常见递推数列的几个模型
数列的递推公式和通项公式

数列的递推公式和通项公式数列是数学中的一种常见概念,它由一系列按照一定规律排列的数所组成。
数列的递推公式和通项公式是数列的两种重要表示方式,它们可以帮助我们更好地理解和计算数列。
一、数列的递推公式数列的递推公式是指通过前一项或多项来推导出后一项的公式。
一般来说,递推公式可以分为线性递推和非线性递推两种。
1.1 线性递推公式线性递推公式是指数列中的每一项都可以通过前一项乘以一个常数再加上另一个常数得到。
一般可以用如下的形式表示:an = a(n-1) * r + b。
其中an表示数列中的第n项,a(n-1)表示数列中的第(n-1)项,r和b 为常数。
例如,如果数列的前两项分别为a1和a2,且每一项都等于前一项乘以2再加上1,则该数列的递推公式为:an = a(n-1) * 2 + 1。
利用这个递推公式,我们可以轻松求解数列中的任意一项。
1.2 非线性递推公式非线性递推公式是指数列中的每一项不能通过前一项乘以一个常数再加上另一个常数得到。
非线性递推公式的形式较为多样,常见的有多项式递推和递归递推等。
以多项式递推为例,假设数列的前两项分别为a1和a2,而后续项满足如下规律:an = an-1^2 + an-2^2。
在这种情况下,我们无法仅仅通过前一项或多项来计算后一项。
此时,我们需要借助递归或其他更复杂的方法来求解数列中的每一项。
二、数列的通项公式数列的通项公式是指通过数列的位置n来计算该位置上的数值。
通项公式可以直接给出数列前n项的数值,而不需要通过递推关系一步步推导。
通项公式也常被称为数列的一般项公式。
2.1 等差数列的通项公式等差数列是最常见的数列之一,它的通项公式为an = a1 + (n-1)d,其中an表示数列中的第n项,a1表示数列的首项,d表示公差。
例如,如果一个等差数列的首项为3,公差为2,则它的通项公式为an = 3 + (n-1)2。
通过这个通项公式,我们可以轻松计算出等差数列中的任何一项。
数列-递推公式求通项的十大模型

递推公式求通项的十种类型类型1.等差数列:相邻两项递推形式:d d a a n n ,(=--1为常数,+∈≥N n n 且2)或者相邻三项递推形式:)2(211++-∈≥=+N n n a a a n n n 且.这种递推形式下,直接用等差数列的通项公式:即可解决!例1.已知数列{}n a 的前n 项和为n S ,满足11a =1=,则n a =()A.21n -B.nC.21n +D.12n -解析:∵11a ==1,∴是以1为首项,以1为公差的等差数列,(1)11(1)1n n n =-⨯=+-⨯=,即2n S n =,∴()221121n n n a S S n n n -=-=--=-(2n ≥).当1n =时,11a =也适合上式,∴21n a n =-.故选:A.注1:在等差数列中,有一类比较特殊的递推类型,即b kn a a n n +=++1,它可以得到两个子数列分别是公差为k 的等差数列.例2.已知数列{}n a 的前n 项和为n S ,且12a =,()142n n a a n n +++=+∈N ,则数列1n S ⎧⎫⎨⎬⎩⎭的前2021项的和为()A.20212022B.20202021C.20192020D.10101011解析:∵12a =,()142n n a a n n +++=+∈N ,∴216a a +=,解得24a =.142n n a a n ++=+ ,∴2146n n a a n +++=+,两式相减,得24n na a +-=,∴数列{}n a 的奇数项与偶数项均为公差为4的等差数列,∴当n 为偶数时,2(1)422n n a a n =+-⨯=.当n 为奇数时,1n +为偶数,∴根据上式和(*)知1422n n a n a n +=+-=,数列{}n a 的通项公式是2n a n =,易知{}n a 是以2为首项,2为公差的等差数列,故()()2212n n nS n n +==+,()111111n S n n n n ==-++,设1n S ⎧⎫⎨⎩⎭的前n 项和为n T ,则20211111112021112232021202220222022T =-+-++-=-= .故选:A.例3.数列{}n a 中,112,21,N n n a a a n n *+=+=+∈.求{}n a 的通项公式;解析:(1)由121++=+n n a a n ①2123n n a a n ++⇒+=+②,②-①22n n a a +⇒-=,∴{}n a 的奇数项与偶数项各自成等差数列,由11223a a a =⇒+=,∴21a =,∴2112(1)2n a a n n -=+-=,∴1n a n =+,n 为奇数,212(1)21n a n n =+-=-,∴1n a n =-,n 为偶数.∴()()**1,21,N 1,2,Nn n n k k a n n k k ⎧+=-∈⎪=⎨-=∈⎪⎩.类型2.等比数列:相邻两项递推:)2,0,0(1+-∈≥≠≠=N n n a q qa a n n n且且或q a a n n=-1.或者相邻三项递推:)2(211≥∈=+-+n N n a a a n n n 且.注2:在等比数列应用中,有一类比较特殊的递推类型,即++∈∀⋅=N n m a a a n m m n ,,,我们可以对其赋值得到一个等比数列.例4.数列{}n a 中,112a =,对任意,N m n *∈有m n m n a a a +=,若19111k k k a a a +++++ 15522=-,则k =()A.2B.3C.4D.5解析:由任意,m n *∈N 都有m n m n a a a +=,所以令1m =,则11n n a a a +=,且112a =,所以{}n a 是一个等比数列,且公比为12,则1910155191112222222k k k k k k k k a a a ++++++++=+++=-=- 所以5k =,故选:D.例5.已知数列{}n a 满足22,2,n n n a n a a n ++⎧=⎨⎩为奇数为偶数且11a =,22a =.求通项n a ;解析:当n 为奇数时,由22n n a a +-=知数列{}21k a -是公差为2的等差数列,()2111221k a a k k -=+-⨯=-,∴n a n =,n 为奇数;当n 为偶数时,由22n n a a +=知数列{}2k a 是公比为2的等比数列,1222k kk a a q -==,∴22nn a =,n 为偶数∴2,2,n n n n a n ⎧⎪=⎨⎪⎩为奇数为偶数.类型3.)(1n f a a n n =--累加型例6.若数列{}n a 满足11a =,12n n a a n +-=.求{}n a 的通项公式.解析:因为12n n a a n +-=,11a =,所以()()()1122112(1)2(2)21n n n n n a a a a a a a a n n ---=-+-++-+=-+-+++2222(1)112n n n n -+⋅-+=-+=,故21n a n n =-+.类型4.)(1n f a a n n=-(2≥∈+n N n 且)累乘型.例7.数列{}n a 及其前n 项和为n S 满足:11a =,当2n ≥时,111n n n a a n -+=-,则12320231111a a a a ++++= ()A.20211011B.40442023C.20231012D.40482025解析:当2n ≥时,111n n n a a n -+=-,即111n n a n a n -+=-,所以3124123213451,,,,,12321n n n n a a a a a n n a a a a n a n ---+=====-- 累乘得:()113451123212n n n a n n a n n ++=⨯⨯⨯⨯=-- ,又11a =,所以()12n n n a +=所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭则1232023111111111111222212233420232024a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭14046202321202420241012⎛⎫=-== ⎝⎭.故选:C.类型5.d ca a n n +=-1型(待定系数法)一般形式:1(,n n a ca d c d -=+为常数,0,1,0)c c d ≠≠≠,可以构造一个等比数列,只要在每一项同加上一个常数即可,且常数1dx c =-,1()n n a x c a x -+=+,令n n b a x =+,则n b 为等比数列,求出n b ,再还原到n a ,1)1(11--⋅-+=-c dc cd a a n n .例8.在数列{}n a 中,12a =,()*1432,N n n a a n n -=-≥∈.