核磁共振原理(经典由简入深)精编版
核磁共振成像原理浅析

核磁共振成像原理浅析核磁共振成像(Magnetic Resonance Imaging,MRI)作为一种非侵入性的医学影像技术,广泛应用于临床诊断和研究领域。
它通过利用原子核自旋进动的物理现象,结合强磁场和射频脉冲的作用,得到具有空间分辨率的图像,从而提供详细的人体内部结构信息。
1. 核磁共振的基本原理介绍核磁共振的基本原理是基于核自旋角动量与外加磁场相互作用导致的能级分裂。
在磁场作用下,原子核自旋会在原子核周围形成一个微小的磁场,该磁场受到外加磁场的影响而发生改变。
核自旋在外加磁场作用下产生的进动称为Larmor进动,其频率称为Larmor频率。
2. MRI成像过程及关键步骤MRI成像的主要过程分为以下几个关键步骤:2.1. 建立静态基磁场MRI成像需要建立一个极强的静态基磁场,通常使用超导磁体产生几特斯拉甚至更高强度的恒定磁场。
2.2. 加入梯度磁场为了能够定位不同位置的信号源,需要在静态基磁场中加入线圈产生的梯度磁场。
这些梯度磁场可以使得不同位置的原子核产生不同Larmor频率的进动。
2.3. 应用射频脉冲在已建立静态基磁场和梯度磁场的情况下,通过应用射频脉冲(RF Pulse)来干扰系统,使得处于平衡状态的核自旋发生能级跃迁。
2.4. 感应信号采集与处理当射频能量停止后,原子核自旋会重新恢复到平衡状态,并向周围发出一种特定频率的电磁波(MR信号)。
采集这些信号并经过处理后即可得到MRI图像。
3. MRI图像构建与解释MRI图像是通过采集大量MR信号并进行处理得到的。
这些图像通常由各种对比机制构成,如T1加权图像、T2加权图像和T2*加权图像等。
3.1. T1加权图像与解释T1加权图像主要反映组织对长T1弛豫时间敏感的特性,它提供了优秀的组织分辨率和较好的对比效果。
常见应用包括解剖学分析、结构损伤评估等。
3.2. T2加权图像与解释T2加权图像则是根据组织对长T2弛豫时间敏感性来构造出来的。
磁共振成像原理

磁共振成像原理磁共振成像(Magnetic Resonance Imaging,MRI)是一种医学影像技术,通过利用原子核之间的相互作用和共振现象,产生高分辨率的内部结构图像。
本文将介绍MRI的原理和工作过程。
一、概述MRI是基于核磁共振现象的一种成像技术,通过在物体中引入强磁场和射频脉冲,观察磁共振响应而获得图像。
MRI具有无辐射、高分辨率、多平面观察等优点,被广泛应用于医学诊断和科学研究领域。
二、核磁共振现象核磁共振现象是指原子核在外加磁场中,吸收或发射能量的现象。
当被放置在磁场中的原子核与外加射频脉冲发生共振时,会吸收射频能量并发生能级跃迁。
这种能级跃迁的过程中,原子核会发出特定频率的电磁波,即磁共振信号。
利用这种信号,可以推测出原子核所在位置的信息。
三、磁场和射频波MRI的关键部分是强大的静态磁场和可控的射频脉冲。
静态磁场会对体内的原子核进行定向,使其呈现特定的能级分布。
射频脉冲则用于激发原子核发生能级跃迁,产生磁共振信号。
四、磁共振成像过程1. 准备阶段:患者进入机器前,需要清除金属物品,以免干扰磁场和射频波。
患者躺入机器中央,头部或身体部位需要进入磁共振扫描区域。
2. 信号激发:在静态磁场的作用下,使用射频脉冲激发体内的原子核,使其达到共振状态。
3. 信号接收:激发后的原子核会发出磁共振信号,感应线圈将这些信号捕获并转化为电信号。
4. 数据采集:电信号被传送到计算机中进行处理和分析。
计算机将信号转化为图像数据,并对其进行整合和重建,生成可视化的图像。
五、影像结果1. 结构图像:通过磁共振成像,我们可以获得人体内部的高分辨率结构图像。
这些图像可以用于检测和诊断疾病,如肿瘤、损伤和器官异常等。
2. 功能图像:除了结构图像,MRI还可以生成功能图像,用于研究人体组织的功能性变化。
例如,可以观察大脑在特定任务下的活动变化,探索神经系统的工作机制。
六、应用领域MRI在医学诊断中具有广泛的应用。
核磁共振的基本原理(PPT文档)

z
z
z
m =1/2
m =1
m =2
B0
Hale Waihona Puke m =1m =0mm==0-1
m =-1/2
m = -1
m = -2
I=1/2
I=1
I=2
E2=+ μ B0 E= E2 — E1 = 2μ B0 E1=— μ B0
受限下的核运动
