数据结构实验报告——四则运算表达式求值
数据结构表达式求值实验报告

竭诚为您提供优质文档/双击可除数据结构表达式求值实验报告篇一:数据结构实验二——算术表达式求值实验报告《数据结构与数据库》实验报告实验题目算术表达式求值学院:化学与材料科学学院专业班级:09级材料科学与工程系pb0920603姓学邮名:李维谷号:pb09206285箱:指导教师:贾伯琪实验时间:20XX年10月10日一、需要分析问题描述:表达式计算是实现程序设计语言的基本问题之一,它的实现是栈的应用的一个典型例子。
设计一个程序,演示通过将数学表达式字符串转化为后缀表达式,并通过后缀表达式结合栈的应用实现对算术表达式进行四则混合运算。
问题分析:在计算机中,算术表达式由常量、变量、运算符和括号组成。
由于不同的运算符具有不同的优先级,又要考虑括号,因此,算术表达式的求值不可能严格地从左到右进行。
因而在程序设计时,借助栈实现。
设置运算符栈(字符型)和运算数栈(浮点型)辅助分析算符优先关系。
在读入表达式的字符序列的同时完成运算符和运算数的识别处理,然后进行运算数的数值转换在进行四则运算。
在运算之后输出正确运算结果,输入表达式后演示在求值中运算数栈内的栈顶数据变化过程,最后得到运算结果。
算法规定:输入形式:一个(:数据结构表达式求值实验报告)算术表达式,由常量、变量、运算符和括号组成(以字符串形式输入)。
为使实验更完善,允许操作数为实数,操作符为(、)、.(表示小数点)、+、-、*、/、^(表示乘方),用#表示结束。
输出形式:演示表达式运算的中间结果和整个表达式的最终结果,以浮点型输出。
程序功能:对实数内的加减乘除乘方运算能正确的运算出结果,并能正确对错误输入和无定义的运算报错,能连续测试多组数据。
测试数据:正确输入:12*(3.6/3+4^2-1)#输出结果:194.4无定义运算:12*(3.6/(2^2-4)+1)#输出结果:表达式出错,除数为0,无意义错误输入:12+s#输出结果:eRRoR!二、概要设计拟采用两种类型的展分别对操作数和操作符进行操作。
数据结构实验报告表达式求值

数据结构实验报告题目:编制一个表达式求值的程序。
一.需求分析1.本演示程序中,利用堆栈存储结构存储读入的运算符,输入的限定范围是数字(0—9),以及+*/()。
输入字符串限定长度为20,可以根据需要进行改变。
如果遇到不是以上范围或者连续输入两个运算符,如:++,则会提示输入错误,请重新输入。
输出的结果是转换后的后序表达式,以及float型数字,不会含有非法字符。
2.演示程序采用的是文件输入,只需要在源代码中输入要输入的文件的地址,然后就可以在文本文件中进行输入,运行过程中会自动读取,输出文本输入的表达式,及运算结果。
3.程序执行的命令包括:1)构造字符优先级比较表,比较优先关系2)文件输入3)构造堆栈,运算符入栈4)堆栈输出,变为后序表达式,并计算5)输出结果,结束4.测试数据文件地址:C:\\Users\\lenovo\\Desktop\\4.txt1) 输入:(35+20/2)*2-4/2+12正确输出结果是:100.00002)输入:(35+20/2)*2-/2+12结果是:error input3) 输入:a+ar/3=135结果是:error input二.概要设计为实现以上程序功能,需运用堆栈用于存储运算符,因此需要定义抽象数据类型。
1.堆栈的抽象数据类型定义为:ADT stack{数据对象:D={ai|ai∈正整数,i=0,1,2,3,…n,及{+-*/()}}数据关系:R1={<ai-1,a1>|ai-1,ai∈D}基本操作:Init stack(&s)操作结果:构造一个空的堆栈sPush stack(&s, e)初始条件:存在堆栈s操作结果:元素e压入堆栈s,top+1Pop (&s,e)初始条件:栈s已经存在且非空操作结果:删除栈顶元素e,输出其值,top-12.程序包含三个模块:1)运算符优先关系模块2)主程序模块;Int main(void){初始化;Do{接受命令;处理命令;}while(“命令”=”退出”);}3)堆栈模块三.详细设计1.程序源代码解释为:float Result(int c,float r[],int top){ //定义输出结果int j;float temp;switch(c){ //以下是四种基本运算的计算定义,运算完成后直接将top-1值赋予topcase 42:r[top-1]=r[top-1]*r[top];top=top-1;break; //乘法case 43:r[top-1]=r[top-1]+r[top];top=top-1;break;///加法case 45:r[top-1]=r[top-1]-r[top];top=top-1;break;//减法case 47:r[top-1]=r[top-1]/r[top];top=top-1;break;// 除法case 94:for(j=1,temp=r[top-1];j<r[top];j++) //平方或者几次方的运算temp=r[top-1]*temp; //循环相乘r[top-1]=temp;top=top-1;break;}return(r[top]);}if(temp1!