求{}n a 的通项公式.解析:依题意,数列{}n a 中,12a =,()*1432,N n n a a n n -=-≥∈,所以()()1*N 1412,n n a a n n --=-≥∈,所以数列{}1n a -是首项为111a -=,公比为4的等比数列.例9.(2014年新课标全国1卷)已知数列{}n a 满足13,111+==+n n a a a ,证明⎭⎬⎫⎩⎨⎧+21n a 是等比数列,并求{}n a 的通项公式.解析:显性构造:13,111+==+n n a a a ,)21(3211+=++n n a a ,)13(21-=n n a .类型6.nn n b m qa a ⋅+=+1型例10.已知数列{}n a 的首项1=6a ,且满足1142n n n a a ++=-.求数列{}n a 的通项公式;解析:∵1142n n n a a ++=-,∴112122n n n n a a ++=⋅-,∴1112122n n n n a a ++⎛⎫-=- ⎪⎝⎭,又∵1122a -=,故12n n a ⎧⎫-⎨⎬⎩⎭是以2为首项,2为公比的等比数列.112222n nn n a --=⋅=,则42n n n a =+.类型7.)1)((1≠+=+p n f pa a n n 型.方法1.数学归纳法.方法2.1111)()(+++++=⇒+=n n n n n n n p n f p a p a n f pa a ,令n n n p a b =,则11)(++=-n n n pn f b b ,用累加法即可解决!(公众号:凌晨讲数学)例11.(2020年新课标全国3卷)设数列{}n a 满足31=a ,n a a n n 431-=+.(1)计算2a ,3a ,猜想{}n a 的通项公式并加以证明;(2)求数列{}n na 2的前n 项和n S .解析:方法1:归纳法.(1)235,7,a a ==猜想21,n a n =+得1(23)3[(21)]n n a n a n +-+=-+,1(21)3[(21)]n n a n a n --+=--,……2153(3)a a -=-.因为13a =,所以2 1.n a n =+方法2:构造法.由n a a n n 431-=+可得:1113433+++-=-n n n n n n a a ,累加可得:123123+=⇒+=n a n a n n n n .(2)由(1)得2(21)2n n n a n =+,所以23325272(21)2n n S n =⨯+⨯+⨯+++⨯ .①23412325272(21)2n n S n +=⨯+⨯+⨯+++⨯ .②-①②得23132222222(21)2n n n S n +-=⨯+⨯+⨯++⨯-+⨯ ,1(21)2 2.n n S n +=-+类型8.)0(1≠⋅+=+q p qpa ta a n nn 型例12.已知数列{}n a 满足11a =,*1,N 1nn n a a n a +=∈+,求数列{}n a 的通项公式.因为*1,N 1n n n a a n a +=∈+,所以1111n na a +=+,即1111n n a a +-=,又11a =,所以111a =,所以数列1n a ⎧⎫⎨⎬⎩⎭为首项为1,公差为1的等差数列,所以()1111n n n a =+-⨯=,故1n a n =,所以数列{}n a 的通项公式为1n a n=.类型9.已知n S 与n a 关系,求n a .(公众号:凌晨讲数学)解题步骤:第1步:当1=n 代入n S 求出1a ;第2步:当2≥n ,由n S 写出1-n S ;第3步:1--=n n n S S a (2≥n );第4步:将1=n 代入n a 中进行验证,如果通过通项求出的1a 跟实际的1a 相等,则n a 为整个数列的通项,若不相等,则数列写成分段形式,.)2()1(1⎩⎨⎧≥==n a n a a n n 在本考点应用过程中,具体又可分为三个角度,第一,消n S 留n a ,第二个角度,消n a 留n S ,第三个角度,级数形式的前n 项和,下面我们具体分析.例13.已知数列{}n a 的前n 项和为n S ,112a =,112n n n S S a ++⋅=-.证明:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列.证明:∵112n n n S S a ++⋅=-,∴112n n n n S S S S ++⋅=-,易知0n S ≠,∴111112n n n n n nS S S S S S +++-=-=⋅,∴数列1n S ⎧⎫⎨⎬⎩⎭是公差为2的等差数列.例14.设数列{}n a 的前n 项和为n S ,且满足1=2a ,()*123N n n n a S n +=+∈.求n S .解析:因为()*123N n n n a S n +=+∈,所以11233,3n nn n n n n S S S S S ++-=+=+∴,则111111,333333n n n n n n n n S S S S ++++-=+=,11233S =,即{}3n n S 为首项为23,公差为13的等差数列,则211(1)(1)3333n n S n n =+-=+,故1(1)3n n n S -=+⋅.例15.已知数列{}n a 满足123123252525253n n na a a a ++++----….求数列{}n a 的通项公式.解析:123123252525253n n na a a a +++=----…,①当1n =时,14a =.当2n ≥时,123112311252525253n n n a a a a ---++++----…,②由①-②,得()3522n n a n +=≥,因为14a =符合上式,所以352n n a +=.例16.(2022新高考1卷)记n S 为数列{}n a 的前n 项和,已知11=a ,{}n n S a 是公差为13的等差数列.求{}n a 得通项公式.解析:111==S a ,所以111=S a ,所以{}n n S a 是首项为1,公差为13的等差数列,所以121(1)33+=+-⋅=n n S n n a ,所以23+=n n n S a .当2n 时,112133--++=-=-n n n n n n n a S S a a ,所以1(1)(1)--=+n n n a n a ,即111-+=-n n a n a n (2n );累积法可得:(1)2+=n n n a (2n ),又11=a 满足该式,所以{}n a 得通项公式为(1)2+=n n n a .类型9:已知前n 项积求n a .例17.记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.解析:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,所以111221n n n nb b b b +++=-,由于10n b +≠,所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈,所以数列{}n b 是以132b =为首项,以12d =为公差等差数列.(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n n b n ∴=+-⨯=+,22211n n n b n S b n +==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.类型10.特征方程法(强基层次):n n n ba aa a +=++12型.求解方程:02=--b a λλ,根据方程根的情况,可分为:(1)若特征方程有两个相等的根,则nn x b An a 0)(+=(2)若特征方程有两个不等的根,则n nn Bx Ax a 21+=例18.已知数列{}n a 满足12a =,28a =,2143n n n a a a ++=-.求数列{}n a 的通项公式;解析:2143n n n a a a ++=-,变形为:()2113n n n n a a a a +++-=-,216a a -=,∴数列{}1n n a a +-是等比数列,首项为6,公比为3.∴116323n nn n a a -+-=⨯=⨯,变形为:1133n n n n a a ++-=-,131a -=-,∴31n n a -=-,∴31n n a =-例19.已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a .解析:其特征方程为2441x x =-,解得1212x x ==,令()1212nn a c nc ⎛⎫=+ ⎪⎝⎭,由1122121()121(2)24a c c a c c ⎧=+⨯=⎪⎪⎨⎪=+⨯=⎪⎩,得1246c c =-⎧⎨=⎩,1322n n n a --∴=.例20.已知数列{}n a 满足11122,(2)21n n n a a a n a --+==≥+,求数列{}n a 的通项n a .解析:其特征方程为221x x x +=+,化简得2220x -=,解得121,1x x ==-,令111111n n n n a a c a a ++--=⋅++由12,a =得245a =,可得13c =-,∴数列11n n a a ⎧⎫-⎨⎬+⎩⎭是以111113a a -=+为首项,以13-为公比的等比数列,1111133n n n a a --⎛⎫∴=⋅- ⎪+⎝⎭,3(1)3(1)n n n n na --∴=+-.。