原子核运动=自旋+回旋 (拉摩尔进动) —自旋:绕自旋轴(感应磁场轴)旋转 —回旋:绕回旋轴(外加磁场轴)旋转 进动频率=表征不同原子核的进动情况
类似电流线圈 产生磁场 右手定则
原子核自旋情况,用自旋量子数(I)表征。 I的取值由原子核的质子数和种子数决定:
4质子数和中子数都为偶数, I=0 (12C, 16O,32S, 28Si)---无自旋,无NMR
4质子数和中子数一个为奇数,一个为偶数,I为半整数, I=1/2 (1H,13C ,19F,31P)---自旋情况简单,
当外来射频辐射能量(hv0)等于△E时,则原 子核吸收电磁辐射能量,发生核能级的跃迁----产
生所谓NMR现象。即:
h
E
h 2
B0
h0
0
2
B0
磁旋比—原子核特征常数 外加磁场强度-单位为特斯拉
也就是说,当外来射频(T辐) 射的频率满足上式时就会
引起能级跃迁并产生吸收。—— 核磁共振条件
总之,自旋量子数 I ≠ 0的原子核在磁场 中都将发生分裂,可以吸收一定频率的辐射而发 生能级跃迁,发生核磁共振。
0
2
B0
—— 核磁共振条件
例:许多现代NMR仪器所使用的磁场强度 为4.69。请问在此磁场中,氢核可吸收多 大频率的辐射?
核磁共振基本原理共40页文档

P I(I 1 ) gNN ; Ne2m P5 .05 1 0 2 0 8 J 7T 1
磁旋比,即核磁矩与自旋角动量的比值,不同的核具有不同的 磁旋比,它是磁核 一个特征(固定)值。 N为核磁子。
2020/5/12
(3) 与P方向平行。
1H2.79 217 C 3 0 0.7021 4:16
这类原子核的核电荷分布可看作一个椭圆体,电荷分布 不均匀,共振吸收复杂,研究应用较少;
(3)I=1/2的原子核(重要) 1H,13C,19F,31P
原子核可看作核电荷均匀分布的球体,并象陀螺一样自旋, 有磁矩产生,是核磁共振研究的主要对象,C,H也是有机化 合物的主要组成元素。
2020/5/12
二、 核磁共振现象
8.34 8.29 8.27
7.52 7.51 7.36 7.35 7.33 7.30 7.28 7.27
4.93
3.94 3.79 3.33 3.33 3.33 3.08 3.06 3.05 3.03 2.92 2.91 2.89 2.88 2.86 2.82 2.78 2.33 2.31 2.08 2.07 2.07
300 800 3600 6000 9000 30000 30000
总结
(1)在相同 B0 下,不同的核,因磁旋比不同,发生共振的 频率不同,据此可以鉴别各种元素及同位素。
例如,在 2.3 T 的磁场中,1H 的共振频率为100 MHz , 13C 的为 25 MHz 只是氢核的1/4,而 133Cs 的仅仅是氢核的 1/8 左右。 (2)对同一种核, 一定,当B0 不变时,共振频率不变; 当B0 改变时,共振频率也随之而变。
2020/5/12
( 核磁共振现象)
两种取向不完全与外磁场平行,=54°24’ 和 125 °36’相互作用, 产生进动(拉莫进 动)进动频率 0; 角速度0;
核磁共振成像的基本原理

核磁共振成像的基本原理当我们去医院看病时,医生可能会建议我们做一项叫做核磁共振成像(MRI)的检查。
这个听起来有些复杂和神秘的技术,其实是基于一些相当有趣和重要的科学原理。
首先,我们要知道核磁共振成像主要是利用了原子核的特性。
在我们身体的各种组织中,都存在着氢原子。
氢原子的原子核就像一个小小的磁体,具有一定的磁性。
那么,这些小小的磁体是怎么在核磁共振成像中发挥作用的呢?这就要提到一个叫做“磁场”的东西。
在核磁共振成像设备中,有一个非常强大的磁场。
当我们的身体被放入这个磁场中时,身体内氢原子核的磁体就会像指南针一样,沿着磁场的方向排列。
但是,仅仅让氢原子核排列还不够,还需要给它们一些额外的“刺激”。
这时候,就会通过设备发射一种特定频率的无线电波。
这个无线电波的能量正好能够让氢原子核吸收,从而改变它们的排列状态。
当无线电波停止发射后,氢原子核就会逐渐恢复到原来在磁场中的排列状态。
在这个恢复的过程中,它们会释放出能量。
这些能量会被设备检测到,并转化为图像的信号。
可是,为什么不同的组织在核磁共振图像中会呈现出不同的亮度和对比度呢?这是因为不同组织中氢原子的含量和分布是不一样的。
比如,水含量较多的组织(如脑脊液)中氢原子就比较多,在图像中就会显得更亮;而脂肪组织中的氢原子含量相对较少,图像就会相对较暗。