=1){while(top>=1){ //栈不空的时候,栈中元素赋给houzhi,并计数biaozhi[b++]=i;houzhi[i]=duizhan[top-1];top=top-1;i=i+1;}max=i; //从0到i循环输出后序表达式for(i=0,b=0;i<max;i++){if(i!=biaozhi[b])printf("%d ",houzhi[i]) ; //输出后序表达式中的数字else {printf("%c ",houzhi[i]); //输出后序表达式中的运算符b=b+1;}}top=-1;for(i=0,b=0;i<max;i++){ //从0到maxif(i!=biaozhi[b]){top=top+1;result[top]=houzhi[i]; //将后值赋予result,调用result函数,进行Result运算}else {Result(houzhi[i],result,top); //运算结束,输出栈顶值,既是运算结果top--;b=b+1;}}printf("\n\nThe result is %f ",Result(houzhi[i],result,top)); //输出并打印结果}}getch();return 0;///返回0}2.程序的模块调用:主程序↓文件打开读入字符↓输入字符有效及优先级的判断↓运算模块↓输出结果四.调试分析1.本次作业的核心就是利用堆栈将中序表达式改成后序表达式,然后进行表达式的求值。
四则运算实验报告

实验3四则运算表达式求值背景在工资管理软件中,不可避免的要用到公式的定义及求值等问题。
对于数学表达式的计算,虽然可以直接对表达式进行扫描并按照优先级逐步计算,但也可以将中缀表达式转换为逆波兰表达式,这样更容易处理。
问题描述四则运算表达式求值,将四则运算表达式用中缀表达式,然后转换为后缀表达式,并计算结果。
基本要求使用二叉树来实现。
实现提示利用二叉树后序遍历来实现表达式的转换,同时可以使用实验2的结果来求解后缀表达式的值。
输入输出格式:输入:在字符界面上输入一个中缀表达式,回车表示结束。
输出:如果该中缀表达式正确,那么在字符界面上输出其后缀表达式,其中后缀表达式中两相邻操作数之间利用空格隔开;如果不正确,在字符界面上输出表达式错误提示。
选作内容(1)在输入输出方式上要求使用:输入:将中缀表达式存于文本文件中,程序从该文本文件中读出表达式。
输出:如果该中缀表达式正确,则将后缀表达式输出到该文件中原表达式的后面,它们之间用“---”后相连;如果不正确,请在输出表达式错误提示到该文件原表达式的后面,它们之间用“---”相连。
(2) 利用堆栈来实现中缀表达式转换为后缀表达式。
测试用例输入:21+23*(12-6)输出:21 23 12 6 -*+程序代码:#include <iostream>#include <string.h>using namespace std;#define SIZE 100#define STACKINCREMENT 10template<class T>//栈class stack{public:void InitStack() {S.base = (T *)malloc(SIZE * sizeof(T));if(!S.base) exit(0);S.top = S.base;S.stacksize = SIZE;}void DestroyStack(){free(S.base);}void ClearStack(){S.top = S.base;}bool StackEmpty(){if(S.top == S.base) return true;else return false;}int StackLength(){return (S.top - S.base);}bool GetTop(T &t){if(S.top != S.base){t = *(S.top - 1);return true;}else return false;}void Push(T t){if(S.top - S.base >= S.stacksize){S.base = (T *)realloc(S.base,(S.stacksize + STACKINCREMENT) * sizeof(T));if(!S.base) exit(0);S.top = S.base + S.stacksize;S.stacksize += STACKINCREMENT;}*S.top = t;S.top++ ;}bool Pop(T &t){if(S.top == S.base) return false;else S.top-- ;t = *S.top ;return true;}private:struct SqStack{T *base;T *top;int stacksize;}S;};class BiTree{private:struct BiTreeNode{char OPT[10];BiTreeNode *lchild,*rchild;};BiTreeNode *T; //T是根结点int index; //index是后缀表达式转换二叉树时的索引int number_of_point ;//销毁一颗树void DestroyTree(BiTreeNode *T){if(T){DestroyTree(T->lchild);DestroyTree(T->rchild);free(T);}}void DestroyTree(){DestroyTree(T);}//1表示栈顶优先级高于待入栈的元素int compare(char a,char b){ //定义了任意两个运算符的优先级if(a == '(' && b == ')') return 0;else if((a == '+' && b == '*') || (a == '+' && b == '/') || (a == '-' && b == '*') || (a == '-' && b == '/')|| (a != ')' && b == '(') || (a == '(' && b != ')'))return -1;else return 1;}//递归构造start,end分别是一个式子开始值和结束值的索引/*递归构造中缀表达式转化为的二叉树(利用栈) */void InorderCreate(BiTreeNode *&T,char str[30][10],int start,int end){ if(start == end) { //递归终止if(!(T = (BiTreeNode *)malloc(sizeof(BiTreeNode)))) exit(0);strcpy(T->OPT,str[start]);T->lchild = NULL;T->rchild = NULL;}else{stack<char> opt;stack<int> num;num.InitStack();opt.InitStack();char last;int index;int a;bool jump = false;for(int i = start;i <= end;i++) { //begin求解优先级最小的一个运算符if(jump) break;number_of_point = 0 ;if(IsNumber(str[i][0]) || str[i][0] == '-' &&IsNumber(str[i][1]) )continue;else{char c = str[i][0];char b;if(i == start && c == '(') {start += 1;continue;}else if(opt.StackEmpty() || (opt.GetTop(b) && compare(b,c) == -1)){opt.Push(c);num.Push(i);}else{if(c != ')'){opt.Pop(b);num.Pop(a);if(!opt.StackEmpty()){opt.GetTop(b);if(compare(b,c) == 1){opt.Pop(b);num.Pop(a);opt.Push(c);num.Push(i);}else{opt.Push(c);num.Push(i);}}else{opt.Push(c);num.Push(i);}}else{for(opt.GetTop(b);compare(b,c) != 0;opt.GetTop(b)){opt.Pop(b);num.Pop(a);if(opt.StackEmpty()){opt.Push(b);num.Push(a);end -= 1;jump =true;break;}}if(compare(b,c) == 0) {opt.Pop(b);num.Pop(a);}}}}} //end,得到的是该步中的根结点字符last及其索引indexopt.Pop(last);num.Pop(index);if(!opt.StackEmpty()){opt.Pop(last);num.Pop(index);}opt.DestroyStack();num.DestroyStack();if(!