数列的递推关系

数列的递推关系数列是由一组按照一定规律排列的数所组成的序列。
在数学中,常常需要通过递推公式来确定数列中的每一项。
递推关系是指根据前几项的值,通过某种规律来计算下一项的值。
1. 递推关系的概念递推关系是指通过前几项的值来计算下一项的值的数学关系。
通常表示为an+1 = f(an, an-1, ..., a1),其中an表示第n项的值,f表示递推函数或递推公式。
递推关系可以是线性的、多项式的、指数的等等。
2. 线性递推关系线性递推关系是指数列中的每一项都可以通过前一项和前几项的线性组合来计算得到。
具体来说,对于线性递推关系an = c1*an-1 +c2*an-2 + ... + ck*an-k,其中c1, c2, ..., ck为常数,且k为一个固定的正整数。
常见的线性递推关系有斐波那契数列等。
3. 多项式递推关系多项式递推关系是指数列中的每一项的计算都涉及前面若干项的多项式函数。
具体来说,对于多项式递推关系an = p(n) = a(n-1) + a(n-2) + ... + a(n-k),其中p(n)为一个多项式函数,a(n-1), a(n-2), ..., a(n-k)为前面的若干项。
多项式递推关系常用于描述一些复杂的数学问题,如组合数学中的排列、组合等。
4. 指数递推关系指数递推关系是指数列中的每一项的计算都涉及指数函数。
具体来说,对于指数递推关系an = a(n-1) ^ k,其中k为常数。
指数递推关系常用于描述一些增长速度非常快的数列,如幂数列等。
5. 递推关系的应用递推关系在数学中具有广泛的应用。
它可以帮助研究数列的性质、推导数列的通项公式,甚至可以用来解决一些实际问题。
例如,在物理学中,递推关系可以用来描述物体的运动轨迹;在计算机科学中,递推关系可以用来描述算法的时间复杂度。
总结:数列的递推关系是通过前几项的值来计算下一项的数学关系。
它可以是线性的、多项式的、指数的等等。
递推关系在数学中起到了重要的作用,帮助研究数列的性质、推导数列的通项公式,以及解决实际问题。
五种典型的递推关系

五种典型的递推关系1.Fibonacci数列在所有的递推关系中,Fibonacci数列应该是最为⼤家所熟悉的。
在最基础的程序设计语⾔Logo 语⾔中,就有很多这类的题⽬。
⽽在较为复杂的Basic、Pascal、C语⾔中,Fibonacci数列类的题⽬因为解法相对容易⼀些,逐渐退出了竞赛的舞台。
可是这不等于说Fibonacci数列没有研究价值,恰恰相反,⼀些此类的题⽬还是能给我们⼀定的启发的。
数列的代表问题是由意⼤利著名数学家Fibonacci于1202年提出的“兔⼦繁殖问题”(⼜Fibonacci数列称“Fibonacci问题”)。
问题的提出:有雌雄⼀对兔⼦,假定过两个⽉便可繁殖雌雄各⼀的⼀对⼩兔⼦。
问过n个⽉后共问题有多少对兔⼦?解:设满x个⽉共有兔⼦Fx对,其中当⽉新⽣的兔⼦数⽬为Nx对。
第x-1个⽉留下的兔⼦数 解⽬设为Fx-1对。
则:Fx=Nx+ Fx-1 Nx=Fx-2 (即第x-2个⽉的所有兔⼦到第x个⽉都有繁殖能⼒) ∴ Fx=Fx-1+Fx-2 边界条件:F0=0,F1=1由上⾯的递推关系可依次得到: F2=F1+F0=1,F3=F2+F1=2,F4=F3+F2=3,F5=F4+F3=5,……。
数列常出现在⽐较简单的组合计数问题中,例如以前的竞赛中出现的“⾻牌覆盖”问Fabonacci数列题。
在优选法中,Fibonacci数列的⽤处也得到了较好的体现。
2.Hanoi塔问题问题的提出:Hanoi塔由n个⼤⼩不同的圆盘和三根⽊柱a,b,c组成。
开始时,这n个圆盘由⼤到问题⼩依次套在a柱上,如图3-11所⽰。
要求把a柱上n个圆盘按下述规则移到c柱上: (1)⼀次只能移⼀个圆盘; (2)圆盘只能在三个柱上存放; (3)在移动过程中,不允许⼤盘压⼩盘。
问将这n个盘⼦从a柱移动到c柱上,总计需要移动多少个盘次?解:设hn为n个盘⼦从a柱移到c柱所需移动的盘次。
显然,当n=1时,只需把a 柱上的盘⼦直接移动到c柱就可以了,故h1=1。
第31讲 数列的递推

第12讲 数列的递推本节主要内容两个基本递推:a n +1=a n +d ,a n =qa n ;线性递推,二阶或高阶递推的特征方程与特征根;其他递推.1.基本概念:①递归式:一个数列}{n a 中的第n 项n a 与它前面若干项1-n a ,2-n a ,…,k n a -(nk <)的关系式称为递归式.②递归数列:由递归式和初始值确定的数列成为递归数列. 2.常用方法:累加法,迭代法,代换法,代入法等. 3.思想策略:构造新数列的思想. 4.常见类型: 类型Ⅰ:⎩⎨⎧=≠+=+为常数)a aa n p n q a n p a n n ()0)(()()(11(一阶递归)其特例为:(1))0(1≠+=+p q pa a n n (2))0()(1≠+=+p n q pa a n n (3))0()(1≠+=+p q a n p a n n解题方法:利用待定系数法构造类似于“等比数列”的新数列.①形如)(1n q a a n n +=+的递归式,其通项公式求法为:1111111()()n n n k k k k a a a a a q k --+===+-=+∑∑②形如n n a n p a)(1=+的递归式,其通项公式求法为: 3211121(1)(2)(1)n n n a a a a a a p p p n a a a -=⋅⋅⋅=⋅⋅-③形如)1()(1≠+=+p n q pa a n n 的递推式,两边同除以1+n p 得111)(++=+=n nn n n pn q pa pa ,令n nn b pa =则句可转化为①来处理. 类型Ⅱ:⎩⎨⎧==≠≠+=++为常数)b a b a a a q p qa pa a nn n ,(,)0,0(2112(二阶递归)解题方法:利用特征方程q px x +=2,求其根α、β,构造n n n B A a βα+=,代入初始值求得B A ,. ①若p+q=1时,有q a a n n -=-+1)(1--n n a a 可知}{1n n a a -+是等比数列,先求得n n a a -+1,再求出n a . ②若p+q ≠l ,则存在α,β满足=α-+n n a a 1)(1--βn n a a 整理得11)(-+αβ-β+α=n n n a a a 从而α+β=p , αβ=q ,可解出α、β,这样可先求出}{1n n a a α-+的通项表达式,再求出n a .注意α、β实质是二次方程q px x +=2的两个根,将方程q px x +=2叫做递归式n n n qa pa a +=++12的特征方程. 在数列{n a }中,给出a 1, a 2,且n n n qa pa a +=++12 ,它的特征方程q px x +=2的两根为α与β.如果α≠β,则n n n B A a βα+=;如果α=β则nnB An aα+=)(,其中A 与B 是常数,可由初始值a 1,a 2 求出.类型Ⅲ. 如果递归数列{a n }满足 a n+1dca b aa n n ++=,其中c ≠0,ad -bc ≠0,以及初始值a 0≠f (a 1),则称此数列为分式线性递归数列.我们称方程dcx b ax x ++=的根为该数列的不动点.若该数列有两个相异的不动点p 、q ,则}{qa p a n n --为等比数列;若该数列仅有惟一的不动点p ,则}1{pa n -是等差数列·5.求递归数列通项的常用方法有:换元法、特征根法、数学归纳法等.A 类例题例1 一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)N (*1∈>+n a a n n ,则该函数的图象是( )(2005年辽宁卷)(A ) (B) (C)(D) 分析 利用递推式意义及数形结合,分析清楚函数值与自变量的关系,即可判断. 解 由)(1n n a f a =+,n n a a >+1,得n n a a f >)(,即x x f >)(,故选A . 例2已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式. (2004年全国高考题)分析 由于给出两个递推关系与奇数项、偶数项有关,因此因从奇数项或偶数项之间的关系入手. 