另外,组织的特性也会影响信号的强度。
比如,健康的组织和病变的组织,由于细胞结构、水分含量等方面的差异,在核磁共振成像中也会有所不同。
这就为医生诊断疾病提供了重要的依据。
为了更准确地获取图像,核磁共振成像技术还采用了一些特殊的方法。
比如,通过改变磁场的强度和方向,可以在不同的层面上获取图像,就像切面包一样,可以一层一层地观察身体内部的结构。
还有一个重要的概念叫做“弛豫时间”。
它分为纵向弛豫时间(T1)和横向弛豫时间(T2)。
T1 反映了氢原子核恢复到原来纵向排列状态的速度,T2 则反映了氢原子核在横向方向上失去同步的速度。
核磁共振工作原理

核磁共振工作原理
核磁共振(Nuclear Magnetic Resonance,NMR)是一种基于原子核的特性和磁场相互作用的物理现象的技术。
通过利用原子核在外加磁场下的磁性特性,核磁共振可以为化学物质和生物体提供详细的结构信息。
其工作原理可以总结为以下几个步骤:
1. 磁化过程:将待测的样品放入强磁场中,如常用的是超导磁铁产生的静态磁场。
这个静态磁场会使样品中原子核的磁矩有方向性地分布起来,使得样品整体具有一个总的磁化强度。
2. 辐射吸收过程:通过适当的方法施加一定频率的电磁波(通常是射频波),使得其频率与样品中原子核的回旋频率匹配(所谓的共振频率)。
这样,外界电磁波会被样品中的原子核吸收。
3. 回旋过程:被吸收的能量会激发样品中的原子核,使得它们的磁矩从初始的方向开始进动,即回旋。
回旋频率与原子核固有的磁共振频率相匹配。
4. 检测信号过程:在回旋过程中,原子核的磁矩会影响探测线圈中的感应电压。
这个感应电压可以被检测和记录下来,从而得到一个与样品中原子核回旋情况有关的信号。
5. 数据处理与图像构建:通过对检测到的信号进行数学处理和谱线解析,可以得到原子核的特征参数和相应的峰图。
这些参数和图像可以提供关于样品分子结构和动力学特性等信息。
总之,核磁共振技术利用样品中原子核的特性和外加磁场的相互作用,通过回旋过程和检测信号,能够提供详细的结构和性质信息。
在化学、生物医学和材料科学等领域具有广泛的应用。
磁共振的基本原理

磁共振的基本原理全文共四篇示例,供读者参考第一篇示例:磁共振成像(Magnetic Resonance Imaging,MRI)是一种常用的医学影像技术,它通过利用核磁共振现象来获取人体内部组织的高分辨率影像。
磁共振成像的原理是基于核磁共振现象,核磁共振是指原子核在特定外加磁场和射频脉冲作用下发生共振现象的过程,这种现象是由原子核的自旋引起的。
核磁共振现象的基本原理是原子核围绕自身的轴线旋转,此旋转称为自旋。
原子核带正电荷,因此具有磁矩,这使得原子核在外加磁场中具有一个旋转磁矩。
在没有外磁场的情况下,原子核的旋转方向是随机的,但是当外加一个静磁场时,原子核的旋转将在静磁场的磁感应线方向附近产生一个特定的角动量,自旋基数状态将在漂移的过程中产生相干现象。
当外加一个射频脉冲时,原子核将吸收能量并从低能级跃迁到高能级,这个过程叫做共振吸收,原子核在高能级停留的时间很短,不到微秒级别,然后原子核会放出吸收的能量,回到低能级状态。
在原子核从高能级回到低能级的过程中,会发出一个特定频率的信号,这个信号被称为核磁共振信号。
通过测量核磁共振信号的幅度和相位,就可以得到原子核在外加磁场下的性质和环境,从而获取到影像信息。
磁共振成像的基本原理是利用原子核的核磁共振现象来获取组织的信息,不同种类的原子核在外加不同频率的射频脉冲下会产生不同的信号,这样就可以对不同组织进行区分。
而磁共振成像的优势在于其对软组织有很好的分辨能力,可以提供清晰的组织结构和病变信息,对于脑部、胸部、腹部和骨骼等部位的疾病诊断有着独特的优势。
除了在医学影像领域应用广泛以外,磁共振技术还被广泛应用在其他领域,如材料科学、生物化学、地球科学等领域。
磁共振技术的发展将为人类带来更多的利益与帮助。
第二篇示例:磁共振成像(Magnetic Resonance Imaging,MRI)是一种通过利用人体自身核磁共振信号来获取影像信息的高端医学影像检查技术。
MRI基本原理精品PPT课件精选全文完整版

54
= .B
:进动频率
Larmor 频率
:磁旋比
42.5兆赫 / T
B:主磁场场强
55
高能与低能状态质子的进动
由于在主磁场中质子进动,每个氢质子均 产生纵向和横向磁化分矢量,那么人体进 入主磁场后到底处于何种核磁状态?