(T = (BiTreeNode *)malloc(sizeof(BiTreeNode)))) exit(0);T->OPT[0] = last;T->OPT[1] = '\0';InorderCreate(T->rchild,str,start,index-1);InorderCreate(T->lchild,str,index+1,end);}}bool IsNumber(char a){ //判断一个字符是否为数值形式的if( a == '.' && number_of_point == 0 ) {number_of_point ++ ;return true;}else if('0' <= a && a <= '9') return true ;else return false;}//递归求解树表示的表达式的值double Operate(BiTreeNode *T){if(T->lchild==NULL && T->rchild==NULL){double num = atof(T->OPT); //调用系统函数atof()将字符串转换为浮点数return num;}double ld,rd;ld = Operate(T->lchild);rd = Operate(T->rchild);char c = T->OPT[0];switch(c){case '+': return ld+rd;break;case '-': return rd-ld;break;case '*': return ld*rd;break;case '/': return rd/ld;break;default:cout << " you have entered wrong data ! "<< endl ;return 0;break ;}}void display(BiTreeNode *T){if(T == NULL ) return ;display(T->rchild);display(T->lchild);cout << T->OPT << " " ;public:BiTree() {T = NULL ;index = 0 ;number_of_point = 0 ;}/*以下两个函数重载私有成员函数方便计算*/void InorderCreate(){char OPT[30][10];cout << "输入中缀表达式: " << endl;char c = getchar();bool flag = true;int i = 0,j = 0 ;while(c != 10) { //输入的是空格j = 0;if(c == '-' && flag == true) { //flag判断是否是一个负数的值OPT[i][j++] = c;for(c = getchar() ; IsNumber(c) ; c = getchar() )OPT[i][j++] = c;OPT[i++][j] = '\0';flag = false;}else if(IsNumber(c)){OPT[i][j++] = c;for(c = getchar();IsNumber(c);c = getchar())OPT[i][j++] = c;OPT[i++][j] = '\0';flag = false;}else //运算符时的处理{flag = true;OPT[i][j++] = c;OPT[i++][j] = '\0';c = getchar();}}InorderCreate(T,OPT,0,i-1);}double Operate(){return Operate(T);}void display(){display(T) ;}~BiTree() {DestroyTree();};int main(){BiTree tree;tree.InorderCreate();cout << endl << tree.Operate() << endl;tree.display() ;cout << endl ;return 0;}测试结果:。
【7A版】四则运算表达式求值实验报告

HUNANUNIVERSITY课程实习报告题目:四则运算表达式求值学生姓名:学生学号:专业班级:指导老师:完成日期:一、需求分析四则运算表达式求值,将四则运算表达式用中缀表达式表示,然后转换为后缀表达式,并计算结果。
本程序要求利用二叉树后序遍历来实现表达式的转换,同时可以使用实验2的结果来求解后缀表达式的值。
在字符界面上输入一个中缀表达式,回车表示结束。
如果该中缀表达式正确,那么在字符界面上输出其后缀表达式,其中后缀表达式中两相邻操作数之间利用空格隔开;如果不正确,在字符界面上输出表达式错误提示。