解(I )a 2=a 1+(-1)1=0, a 3=a 2+31=3.a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k = a 2k -1+(-1)k +3k ,所以a 2k+1-a 2k -1=3k +(-1)k, 同理a 2k -1-a 2k -3=3k -1+(-1)k -1, …… a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1) =(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1],于是a 2k+1=.1)1(21231--++kka 2k = a 2k -1+(-1)k=2123+k(-1)k -1-1+(-1)k=2123+k(-1)k =1.{a n }的通项公式为:当n 为奇数时,a n =;121)1(232121-⨯-+-+n n当n 为偶数时,.121)1(2322-⨯-+=nnna说明 这种给出递推关系,求通项公式问题,一般是转化为等差数列或等比数列,或者通过观察、归纳,或者通过顺次迭代,以求通项公式.情景再现1.已知数列{a n }满足a 1=1,a n =2a n -1+n -2(n ≥2),求通项a n . (2004年四川省高中数学联赛) 2.设cbx x x f +=)((c b ,为常数),若21)2(=f ,且02)(=-x x f 只有唯一实数根(1)求)(x f 的解析式(2)令)(,111-==n na f a a 求数列{}na 的通项公式.B 类例题例3 (1)一次竞赛在n(n >1)轮中共发了m 枚奖章.第一轮发了1枚及余下的m -1枚的71,第2轮发了2枚及余下的71,…,直至第n 轮正好发了n 枚而没有余下奖章.这个竞赛共包括几轮?一共发了多少枚奖章?(第9届国际数学奥林匹克)(2)把一个圆分成n 个不同的扇形(n ≥2),依次记为S 1,S 2,…, S n ,每个扇形都可以用红、蓝、白三种颜色中任一种涂色,要求相邻的扇形颜色互不相同,问有多少种涂法?分析 第(1)题,每一轮发的奖章数具有一定规律,因而可以建立每一轮发的奖章数的关系或每一轮余下的奖章数的关系.第(2)题,设法建立涂法总数的递推关系和求得初始值,进而求得涂法总数. 解 (1)设竞赛进行了k 轮后,余下a k 枚奖章.因为第k 轮发出奖章数k+17(a n -1 -k )具有a k =a k -1- [k+17(a k -1 -k )]即a k = 67a k -1-67 k 且a 0=m, a n =0.进一步变形为a k +6k -36= 67[a k -1+6(k -1)-36]从而a n +6n -36= (a 0-36)n)76(= (m -36)n)76(即a n = (m -36)n)76(-(6n -36),又因为a n =0,故(m -36)=(n -6)167-n n而n -6<6n -1,且7n 与6n -1互质,m,n ∈N +,故n=6,m=36. 因此,这个竞赛共包括6轮,一共发了36枚奖章.(2)设涂法总数为a n (n ≥2)当n=2时,先对S 1涂法色,有3种涂法,继而得S 2只有两种涂法,因而a 2=6.当时n ≥3, S 1有3种涂法, S 2有2种涂法, S 3有2种涂法,…, S n -1有2种涂法, S n 仍有2种涂法. (不论是否S 1与同色),这样共有3×2n -1种涂法,但这3×2n -1种涂法分为两类:一类是S n 与S 1同色,认为S n 与S 1合为一个扇形,此时涂法有a n -1种涂法;另一类是S n 与S 1不同色,此时涂法有a n 种涂法.因而有a n + a n -1=3×2n -1(n ≥3)令p n =a n2n , 则2p n +p n -1=3 (n ≥3)于是有1-np =)1(211---n p , (n ≥3) p 2=a 222从而有1-n p =)1()21(22---p n =121-⎪⎭⎫ ⎝⎛--n于是1=n p 121-⎪⎭⎫⎝⎛--n 得a n =2n p n =2n +(-1)n ·2 (n ≥3)但当n=2时也适合上式,故得a n =2n +(-1)n ·2 (n ≥2) 故共有种a n =2n +(-1)n ·2 (n ≥2)涂法说明 这类试题经常在全国高中数学联赛及国际数学奥林匹克中出现.这两个问题都是用递推方法解决计数问题,希望读者对这类问题能够进行较为深入的钻研. 例4 数列{a n }定义如下:a 1=1,a n+1 =161(1+4 a n +na 241+),求它的通项公式.分析 带根号的部分不好处理,平方会导致较繁的关系式,容易想到作代换:令=nbn a 241+解 设=nb n a 241+,则2412-=n n b a ,.51=b 于是原递推式可化为41(16124121+=-+n b 2412-⋅n b +)nb即(2b n+1)2=(b n +3)2,由于b n 、b n+1非负,所以2b n+1=b n +3. 故b n+1-3=21(b n -3).所以b n+1-3= (b n -3)(21)n -2即2)21(3-+=n nb所以2412-=n nb a=nn 212313112+⋅+-说明 这是1981年IMO 的预选题,解题的关键是换元、转化.例5设{x n }、{y n }为如下定义的两个数列:x 0=1,x 1=1,x n+1=x n +2 x n -1,y 0=1,y 1=7,y n+1=2y n +3y n -1,(n=1,2,3…),于是这两个数列的前n 项为x n :1,1,3,5,11,21…, y n :1,7,17,55,161,487,….证明:除了“1”这项外,不存在那样的项,它同时出现在两个数列之中. (第二届美国中学生数学竞赛试题) 分析 本题题均属于线性递归数列问题,可用特征根的方法来解决.解 数列{x n }的通项公式形如nnnC C x β+α=21,其中βα、是数列的特征方程x 2=x +2的两根,即1,2-=β=α,故nnnC C x )1(221-+=.由x 0=1,x 1=1得C 1=23,C 2=13,所以 =nx 23×2n +13(-1)n = 13[2n+1+(-1)n ]同理可得数列的{y n }通项公式为 y n =2×3n -(-1)n .用反证法证明两个数列无其它公共项. 假设 x m =y n ,即13[2m+1+(-1)m ]= 2×3n -(-1)n ,则 2(3n+1-2m )=(-1)m +3(-1)n ①若奇偶性相同,则①式右边为4或-4.左边=2(奇-偶)=2×奇数,故左边不是4的倍数,因此左边不等于右边.同理若m 、n 奇偶性不相同时左边也不等于右边.说明 在求得特征方程的根以后,要依据根的重数正确写出数列通项的一般表达式,再根据初始值求得待定系数的值.例6 数列{a n }满足a 0=1,23645721-+=+n n n a a a,N n ∈,证明:(1)对于任意N n ∈,a 为整数;(2)对于任意N n ∈,11-+n n a a 为完全平方数. (2005年高中数学联赛) 证明:(1)由题设得a 1=5,且数列{a n }严格单调递增,将条件变形得36457221-=-+n n n a a a ,两边平方法整理得0972121=++-++n n n n a a a a①∴0972112=++---n nn na a a a ② ①-②得0)7)((111=-+--++n n n n n a a a a a∵1+<n na a , ∴0711=-+-+nn n a a a , 117-+-=n nn a a a ③由③及a 0=1, a 1=5可得a n 为正整数.(2)将①两边配方得=++21)(n na a )1(91-+n n a a∴11-+n n a a =21)3(nn a a ++④因为是n a 整数,故11-+n n a a 为整数,故④右边是整数的平方.即为为完全平方数. 所以对于任意N n ∈,11-+n n a a 为完全平方数.情景再现3.小伟和小明来到咖啡店,他们买了一杯咖啡和一杯牛奶各150ml,每个杯子的容积为200ml,甲杯盛牛奶,乙杯盛咖啡,想将二者混合,兑换成近乎相同的奶咖啡,没有其它的容器,只得利用二个杯子中的剩余空间倒来倒去,使其混合.规定将乙杯里的部分倒入甲杯中,使甲杯盛满饮料,充分搅匀,再将甲杯里的饮料倒入乙杯中,使甲、乙杯中的饮料相等.这叫做一次操作.请你回答下列四个问题: Ⅰ、一次操作后甲杯里的饮料中牛奶的体积百分比为多少?Ⅱ、求第n 次操作后甲杯里的饮料中牛奶的体积百分比的数学表达式. Ⅲ 至少几次操作后甲杯里的饮料中牛奶的体积百分比不超过51%?Ⅳ、你能否设计新操作,得到更优的方案以减少操作次数? (2003年北京应用知识竞赛题) 4. 已知a 1=1,a 2=3,a n+2=(n+3)a n+1-(n+2)a n ,若当m ≥n ,a m 的值都能被9整除,求n 的最小值.