91
5、磁共振“加权成像”
T1WI
PD
T2WI
92
何为加权???
• 所谓的加权就是“重点突出”
的意思
– T1加权成像(T1WI)----突出组织T1弛豫 (纵向弛豫)差别
– T2加权成像(T2WI)----突出组织T2弛豫 (横向弛豫)差别
– 质子密度加权成像(PD)-突出组织氢质 子含量差别
93
低能量
宏观效应
中等能量
高能量
69
90度脉冲继发后产生的宏观和微观效应
低能的超出部分的氢质子有一半获得能量进入高能状态, 高能和低能质子数相等,纵向磁化矢量相互抵消而等于零
使质子处于同相位,质子的微观横向磁化矢量相加,产生 宏观横向磁化矢量
70
氢质子多 氢质子少
90度脉冲激发使质子发生共振,产生最大的旋转 横向磁化矢量,这种旋转的横向磁化矢量切割接 收线圈,MR仪可以检测到。
N
S
MR不能检测到纵向磁化矢量,但能检测到旋转的横向磁化矢量
62
如何才能产生横向宏观磁化矢量?
63
3、什么叫共振,怎样产生磁共振?
• 共振:能量从一个震动着的物体传递到另一
个物体,而后者以前者相同的频率震动。
64
共振
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
1、人体MR成像的物质基础
• 原子的结构
电子:负电荷
中子:无电荷
质子:正电荷
7
安培是电学领域里的牛顿
• 他想:既然通电的线圈类似一只磁铁,反过来,一 个天然磁体不是也像一只通电线圈吗?那么,天然 磁铁上的电流在哪里?安培注意到这样一个事实, 那就是把一条形磁体折为两段,结果变成了两个独 立的磁体,照此分下去,天然磁体的每一颗粉末也 都是独立的磁体,都有N极和S极 ;
观
使质子处于同相位,质子的微观横向磁化矢量相加,产生 效
宏观横向磁化矢量
应
26
90度脉冲激发使质子发生共振,产生最大的旋转 横向磁化矢量,这种旋转的横向磁化矢量切割接 收线圈,MR仪可以检测到。
氢 质 子 多
氢 质 子 少
27
•非常重要
• 无线电波激发后,人体内宏观磁场偏 转了90度,MRI可以检测到人体发出 的信号
人体并不表现出宏观磁化矢量。
13
把人体放进大磁场
14
组进 织入 质主 子磁 的场 核前 磁后 状人 态体
15
• 进动(Precession)
• 质子在静磁场中以进动方式运动 • 这种运动类似于陀螺的运动
质 子 进 动
陀 螺 运 动
16
• 进动频率(Precession Frequency)
拉莫尔方程
•不同组织T1值不同
36
•在任何序列图像上,信号采集时刻旋转横 向的磁化矢量越大,MR信号越强
37
•重 要
提 示
• 不同组织有着不同
• 质子密度 • 横向(T2)弛豫速度 • 纵向(T1)弛豫速度
• 这是MRI显示解剖结 构和病变的基础
38
5、磁共振“加权成像”
T1WI
PD
T2WI
39
何为加权???
0 B0
其中:ω0 :进动的频率 (Hz或MHz) B0 :外磁场强度(单位T,特斯拉)。 γ :旋磁比;质子的为 42.5MHz / T。
17
18
•处于高能状态太费劲,并非人人都能做到
•处于低能状态的略多一点 19
• 进入主磁场后人体被磁 化了,产生纵向宏观磁 化矢量
• 不同的组织由于氢质子 含量的不同,宏观磁化 矢量也不同
第一章 核磁共振成像原理
本章主要讲述内容: 磁共振信号的产生 磁共振信号的获取与傅立叶变换 像素位置信息的确定(梯度) 像素灰度信息(信号幅度)的确定 序列参数对图像权重的影响 磁共振成像序列
1
简述磁共振成像过程
1.
