式,从而得到通项公式。
求和公式:对于需要求和的数列,使用相应的求和公式可以简化计算过程。
例如,等差数列的求和公式是Sn = (n/2)(2a + (n-1)d),其中Sn表示前n项和,a表示首项,d表示公差。
利用递推关系求解:对于一些复杂的数列问题,可以利用递推关系式逐步求解。
通过已知的前几项,推导出后续项的值。
利用数列性质:数列有许多性质和特点,例如对称性、周期性等。
利用这些性质可以简化问题,找到解题的突破口。
利用数列图像:将数列表示为图像,有时可以更直观地理解数列的规律。
通过观察图像,可以得到一些有用的信息。
利用数列的性质进行变形:有时,对数列进行一些变形可以使问题更容易解决。
例如,将等差数列转化为等比数列,或者将复杂的数列转化为简单的数列。
利用数列的对称性:如果数列具有对称性,可以利用对称性来简化问题。
例如,利用等差数列的对称性可以减少计算量。
利用数列的周期性:如果数列具有周期性,可以利用周期性来简化问题。
通过观察周期内的规律,可以推断出整个数列的性质。
多角度思考:对于复杂的数列问题,尝试从不同的角度思考,采用不同的解题方法。
有时,换一种思路可能会带来新的启示。
高考数学数列解题方式大全

高考数学数列解题方式高考数学数列解题方式大全构造法+函数法”的结合:而且本题还可以从另一个思路进行解答,就是运用复数模的概念,将相联系的数据和看成一个模函数,仍然可以得到所求的结果。
离高考越来越近,对于数学的难点数列同学们复习的如何呢?以下是小编整理的高考数学数列解题方式:数列解题方法,供同学们参考学习。
高考数学数列解题方式转换法这种方法是体现学生的想象力及创新能力的方法,也是数学解题技巧中最富有挑战性的方法,能将复杂的题型辅以转换的功能,成为简单的、易被理解的题型。
比如,一个正方体平面为ABCB和A1B1C1D1,在正方体的棱长D1C1和C1B1分别设置两点E和F为中点,AC与BD相交于P点,A1C1于EF相交于Q点,求证:(1)点D、B、F、B在同一平面上;(2)如果线段A1C通过平面DBFE,交点到R点,那么P、R、Q三点共线?由题可知:线段EF是△D1B1C1的中位线,所以,EF与B1D1平行,在正方体AC1中,线段B1D1与BD 平行,相应得出:线段EF与线段BD相平行,由此得出线段EF和BD 在一个平面,所以可以求得点D、B、F、E在同一个平面。
假设平面A1ACC1为x,平面BDEF为y,由于Q点在平面AC,所以Q点也属于平面x,为x和y的交点,同属两个平面的点。
同理可得,点P也属x、y的公共点,而R点是平面A1C与平面y的交点,所以,可以得到P、Q、R三点共线。
高考数学数列解题方式反证法任何事物的结果有时顺着程序去思考,往往不得要领,倘若从结果向事物开始的方向或用假设的反方向去推理,反倒会“一片洞天”。
数学解题技巧也是如此。
首先,假设命题结论相反的答案,顺理演绎地解答,得出假设的矛盾结果,从另一侧面论证了正确答案。
例如,苏教版教材必修1《函数》章节,已知函数f(x)是一项正负无限大范围内的增函数,a、b都为实数,求证:(1)假设:(a+b)≥0,则函数式表示为:f(a)+f(b)≥f(-a)+f(-b)成立;(2)求证(1)问中逆命题是否正确。
高中数学数列方法及技巧

高中数学数列方法及技巧1高中数学数列方法和技巧一.公式法如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.注意等比数列公示q的取值要分q=1和q≠1.二.倒序相加法如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.三.错位相减法如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.四.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.五.分组求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.2高中数学数列问题的答题技巧高中数列,有规律可循的类型无非就是两者,等差数列和等比数列,这两者的题目还是比较简单的,要把公式牢记住,求和,求项也都是比较简单的,公式的运用要熟悉。
题目常常不会如此简单容易,稍微加难一点的题目就是等差和等比数列的一些组合题,这里要采用的一些方法有错位相消法。
题目变化多端,往往出现的压轴题都是一些从来没有接触过的一些通项,有些甚至连通项也不给。