(湖南省2002年高中数学竞赛)C 类例题例7 数列{a n }按如下法则定义:a 1=1nn n a a a 41211+=+, 证明:对n >1,1222-n a 均为正整数·(1991年全苏数学冬令营)分析 因为结论中涉及到根号及a 2n项,因而令1222-=n na b ,并对已给递推关系两边平方就容易找到解题思路. 解 令1222-=n na b , 则12222-=n na b ,因此221nnb a=+12,因为++=+222116141nn n a a a14于是++211n b 12 = 14 (++211n b12)+⎪⎪⎭⎫ ⎝⎛+2111612n b +14即 )2(22221+=+n n n b b b①所以]2)2((2[22121221++=--+n n n n b b b b=2212)1(4+-n n b b . ②4122222=-=a b ,24122233=-=a b ,由②及b 2 、b 3∈N*, 知道对n >1,1222-n a 均为正整数.说明 这道试题,通过换元,将关于如的问题转化为关于b n 的问题,得到①式后,再用)2(221212+=--n n n b b b 代入可证明21+n b是一个完全平方数的关键一步,通过这一步代入可使问题得到顺利解决.例8. 设a 1=1,a 2=3,对一切正整数n 有 a n+2=(n+3)a n+1-(n+2)a n ,求所有被11整除的如的值. 分析 先根据给定的递推关系,通过换元,把问题转化,最后求得a n 的通项公式,进而完成本题. 解 由已知条件得(a n+2-a n+1)= (n+2)(a n+1-a n )设b n+1=a n+1-a n (n ≥1),则由条件有b n+1=(n+1)(a n -a n -1)=(n+1) b n (n ≥2),故b n = nb n -1=n(n -1) b n -2= n(n -1)(n -2)…3 b 2 =n !(n ≥2) 所以a n =(a n -a n -1 )+(a n -1-a n -2)+ …+(a 2-a 1)+a 1=b n + b n -1 +…+b 2+1=1nk k =∑!由此可以算出a 4=41k k =∑!=33=11×3,a 8=81k k =∑!=46233=11×4203,a 10=101k k =∑!=4037913=11×367083.当n ≥11时,注意到11nk k =∑!能被11整除,因而a n =101k k =∑!+11nk k=∑!也能被11整除.故当n=4,n=8或当n ≥10时, a n 均被11整除.说明 这是1990年巴尔干地区的数学奥林匹克试题,本题中换元起了重要的作用.这是阿贝尔求和法.情景再现5.3个数列{a n }、{ b n }、{ c n }存在下列关系:a 1=1, b 1=21,b n =a n+1-a n , c n =b n+1-b n =np n --13(n=1,2,3…)这里的p 为正常数. (1)求a n ;(2)证明:若c n ≥0,则c n+1>0;(3)若数列{b n }的最小项为b 4,求p 取值范围.6.数列{a n }、{ b n }满足0<a 1<b 1,nnn b a a 21111+=+nn n b a b +=+2121 (n=1,2,3…)证明下列命题:(1) a 2<b 2<b 1;(2) 对任何正整数n 有b n > a n+1; (3) 对任何整数n ≥2,有b n <b 1.习题12A 类习题1. 已知数列{a n }满足a 1=1,a n +1=a n +n 2(n ≥2),求通项a n .2.(2003年全国高考题)已知数列).2(3,1}{111≥+==--n a a a a n n n n 满足(Ⅰ)求;,32a a (Ⅱ)证明.213-=nn a3.(2001上海春季高考)某公司全年的利润为b 元,其中一部分作为奖金发给n 位职工,奖金分配方案如下:首先将职工按工作业绩(工作业绩均不相同)从大到小,由1到n 排序,第1位职工得奖金nb 元,然后再将余额除以n 发给第2位职工,按此方法将奖金逐一发给每位职工,并将最后剩余部分作为公司发展基金. (1)设a k (1≤k ≤n )为第k 位职工所得奖金金额,试求a 2,a 3,并用k 、n 和b 表示a k (不必证明); (2)证明a k >a k +1(k =1,2,…,n -1),并解释此不等式关于分配原则的实际意义; (3)发展基金与n 和b 有关,记为P n (b ),对常数b ,当n 变化时,求lim ∞→n P n (b ).4.已知点的序列A n (x n ,0),n ∈N*,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,….(1)写出x n 与x n -1、x n -2之间关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1,a 2,a 3,由此推测数列{a n }的通项公式,并加以证明; (3) 求lim ∞→n x n .5.已知+++∈-===N n a a aa a n n n ,22,4,01221求数列{a n }的通项公式.6.已知++++∈-+====N n a a a aa a a n n n n ,22,6,2,0123321求数列{a n }的通项公式.B 类习题7.已知++++∈+-====N n a a a aa a a n n n n ,8126,8,2,1123321求数列{a n }的通项公式. 8.已知++++∈+-=-===N n a a a aa a a n n n n ,12167,13,1,2123321求数列{a n }的通项公式.9.有一条n 级楼梯,如果每步只能跨上一级或两级,问欲登上去,共有几种走法?10.(1)是否存在正整数的无穷数列{a n },使得对任意正憨整数n 都有a 2n+1≥2 a n a n+2. (2)是否存在正无理数的无穷数列{a n },使得对任意正憨整数n 都有a 2n+1≥2 a n a n+2.(首届中国东南地区数学奥林匹克试题)C 类习题11.设数列}{n a 满足条件:2,121==a a ,且 ,3,2,1(12=+=++n a a a n n n )求证:对于任何正整数n ,都有nnnn a a 111+≥+ (湖南省2004年高中数学竞赛)12.求所有a ∈R,使得由a n+1=2n -3a n (n ∈N)所确定的数列a 0, a 1, a 2,…是递增数列.(1980年英国中学生数学竞赛试题)本节“情景再现”解答:1.解:由已知可得:a n +n =2(a n -1+n -1)(n ≥2)令b n =a n +n ,则b 1=a 1+1=2,且b n =2b n -1(n ≥2) 于是b n =2·2n -1=2n ,即a n +n =2n 故a n =2n -n (n ≥2), 因为a 1=1也适合上述式子, 所以a n =2n -n (n ≥1) 2.解:(1)bc cb f 242122)2(-=∴=+=,又cbx bx c x x x f 22)2(2)(+--=-令02)(=-x x f 得0)2(=--bx c x当0≠b 时得方程的实数根0=x 和bc x -=2 于是1,2==b c , 当0=b 时4=c 方程有唯一实数根0=xxx x f +=∴2)(或4)(x x f =(2)当xxx f +=2)(时,211+=--n n n a a a ,令,1nna b =则121+=-n nbb ,)1(211+=+∴-n n b b 12112-=∴-=∴nn nn a b 当4)(x x f =时,141-=n n a a {}n a ∴为等比数列,1)41(-=n n a 121-=∴nn a 或nn a -=143.解:Ⅰ.设 p=150 , %pp p a 7543311==+=Ⅱ. 设n 次操作前、后甲杯里的饮料中牛奶的体积百分比分别为、a n 1-n a ,则n 次操作前、后乙杯里的饮料中牛奶的体积百分比分别为、a n 11--n a -1,pp pa p a a n n n 3131)1(11+⋅-+=--=41211+-n a , ∴法 ①)(21211----=-n n n n a a a a ∴12121++=n n a∴ 法②)21(21211-=--n n a a∴12121++=n naⅢ. ∴1005121211≤++n ∴n ≥6.Ⅳ. 规定将乙杯里的部分倒入甲杯中,使甲杯盛满饮料,充分搅匀,再将甲杯里的饮料倒入乙杯中,使乙杯盛满饮料,充分搅匀.这叫做一次操作.设n 次操作后甲杯里的饮料中牛奶的体积百分比分别为n a ,乙杯里的饮料中牛奶的体积百分比为n b .43311=+=p p pa , 83323232431=+⨯=p p pb . 