测试数据输入:21+23G(12-6)输出:2123126-G+二、详细设计输入和输出的格式输入本程序可以将输入的四则运算表达式(中缀表达式)转换为后缀表达式输出后缀表达式为://输出结果的位置表达式的值为://输出结果的位置三、调试分析本次实验的难点主要是在建立二叉树的问题上。
关于如何把中缀表达式存入二叉树中,我参考了网上的一些方法,成功实现了目标,但是却遇到了一个问题,那就是不能处理小数,甚至两位或两位以上的整数。
因为如果采用字符数组来存储操作数,运算符合一位整数还可以处理,但对于两位数就就会出问题,最后我改进采用字符串数组来存储操作数,成功解决了问题。
另外在处理输入的非法表达式问题中,我也费了很大功夫,但总体问题不大。
四、测试结果五、用户使用说明(可选)1、运行程序时提示输入四则运算表达式本程序可以将中缀表达式转化为后缀表达式,并计算结果请输入四则运算表达式:输出后缀表达式为:表达式的值为:程序源代码(c++)#include<iostream>#include<string>#include<stack>#include<iomanip>constintMaG=100;usingnamespacestd;classNode{public:charch[MaG];//考虑到数值有时会是两位数,所以使用字符串数组NodeGlChild;NodeGrChild;Node(){strcpy(ch,"");lChild=rChild=NULL;}~Node(){if(lChild!=NULL)deletelChild;if(rChild!=NULL)deleterChild;}};staticintcount=0;staticchararray[MaG];//保存原始的中缀表达式staticcharstr[2GMaG];//保存后序遍历出来的字符串,为表达式求值提供方便staticintk=0;chargetOp(NodeGtemp);//temp指针保存每个结点,返回的是运算符NodeGcrtTree(NodeGroot);//传入根结点指针,返回根结点指针voidoutput(NodeGroot);//获得处理后的字符串boolisError(char);//判断字符是否有问题voiddeal();//对字符数组进行处理doublevalue(string);//计算后缀表达式,得到其结果。
【数据结构与数据库-实验报告】表达式求值(栈)

8 / 20
版权归原作者 Amber 所有
break; } } return GetTop2(OPND); } int main( ) { printf("请输入正确的表达式以'#'结尾:"); do{ gets(expr); }while(!*expr); InitStack(&OPTR); /* 初始化运算符栈 */ Push(&OPTR,'#'); /* 将#压入运算符栈 */ InitStack2(&OPND); /* 初始化操作数栈 */ printf("表达式结果为:%d\n", EvalExpr()); return 0; }
6 / 20
版权归原作者 Amber 所有
case '+' : return (a+b); case '-' : return (a-b); case '*' : return (a*b); case '/' : return (a/b); } return 0; } 8、返回操作数的长度 int num(int n) { char p[10]; itoa(n,p,10);//把整型转换成字符串型 n=strlen(p); return n; } 9、主要操作函数 int EvalExpr() { char c,theta,x; int n,m; int a,b; c = *ptr++; while(c!='#'||GetTop(OPTR)!='#') {
版权归原作者 Amber 所有
数据结构与数据库 实验报告
题 院 姓 学
数据结构实验报告 表达式求值

(一) 需求分析1、输入的形式和输入值的范围:根据题目要求与提示,先选择你要使用的表达式形式(中缀用1,后缀用0),在输入一个中缀表达式,输入数的范围为int型,此时,程序将计算出表达式的结果。
2、输出的形式:当按照程序要求选择了1或0之后,再输入表达式;如果选择的是1,则程序将自动运算出表达式结果;如果之前选择的是0,则程序将现将中缀表达式转化为后缀表达式并计算出结果。
3、程序所能达到的功能:本程序能计算出含+、-、*、/、(、)等运算符的简单运算。
4、测试数据:输入一个表达式,如果你之前选择的是“中缀表达式”,那么输入5*(4-2)#,那么输出结果是10;如果之前选择的是“后缀表达式”,那么输入5*(4-2)#,那么他将先转换成后缀表达式5 4 2 - * #,再输出结果10。