针对这两类,我认为应该积累以下的一些方法。
对于求和一类的题目,可以用柯西不等式,转化为等比数列再求和,分母的放缩,数学归纳法,转化为函数等方法等方法对于求通项一类的题目,可以采用先代入求值找规律,再数学归纳法验证,或是用累加法,累乘法都可以。
总之,每次碰到一道陌生的数列题,要进行总结,得出该类的解题方法,或者从中学会一种放缩方法,这对于以后很有帮助。
3高考数学解题方法解题过程要规范高考数学计算题要保证既对且全,全而规范。
应为高考数学计算题表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。
高中数学数列求解方法 (完整版)

高中数学数列解题方法总结类型一:)(1n f a a n n +=+()(n f 可以求和)−−−−→解决方法累加法例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。
解析:121(2)n n a a n n --=-≥∴213243113521n n a a a a a a a a n --=⎧⎪-=⎪⎪-=⎨⎪⎪-=-⎪⎩ 上述1n -个等式相加可得: 211n a a n -=- 2n a n ∴=类型二:1()n n a f n a +=⋅ (()f n 可以求积)−−−−→解决方法累积法 例2、在数列{}n a 中,已知11,a =有()11n n na n a -=+,(2n ≥)求数列{}n a 的通项公式。
解析:1232112321n n n n n n n a a a a a a a a a a a a -----=⋅⋅⋅⋅123211143n n n n n n --=⋅⋅⋅⋅+-21n =+ 又1a 也满足上式;21n a n ∴=+ *()n N ∈类型三:1(n n a Aa B +=+≠其中A,B 为常数A 0,1)−−−−→解决方法待定常数法 可将其转化为1()n n a t A a t ++=+,其中1Bt A =-,则数列{}n a t +为公比等于A 的等比数列,然后求n a 即可。
例3 在数列{}n a 中, 11a =,当2n ≥时,有132n n a a -=+,求数列{}n a 的通项公式。
解析:设()13n n a t a t -+=+,则132n n a a t -=+1t ∴=,于是()1131n n a a -+=+{}1n a ∴+是以112a +=为首项,以3为公比的等比数列。
1231n n a -∴=⋅-类型四:()110n n n Aa Ba Ca +-++=⋅⋅≠;其中A,B,C 为常数,且A B C 0可将其转化为()()()112n n n n A a a a a n αβα+-+=+≥-----(*)的形式,列出方程组A B C αββα⋅-=⎧⎨-⋅=⎩,解出,;αβ还原到(*)式,则数列{}1n na a α++是以21a a α+为首项, A β为公比的等比数列,然后再结合其它方法,就可以求出n a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三复习-------数列解题方法集锦数列是高中数学的重要内容之一,也是高考考查的重点。
而且往往还以解答题的形式出现,所以我们在复习时应给予重视。
近几年的高考数列试题不仅考查数列的概念、等差数列和等比数列的基础知识、基本技能和基本思想方法,而且有效地考查了学生的各种能力。
一、数列的基础知识 1.数列{a n }的通项a n 与前n 项的和S n 的关系它包括两个方面的问题:一是已知S n 求a n ,二是已知a n 求S n ; 1.1 已知S n 求a n对于这类问题,可以用公式a n =⎩⎨⎧≥-=-)2()1(11n S S n S n n .1.2 已知a n 求S n这类问题实际上就是数列求和的问题。
数列求和一般有三种方法:颠倒相加法、错位相减法和通项分解法。
2.递推数列:⎩⎨⎧==+)(11n n a f a aa ,解决这类问题时一般都要与两类特殊数列相联系,设法转化为等差数列与等比数列的有关问题,然后解决。
例1 已知数列{a n }的前n 项和S n =n 2-2n+3,求数列{a n }的通项a n ,并判断数列{a n }是否为等差数列。
解:由已知:S n =n 2-2n+3,所以,S n-1=(n-1)2-2(n-1)+3=n 2-4n+6,两式相减,得:a n =2n-3(n ≥2),而当n=1时,a 1=S 1=2,所以a n =⎩⎨⎧≥-=)2(32)1(2n n n .又a 2-a 1≠a 3-a 2,故数列{a n }不是等差数列。