1693232328332432=+⨯+⨯=pp p p a 321532323283321692=+⨯+⨯=pp p p b∴ppb p a a n n n 34323211⨯+⨯=-- 第n 次操作后甲杯里的饮料p 32,乙杯里的饮料p 34.∴p b p a p n n =⨯+⨯3432∴343=+n n b a .n a =83411+-n a , ∴nn n a 212212+=-∴10051212212≤+-nn , ∴n ≥4.至少4操作后甲杯里的饮料中牛奶的体积百分比不超过51%.4.解:由)(12++-n n a a=11)2()3(-+-+-+n n n a a n an ))(2(1n n a a n -+=+))(1)(2(1--++=n n a a n n)(34)1)(2(12a a n n n -⋅⋅⋅⋅++=)2(+=n !故++-+-+= )()(23121a a a a a a n)(1--n na a=1+2!+3!+…+n !(n ≥1),由于153,33,9,3,154321=====a a a a a ,此时153被9整除.当m ≥5时∑=+=mk m ka a 15!而k ≥6时6!被9整除.于是当m ≥5时a n 被9整除,故所求的n 的最小值为55. (1)因为c n =b n+1-b n =3n -1-np,故b n =b 1+ (b 2-b 1)+ (b 3-b 2)+ …+(b n -b n -1) =12 +(1+3+…+3n -2)-[1+2+3+…+(n -1)]p=12 [3n -1-n(n -1)p], 即b n =a n+1-a n =12[3n -1-n(n -1)p]故a n =a 1+ (a 2-a 1)+ (a 3-a 2)+ …+(a n -a n -1)= 3n -1+34- p6-1)(n -2)(2)若c n =b n+1-b n =3n -1-np ≥0, 则3n -1≥np,c n+1=b n+2-b n+1=3n -(n+1)p ≥3np -(n+1)p =(2n -1)p >0.(3)因为b n =12 [3n -1-n(n -1)p]≥b 4,故应有c 3=b 4-b 3≤0,c 4=b 5-b 4≥0,即c 3=9-3p ≤0, c 4=27-4p ≥0,故3≤p≤274.利用(2)的结论验算可知,当3≤p ≤274时,对一切正整数n,均有b n ≥b 4.故p 的取值范围是[3,274] 6.(1)⎪⎪⎩⎪⎪⎨⎧+=+=++nn n n n n ba b b a a 212211111②① 因为110b a <<由①②可知n n b a ,皆正.①×②得242142121211=⋅+≥+++=++nn nn nn nn n n b a a b b a a b a b ,所以,11++≥n n a bn=1时,22a b ≥但若2111224b a a b a b =⇔=112b a =⇔,这与110b a <<矛盾,故只可能有,22a b >又由②可得1111122321212b b b b a b =+<+=,即 11243b b b <<,因此122b b a <<.(2)由(1)可知,11++≥n n a b即nna b ≥,由②得n n n b a b241+=+nn n n b a b b 2)(41-=-+=nnnb b a --)(<0,故nn b b<+1,即nn n b b a <≤++11所以n n b a<+1.(3)由(2)知nn b b<+1故{b n }卓单调递减,从而121b b bb n n<<<<- ,因此1b b n<.本节“习题12”解答: 1.∵a n +1=a n +n 2,∴a n +1-a n =n 2,故a n =(a n -a n -1 )+(a n -1-a n -2)+ …+(a 2-a 1)+a 1=-1+16n(n-1)(2n-1)= 16(n 3-3n 2+n-6)2.(Ⅰ)∵a 1=1 . ∴a 2=3+1=4, a 3=32+4=13 .(Ⅱ)证明:由已知a n -a n -1=3n -1,故.2131333)()()(21112211-=++++=+-++-+-=-----nn n n n n n n a a a a a a a a所以证得213-=nn a .3.(1)第1位职工的奖金a 1=nb ,第2位职工的奖金a 2=n1(1-n1)b ,第3位职工的奖金a 3=n1(1-n1)2b ,…,第k 位职工的奖金a k =n1 (1-n1)k -1b ;(2)a k -a k +1=21n(1-n1)k -1b >0,此奖金分配方案体现了“按劳分配”或“不吃大锅饭”的原则.(3)设f k (b )表示奖金发给第k 位职工后所剩余数,则f 1(b )=(1-n1)b ,f 2(b )=(1-n1)2b ,…,f k (b )=(1-n1)k b .得P n (b )=f n (b )=(1-n1)nb ,故eb b P n n =∞→)(lim .4.(1)当n ≥3时,x n =221--+n n x x ;=-=--=-+=-==-=212212232121,21)(212,)2(a a x x x x x x x a a x x aaa x x x x x x x 41)21(21)(2122332334=--=--=-+=-=, 由此推测a n =(-21)n -1a (n ∈N . 证:因为a 1=a >0,且1111121)(2122----+-=-=-=-+=-=n n n nn n n n n n n a x x x x x x x x x a (n ≥2)所以a n =(-21)n -1a .(3)当n ≥3时,有x n =(x n -x n -1)+(x n -1-x n -2)+…+(x 2-x 1)+x 1=a n -1+a n -2+…+a 1,由(2)知{a n }是公比为-21的等比数列,所以32)21(1lim 1=--=∞→a x n n a .5.特征方程x 2=2x -2有两个相异实根x 1=1+i,x 2=1-i.则数列{a n }的通项公式为:n n n i C i C a )1()1(21-++=,代入前两项的值,得⎩⎨⎧=-++=-++4)1()1(0)1()1(222121i C i C i C i C解此方程组得:C 1=-1-i,C 2=-1+i, 故π+-=--+-=+++41cos2)1()1(2311n i i an n n n.6.特征方程x 3=2x 2+x -2有三个相异实根x 1=1,x 2=-1, x 2=2,则数列{a n }的通项公式为:nn n C C C a 2)1(321+-+=,代入前三项的值,得⎪⎩⎪⎨⎧=+-=++=+-,68,24,02321321321C C C C C C C C C解此方程组得:C 1=-2,C 2=0,C 3=1 故22-=nna.7.特征方程x 3=6x 2-12x +2有三重实根x =2,则数列{a n }的通项公式为:nn C n nC C a 2)(3221⋅++=,代入前三项的值,得⎪⎩⎪⎨⎧=++=++=++,872248,21684,1222321321321C C C C C C C C C解此方程组得:C 1=1,C 2=43-,C 3=41 故222)34(-+-=n nn n a.8.特征方程x 3=7x 2-16x +12有x 1=x 2=2, x 3=3,,则数列{a n }的通项公式为:32132)(C nC C a nn n +⋅+=,代入前三项的值,得⎪⎩⎪⎨⎧-=++=++=++,1327248,1984,2322321321321C C C C C C C C C 解此方程组得:C 1=4,C 2=23,C 3=-3, 故.3232112+-+-⋅+=n n n n n a9. 由于登上n 级台阶可以从第n -2直接上来,也可以通过第n -1级分步上来,这样登上n 级台阶的走法不仅与登上n -1级走法有关,且也与登上n -2级台阶的走法有关,故这里可以考虑通过二阶递推式来进行求解.登上第一级只有一种走法,记a 1=1,登上第二级,有两种走法,记a 2=2,如果要登上第n 级,那么可能是第n -1级走上来,也可能是第n -2级跨上两级上来的,故有a n =a n -1+a n -2, 显然这是缺了F 0项的Fibonacci 数列,它的通项为 F n =51[(251+)n+1-(251-)n+1]所n 级楼梯,共有F n 种不同的走法.10.假设存在正整数列{a n }满足条件. ∵2212++≥n n n a a a , a n >0∴211≤-n n a a 22121≤--n n a a 23221---≤≤n n n a a 12a a ,n=3,4,5,又∵12a a 122221a a ⋅≤-所以有≤-1n n a a 221-n 12a a ⋅,n=2,3,4,5,∴≤⎪⎪⎭⎫ ⎝⎛⋅=--112221n n n a a a a ≤⎪⎪⎭⎫ ⎝⎛--+-2212)3()2(21n n n a a a ≤⎪⎪⎭⎫⎝⎛≤-++-+-22121)3()2(21a a a n n n∴212122212---⋅⎪⎭⎫⎝⎛≤n n n n a a a设[)Z k a k k∈∈+,2,2122取N=k+3则有<⋅⎪⎭⎫ ⎝⎛≤---212122212N N N Na a a,1122112211≤⋅⎪⎭⎫⎝⎛++++k k k k a 这Na 与是正整数矛盾.