2
3
4
第一节 磁共振信号的产生
• 发电; • 磁带、录像带; • 磁盘; • 音响; • MRI的核心。
• 也称为T2 弛豫,简 单地说, T2弛豫就 是横向磁 化矢量减 少的过程。
33
•不同的组织横向弛豫速度不同
•不同的组织T2值不同
34
纵向弛豫
• 也称为T1弛豫,是指90度脉冲关闭后,在 主磁场的作用下,纵向磁化矢量开始恢复, 直至恢复到平衡状态的过程。
90度 脉冲
35
•不同组织有不同的纵向弛豫速度
• 磁共振不能检测出纵向 磁化矢量
20
MR能检测到怎样的磁化矢量呢???
MR不能检测到纵向磁化矢量,但能检测到旋转的横向磁化矢量
21
MR能检测到怎样的磁化矢量呢???
MR不能检测到纵向磁化矢量,但能检测到旋转的横向磁化矢量
22
如何才能产生横向宏观磁化矢量?
23
3、什么叫共振,怎样产生磁共振?
–1、1H的磁化率很高; –2、1H占人体原子的绝大多数。
•通常所指的MRI为氢质子的MR图像。
11
•人体内有无数个氢质子(每毫升水含氢 质子3×1022) •每个氢质子都自旋产生核磁现象
•人体象一块大磁铁吗?
12
通常情况下人体内氢质子的核磁状态
通常情况下,尽管每个质子自旋均产生一个小的
磁场,但呈随机无序排列,磁化矢量相互抵消,
• 氢质子含量高的组织纵向磁化矢量大, 90度脉冲后偏转横向的磁场越强, MR信号强度越高。
• 此时的MR图像可区分质子密度不同 的两种组织
28
•非常重要
•检测到的仅仅是不同组织氢质 子含量的差别,对于临床诊断来 说是远远不够的。
•我们总是在90度脉冲关闭后过 一定时间才进行MR信号采集。
29
4、射频线圈关闭后发生了什么?
• 所谓的加权就是“重点突出”
的意思
• T1加权成像(T1WI)----突出组织T1弛豫 (纵向弛豫)差别
• T2加权成像(T2WI)----突出组织T2弛豫 (横向弛豫)差别
• 质子密度加权成像(PD)-突出组织氢质 子含量差别
40
T2加权成像 (T2WI)
反映组织 横向弛豫 的快慢!
• T2值小 横向磁化矢量减少快 MR信号低(黑) • T2值大 横向磁化矢量减少慢 MR信号高(白) • 水T2值约为3000毫秒 MR信号高 • 脑T2值约为100毫秒 MR信号低
30
无线电波激发使磁场偏转90度,关闭无线 电波后,磁场又慢慢回到平衡状态(纵向)
31
• 射频脉冲停止后,在主磁场的作用下, 横向宏观磁化矢量逐渐缩小到零,纵向 宏观磁化矢量从零逐渐回到平衡状态,
这个过程称为核磁弛豫。
• 核磁弛豫又可分解为两个部分: • 横向弛豫 • 纵向弛豫
32
90度脉冲
横向弛豫
• 共振:能量从一个震动着的物体传递到另一
个物体,而后者以前者相同的频率震来自。24体内进动的氢质子怎样才能发生共振呢?
给低能的氢质子能量,氢质子获得能 量进入高能状态,即核磁共振。
25
90
度
脉
冲
继
发
后
产
生
的
宏
观
低能的超出部分的氢质子有一半获得能量进入高能状态, 和
高能和低能质子数相等,纵向磁化矢量相互抵消而等于零 微
8
原子核总是绕着自身的轴旋转--自旋 ( Spin )
9
自旋与核磁
•地球自转产生磁场
•原子核总是不停地按一定频率绕着自身的
轴发生自旋 ( Spin )
•原子核的质子带正电荷,其自旋产生的磁
场称为核磁,因而以前把磁共振成像称为 核磁共振成像(NMRI)。
10
何种原子核用于人体MR成像?
•用于人体MRI的为1H(氢质子),原因有:
• 安培想:在原子、分子或分子团等物质微粒内部, 存在着一种环形电流--分子电流(后人也叫它“安培 电流”),分子电流使每个物质微粒都形成了一个微 小的磁体,环性的分子电流的磁场使它的两侧相当 于两个磁极。这两个磁极是跟分子电流不可分割地 联系在一起的。未磁化的物体分子电流的方向非常 紊乱,对外不显示磁性。磁化后,分子电流的方向 变得大致相同,于是对外显示出磁作用。