注意:一般地,数列{a n }是等差数列⇔S n =an 2+bn ⇔S n2)(1n a a n +.数列{a n }是等比数列⇔S n =aq n-a.例2 已知数列{a n }的前n 项的和S n =2)(1n a a n +,求证:数列{a n }是等差数列。
证明:因为S n =2)(1n a a n +,所以,2))(1(111++++=n n a a n S 两式相减,得:2)())(1(1111n n n a a n a a n a +-++=++,所以n n n na a n a a -++=++111)1(2,即:11)1(a na a n n n -=-+,同理: 11)1()2(a a n a n n n --=--,即:11)2()1(a a n a n n n +-=--,两式相加,得:n n n a n a n a n )22()1()1(11-=-+--+,即:n n n a a a 211=+-+,所以数列{a n }是等差数列。
例3 已知数列{a n }的前n 项的和S n + a n =2n+1,求数列{a n }的通项a n . 解:因为S n + a n =2n+1,所以, S n+1+a n+1=2(n+1)+1,两式相减,得: 2a n+1-a n =2,即:2a n+1-a n +2=4,2a n+1-4= a n -2,所以21221=--+n n a a ,而S 1+a 1=3,a 1=23,故a 1-2=21-,即:数列{a n }是以21-为首项,21为公比的等比数列,所以a n -2=21-(21)n-1= - (21)n ,从而a n =2 - (21)n 。
例 4 (2000年全国)设{a n }是首项为1的正项数列,且(n+1)a n+12-na n 2+a n+1a n =0,(n=1,2,3,…),则它的通项公式是a n = .分析:(1)作为填空题,不需要解题步骤,所以可以采用不完全归纳法。
令n=1,得:2a 22+a 2-1=0,解得,a 2=21.令n=2, 得:3a 32+21a 3-21=0, 解得,a 3=31.同理,a 4=41由此猜想:a n =n1. (2)由(n+1)a n+12-na n 2+a n+1a n =0,得:[(n+1)a n+1-na n ](a n+1+a n )=0, 所以(n+1)a n+1=na n ,这说明数列是常数数列,故na n =1,a n =n1. 也可以由(n+1)a n+1=na n ,得:11+=+n na a n n ,所以 nn n n n a a a a a a a a n n n n n 1121121112211=⋅⋅⋅--⋅-=⋅⋅⋅⋅=--- 。
例5 求下列各项的和(1)nn n n n n n C n nC C C C )1(321210++++++- .(2)1+2⨯21+3⨯22+4⨯23+…+n ⨯2n-1. (3)1⨯2+2⨯3+3⨯4+…+n(n+1).(4))2(1421311+++⨯+⨯n n . 解:(1)设 S n =nn n n n n n C n nC C C C )1(321210++++++- ,则S n =0112)1(n n n n n n C C nC C n +++++- ,两式相加,得:2S n = (n+2)nn n n C n C n C )2()2(10+++++ =(n+2)(nn n n C C C +++ 10)=(n+2)2n ,所以S n =(n+2)2n-1.思考:nn n n n n n n n C C C C C 112102242+-+++++ 又如何求呢?(2)设S n =1+2⨯21+3⨯22+4⨯23+…+n ⨯2n-1,则2 S n = 1⨯2+2⨯22+3⨯23+…+(n-1)2n-1+n2n .两式相减。