所以不存在正整数列{a n }满足条件.11.证明:令 10=a ,则有 11-++=k k k a a a ,且 ),2,1(1111=+=+-+k a a a a k k k k于是 ∑∑=+-=++=nk k k nk k k a a a a n 11111由算术-几何平均值不等式,可得 nn n a a a a a a 132211+⋅⋅⋅≥+nn n a a a a a a 113120+-⋅⋅⋅注意到 110==a a ,可知nn n nn a a a 11111+++≥,即nnnn a a 111+≥+12.令b n =a n 2n ,则b n+1=-32b n +12,两边减去 15 , 得b n+1-15=-32(b n -15),即数列{ b n -15}是公比为-32的等比数列,所以b n -15=(b 0-15)(-32)n =(a 0-15)(-32n ,a n =2n b n =2n (a 0-15)·(-32)n +15·2n , 即a n =(a 0-15)·(-3)n +15·2n (n ≥0),从而a n+1-a n = 2n10[ 403 (a 0-15)·(-32)n +1] ,设A=403 (a 0-15)则a n+1-a n = 2n10[ A(-32)n +1] ,若a 0>15, 则A >0,对充分大的奇数n 有(-32)n >1A a n <a n -1, 若a 0<15,则A <0. 对充分大的偶数n 有(32)n >-1A于是a n <a n -1.综上所述,当a 0≠15时,数列{a n }不是单调递增.仅当a 0= 15时a n+1-a n = 2n10>0,数列{a n }是单调递增.。
常见线性递推数列通项的求法

常见线性递推数列通项的求法对于由递推式所确定的数列通项公式问题,往往将递推关系式变形转化为我们熟知的等差数列或等比数列,从而使问题简单明了。
这类问题是高考数列命题的热点题型,下面介绍常见线性递推数列求通项的基本求法。
一、一阶递推数列1、q pa a n n +=+1型形如q pa a n n +=+1(q p 且1≠为不等于0的常数)的数列,可令)(1x a p x a n n +=++ 即x p pa a n n )1(1-+=+与q pa a n n +=+1比较得1-=p q x ,从而构造一个以11-+p qa 为首项以p 为公比的等比数列⎭⎬⎫⎩⎨⎧-+1p q a n 例1.在数列{a n }中,,13,111-⋅==+n n a a a 求n a .解:在131-⋅=+n n a a 的两边同加待定数λ,得n n n a a a (3131⋅=+-⋅=++λλ+(λ-1)/3),令,3)1(-=λλ得).21(321.211-⋅=-∴-=+n n a a λ数列{}21-n a 是公比为3的等比数列, ∴a n 21-=).13(21,32111+=∴⋅--n n n a2、 ()n g a c a n n +⋅=+1型(1)1=c 时:解题思路:利用累差迭加法,将)1(1-=--n g a a n n ,--1n a 2-n a =)2(-n g ,…,-2a 1a =)1(g ,各式相加,正负抵消,即得n a .例2.在数列{}n a 中,01=a 且121-+=+n a a n n ,求通项n a .解:依题意得,01=a ,()32112,,3,112312-=--=-=-=--n n a a a a a a n n ,把以上各式相加,得【评注】由递推关系得,若()n g 是一常数,即第一种类型,直接可得是一等差数列;若n n a a -+1非常数,而是关于n 的一个解析式,可以肯定数列n a 不是等差数列,将递推式中的n 分别用2,3,4,,2,1 --n n 代入得1-n 个等式相加,目的是为了能使左边相互抵消得n a ,而右边往往可以转化为一个或几个特殊数列的和。
数列递推公式的九种方法

求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法例1在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n 则,211112-+=a a 312123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.二、作商求和法例2设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题)解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0∵n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,nn a a n n 11-=-逐项相乘得:na a n 11=,即n a =n 1.三、换元法例3已知数列{n a },其中913,3421==a a ,且当n≥3时,)(31211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编).解:设11---=n n n a a b ,原递推式可化为:}{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31.故n n n n b b 31()31(9131(2211==⋅=---.故n n n a a )31(1=--.由逐差法可得:nn a )31(2123-=.例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。
九类常见递推数列求通项公式方法

九类常见递推数列求通项公式方法递推数列通项求解方法类型一:an1panq(p1)思路1(递推法):anpan1qp(pan2q)qpppan3qqq……pn1a1q(1pp2…pn2qqn1。
)a1pp11p思路2(构造法):设an1pan,即p1q得qp1,数列an是以a1为首项、p为公比的等比数列,则anqn1qana1pp11pqn1a1p,即p1p1q例1已知数列an满足an2an13且a11,求数列an的通项公式。
解:方法1(递推法):an2an132(2an23)3222an3333……2n13(122…22n23n13n1)1223。
2112方法2(构造法):设an12an,即3,数列an3是以a134n1n1n1为首项、2为公比的等比数列,则an3422,即an23。
类型二:an1an思路1(递推法):f(n)anan1f(n1)an2f(n2)f(n1)an3f(n3)f(n2)f(n1)…a1f(n)。
i1n1思路2(叠加法):anan1f(n1),依次类推有:an1an2f(n2)、n1an2an3f(n3)、…、a2a1f(1),将各式叠加并整理得ana1i1f(n),即n1ana1i1f(n)。
例2已知a11,anan1n,求an。
解:方法1(递推法):anan1nan2(n1)nan3(n2)(n1)nn……a1[23…(n2)(n1)n]i1nn(n1)2。
方法2(叠加法):anan1n,依次类推有:an1an2n1、an2an3n2、…、nnna2a12,将各式叠加并整理得ana1i2n,ana1i2ni1nn(n1)2。
类型三:an1f(n)an思路1(递推法):anf(n1)an1f(n1)f(n2)an2f(n1)f(n2)f(n3)an3…f(1)f(2)f(3)…f(n2)f(n1)a1。
anan1a2a1an1an2ana1思路2(叠乘法):f(n1),依次类推有:f(n2)、an2an3f(n3)、…、f(1),将各式叠乘并整理得f(1)f(2)f(3)…f(n2)f(n1),即anf(1)f(2)f(3)…f(n2)f(n1)a1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反思
2020/6/5
17
练习1:在数列{an} 中,若a 1 1 ,a n 1 2 a n 3 (n 1 ) 则该数列的通项an ______________
an 2n1 3
练习2:07全国卷2理21
2020/6/5
模型4. a1 b, a n 1 = qn a r,(q,anR)
a qa 解: 将 n 1 =
ana1f(1 )f(2)…… f(n1)
∴ a n a 1 f( 1 ) f(2 ) f(3 ) …… f(n1)
2020/6/5 特例.a1=3,an+1=an+2n,求通项公式.
例4
11
a a a 例4.已知数列{ a n }中, 1 =3, n1
n+2n,求通项 a n 。
a 解。 由 an1 n +2n 得 an1an 2n
2 2
a1
n(n1)
n2n4
∴ an42 2 2 2
解法2:取对数(变模型5),用叠加法(自去练)
2020/6/5
21
例6(2004,全国I,理15.)已知数列{an},满足a1=1, n≥2,
a n a 1 2 a 2 3 a 3 ( n 1 ) a n 1
则{an}的通项
1
log2an+1=1+4log2an
令log2an=bn,则有bn+1=1+4bn 令bn+1+x=4(bn+x)则x=1/3
于是bn+1+1/3=4(bn+1/3)
令cn=bn+1/3则cn+1=4cn
而b1=1,c1=4/3,所以cn=(4/3)4n-1
bn=(4/3)4n-1-1/3
44n11
2020/6/5
整理得 an 23 3
19
模型5. a1 b, a n 1 = an f (n)
解: a 由 n 1 = an f (n) 得 a n 1 a n = f (n)
∴ an an1 f(n1) an1 an2 f(n2)
……………………………… a3 a2 f (2) a2 a1 f (1) 以上的 n-1 个式子叠加得
bn n
2020/6/5
an n2n1
sn(n1)2n11
例 8 : a 1 已 5 ,a n 5 a n 1 知 5 n 1 ,( n 2 ) 求 a n
答案 an(5 : n4)5n
练习 a 1 1 ,: a n 1 2 a n 已 1 2 1 n ,(知 n 2 )求 a n
解 : 令 an 1xq(anx)
则
x d q 1
令 bn an x
于是有
bn1
qbn,b1
b d q1
(到此,问题转化成了模型2)
特例.a1=5,an+1=2an+3,求通项公式.
例1
2020/6(/5 2006,重庆,文,14)
9
例1. (2006,重庆,文,14)
已知数列{a n }中,a 1 =5,an1 2an 2 a 求{ n }的通项公式。
将以上n个式子相乘,得
an
n! 2
(n 2)
2020/6/5
模型7. a1 b, a n 1 =q an f(n) (q≠0) 解: 由 a n 1 =q an f(n) 两边同除以 q n 1
得
an1 qn1
an qn
f (n) qn1
令
bn
an qn
g(n)
f (n) q n1
则 bn1bng(n)
(到此,问题转化成了模型5)
特例: a1= 5, an+1= 2 an + 4n , 求通项公式.(请自己去完成)
2020/6/5
13
例7:08全国卷文1.22
在数列{an}中,a1=1,an+1=2an+2n
(Ⅰ)设
bn
an 2 n1
证明:数列{bn}是等差数列;
(Ⅱ)求数列{an}的前n项和Sn。
高考复习专题讲座
浅议求递推数列的通项公式的数学思想
2020/6/5
禄劝民族实验中学 付贵有 王自存
2
一、浅谈递推数列在高考中的地位和 对策 二、几个常见模型的通项公式的求法及例子
2020/6/5
2
一、浅谈递推数列在高考试题中的 地位与对策
2020/6/5
3
数列在高中数学课本上篇幅很小,, 然而在高考试题中的 情况却相反。
=
3
n
据此得
an=
n 3
• 3n n- 1
(n1)
2020/6/5
递推公式为 an2pna1qna(其中p,q均为常数)。
解 (特征根法):对于由递推公式 an2pna1qna a1 ,a2
给出的数列 an , 方程 x2pxq0 叫做数列 an 的特征方程。 若 x1, x2 是特征方程的两个根, 当 x1 x2 时,数列 an 的 通项为
1981年、1982年、1984年、1986年、1987年、1999年、 2000年、2002年、2003年、2004年、2005年、2006年,这些 年的题中都有考递推数列的题,且常常是大题,甚至是压轴题。 2006年的36 套题中,考递推数列的大题有25 题。2007年的38 套题中有22题,2008年的38套题中有27题,09 年的文科18套 题中有9道题。理科18套题中有15道题
或是求an、Sn的极限等,不论是哪类问题,往往是通项 a n 一
旦出来,其它问题就迎刃而解了。
2020/6/5
6
二、递推公式转化通项公式的几个常见模型 及例子
注意几点: (一)有关概念:我们在研究数列{an}时,如果任一项an与它的前一项
a n(1 或几项)间的关系可以用一个公式来表示,则此公式就称为数列 的递推公式。通过递推公式给出的数列,一般我们也称之为递推数列。 递推公式是给出数列的一种重要方法。
解。由 an1 2an 2
令 an1x2(anx)
与原式比较得 x2
则 an12anx
于是 a n 1 +2=2( an 2 ),
作代换
b n = an 2 b 1 =5+2=7,
b 则 b n 1 =2 n 于是{bn}是等比数列
由等比数列的通项公式得
b n =7× 2n1
由所作代换得 a n =7× 2n1- 2
解:
(I)由已知有
an1 n 1
an n
1 2n
bn1
bn
1 2n
利用累差迭加即可求出数列 { b n } 的通项公式: bn
(II)由(I)得
n=
n k 1
an 2n
(2k
k 2 k 1
)
n
2n1
n k1
(2k)
n k1
k 2k1
2
1 2n1
n N*
n
而 (2k) n(n 1) k 1
又 n k
得
an1 f (n) an
∴ an f(n1),an1f(n2)
an1
an2
………… a 2 f (1) 以上的 n 1 个式子连乘得
a1
an f (1)f (2)f (3) ……f(n 1 ) a1
∴ an bf(1)f(2) …… f(n-1)
特例.a1=5,an+1= 3n an,求通项公式 或例5
2020/6/5
模型8. a1 b,
a n1 =
pa qa n
n
t
,(
qan t ≠0,b≠0)
a 解: 将
n1 =
pa n qa n t
两边取倒数得
1 t1 q
1
an1 p an p
令 bn=
ann p
(到此,问题转化成了模型3)
特例:
a1
2,an1
an , an 2
(二)求递推数列的通项公式的方向,是将其转化为等差数列或等比数 列的问题来解决。
(三)求递推数列的通项公式的手段,是连续代换,层层化简,最终化 为等差数列或等比数列的问题来解决。
(四)求递推数列的通项公式的数学思想是转化化归,高化低、隐化
显、生化熟、繁化简。 (五)求递推数列的通项公式的捷径,是记住常见模型、记住相应手段。
答案 an2n : 1 2 nn 1 2 n 1n21n
2020/6/5
07天津卷理21
09湖北卷理19
例9:(2009全国卷Ⅰ理20)(本小题满分12分在数列 { a n } 中,
a11,an1(11 n)ann2 n1
(I)设
bn
an n
,求数列{ a n } 的通项公式
S (II)求数列 { a n } 的前项和 S n
2 k 1
k 1
是一个典型的错位相减法模型
易得
n k1
k 2k1
4
n2 2n1
于是
Sn
=
n(n 1)
n2 2 n1
4
2020/6/5
评析:09年高考理科数学全国(一)试题将数列题前置,考查构造 新数列和利用错位相减法求前n项和,一改往年的将数列结合 不等式放缩法问题作为押轴题的命题模式。具有让考生和一线 教师重视教材和基础知识、基本方法基本技能,重视两纲的导向 作用。也可看出命题人在有意识降低难度和求变的良苦用心。
(六)求递推数列的通项公式的过程多是:观察—调整—代换—观察—调 整—202代0/6换/5 ‥‥‥整理—出结果。
(三)几个模型:
模型1. a1b,an 1and, 显然有 anb(n1)d 模型2. a1b,an1qn a 显然有 an bqn1