得:- S n =1+21+22+…+2 n-1-n2 n =n nn 22121⋅---=2n (1-n)-1. S n =2n (n-1)+1.(3)1⨯2+2⨯3+3⨯4+…+n(n+1)=(12+1)+(22+2)+(32+3)+ … +(n 2+n) =(12+22+32+ … +n 2)+(1+2+3+ … +n) =)1(21)12)(1(61++++n n n n n =)2)(1(31++n n n . (4) ∵)211(21)2(1+-=+n n n n∴)2(1421311+++⨯+⨯n n =)211111151314121311(21+-++--++-+-+-n n n n =)2111211(21+-+-+n n =)2)(1(3243+++-n n n . 二、等差数列与等比数列1.定义:数列{a n }为等差数列⇔a n+1-a n =d ⇔a n+1-a n =a n -a n-1;数列{b n }为等比数列⇔q a b n n =+1⇔11-+=n n n n b bb b 。
2.通项公式与前n 项和公式:数列{a n }为等差数列,则通项公式a n =a 1+(n-1)d, 前n 项和S n =2)(1n a a n +=2)1(1dn n na -+. 数列{a n }为等比数列,则通项公式a n =a 1q n-1, 前n 项和S n =⎪⎩⎪⎨⎧≠--=)1(1)1()1(11q q q a q na n .3.性质:(4)函数的思想:等差数列可以看作是一个一次函数型的函数;等比数列可以看作是一个指数函数型的函数。
可以利用函数的思想、观点和方法分析解决有关数列的问题。
例6 设S n 是等差数列{a n }的前n 项的和,已知31S 3与41S 4的等比中项为51S 5,31S 3与41S 4的等差中项为1,求等差数列{a n }的通项。
(1997年高考题) 解:设等差数列的公差为d,则⎪⎪⎩⎪⎪⎨⎧=+=⋅24131)51(4131432543S S S S S ,即⎪⎪⎩⎪⎪⎨⎧=++++=+⋅+2)64(41)23(31)105(251)64(41)23(31112111d a d a d a d a d a , 解得:⎪⎩⎪⎨⎧=-=⎩⎨⎧==45121011a d a d 或,所以n a a n n 5125321-==或。
评说:当未知数与方程的个数相等时,可用解方程的方法求出这两类特殊数列的首项与公差或公比,然后再解决其他问题。
例7 设等比数列{a n }的前n 项的和为S n ,若S 3+S 6=2S 9,求数列{a n }的公比q (1996年高考题)。
解:若q=1,则S 3=3a 1,S 6=6a 1,S 9=9a 1, 由已知S 3+S 6=2S 9, 得:3a 1+6a 1=18a 1,解得:a 1=0,这与数列{a n }为等比数列矛盾,所以,q ≠1。
由已知S 3+S 6=2S 9, 得:qq a q q a q q a --=--+--1)1(21)1(1)1(916131,整理得: 0)12(363=--q q q ,解得:243-=q 。
例8 在等差数列{a n }中,已知a 7=8,求S 13.分析:在这个问题中,未知数有两个:首项a 1与公差d ,但方程只有一个,因此不能象例6那样通过解方程解决问题,必须利用这两类数列的性质或者利用整体性思想来解决问题。
解:因为a 7=8,所以a 1+a 13=2a 7=16,故S 13=.1042)(13131=+a a例9 在等差数列{a n }中,已知a 1>0,S n 是它的前n 项的和.已知S 3=S 11,求S n 的最大值。
分析:和例8一样,也是未知数的个数多于方程的个数,所以须考虑等差数列的性质。
解:由已知:S 3=S 11,故.0132,551133111<-=+=+a d d a d a 得:而因为S 3=S 11,得a 4+a 5+a 6+…+a 10+a 11=0.由于a 4+a 11=a 5+a 10=a 6+a 9=a 7+a 8,所以a 7+a 8=0。
故a 7>0,a 8<0,所以 S 7最大。
评说:(1)本题也可以利用函数的思想来解,即把S n 表示成某一变量的函数(比如n ),然后再求这个函数的最大值。
(2)本题还可以利用方程与不等式的思想来解,即S n 最大当且仅当a n >0同时a n+1<0,解这个不等式组即可。
三、数列综合问题对于综合问题,要注意与其他数学知识相联系,如函数、方程、不等式,还要注意数学思想方法的应用,如归纳法、类比、叠加等。
例10 已知等差数列{a n }的前n 项的和为S n ,令b n =n S 1,且b 4=101,S 6-S 3=15,求数列{b n }的通项公式和∑=∞→ni i n b 1lim 的值。
分析:欲求b n ,需先求S n ,而S n 是数列{a n }的前n 项的和,所以应首先求出a n 。
因为数列{a n }是等差数列,故只要能找到关于a 1与d 的两个方程即可。