如果输入表达式没有结束标示符#,如5*(4-2),那将不会输出任何结果,或出现错误结果。
(二) 概要设计为了实现上述操作,应以栈为存储结构。
1.基本操作:(1). int GetTop(SqStack *s)初始条件:栈存在;操作结果:若栈为空,则返回s的栈顶元素;否则返回ERROR。
(2).void Push(SqStack *s,int e)初始条件:栈存在;操作结果:插入e为新的栈顶元素。
(3).int Pop(SqStack *s)初始条件:栈存在;操作结果:若栈不空,则删除之,并返回其值;否则返回REEOR。
(4).void InitStack(SqStack *s)初始条件:栈存在;操作结果:置栈为空。
(5).int Empty(SqStack *s)初始条件:栈存在;操作结果:判定s是否为空栈。
(6).int Operate(int a,char theta, int b)初始条件:操作数a和b存在,且theta是+、-、*、/四则运算;操作结果:返回a与b间theta运算的结果。
(7).int In(char s,char* TestOp)初始条件:s为待判断字符,TestOp为已知的算符集合;操作结果:s为算符集合中的元素则返回1,否则返回0.(8).int ReturnOpOrd(char op,char* TestOp)初始条件:op为待确定运算符,TestOp为已知的算符集合;操作结果:确定运算符类型。
数据结构表达式求值(中缀)实验报告

数据结构表达式求值(中缀)实验报告题目名称表达式求值学号姓名指导教师日期一1. 问题描述:在计算机中,算术表达式由常量、变量、运算符和括号组成。
由于不同的运算符具有不同的优先级,又要考虑括号,因此,算术表达式的求值不可能严格地从左到右进行,在程序设计时,借助栈实现。
2. 表达式求值这个程序,主要利用栈和数组,把运算的先后步骤进行分析并实现简单的运算,以字符列的形式从终端输入语法的正确的、不含变量的整数表达式。
利用已知的算符优先关系,实现对算术四则运算的求值,在求值中运用栈、运算栈、输入字符和主要操作的变化过程。
该程序相当于一个简单的计算机计算程序,只进行简单的加减乘除和带括号的四则运算。
1、基本思想(中缀表达式求值)要把一个表达式翻译成正确求值的一个机器指令序列,或者直接对表达式求值,首先要能够正确解释表达式,要了解算术四则运算的规则即:(1)先乘除后加减;(2)从左到右计算;(3)先括号内,后括号外。
下表定义的运算符之间的关系:b + - * / () # a+ > > < < < > > _ > > < < < > > * > > > > < > > / > > > > < > > ( < < < < < = ) > > > > > > # < < < < < =为了实现运算符有限算法,在程序中使用了两个工作栈。
分别是:运算符栈OPTR,操作数栈OPND.基本思想:(1)首先置操作数栈为空栈,表达式起始符“#”为运算符栈的栈底元素;(2)依次读入表达式中每个字符,若是操作数则进OPND栈,若是运算符则和OPTR栈得栈顶运算符比较优先级后作相应操作。
数据结构课程设计四则运算表达式求值(C语言版)

数据结构课程设计四则运算表达式求值(C语⾔版) 明⼈不说暗话,直接上,输⼊提取码z3fy即可下载。
⽂件中包含程序,程序运⾏⽂件,设计报告和测试样例,应有尽有,欢迎⼩伙伴们在中下载使⽤。
本课程设计为四则运算表达式求值,⽤于带⼩括号的⼀定范围内正负数的四则运算标准(中缀)表达式的求值。
注意事项:1、请保证输⼊的四则表达式的合法性。
输⼊的中缀表达式中只能含有英⽂符号“+”、“-”、“*”、“/”、“(”、“)”、“=”、数字“0”到“9”以及⼩数点“.”,输⼊“=”表⽰输⼊结束。
例如9+(3-1)*3.567+10/2=,特别是请勿输⼊多余空格和中⽂左右括号。
2、输⼊的中缀表达式默认限定长度是1001,可根据具体情况调整字符串数组的长度。
3、请保证输⼊的操作数在double数据类型范围内,单个数字有效数字长度不可超过15位。
本课程设计中操作数是C语⾔中的双精度浮点数类型。
4、本课程设计中的运算数可以是负数,另外如果是正数可直接省略“+”号(也可带“+”号)。
下⾯的程序正常运⾏需要在上⾯的百度⽹盘中下载相应⽂件,否则⽆法正常使⽤哦。
1/*本程序为四则运算表达式求值系统,⽤于计算带⼩括号的四则运算表达式求值。
2具体算法:3先将字符串处理成操作单元(操作数或操作符),再利⽤栈根据四则运算4的运算法则进⾏计算,最后得出结果。
*/56 #include<stdio.h>7 #include<ctype.h>8 #include<stdlib.h>9 #include<string.h>10 #include<stdlib.h>11 #include<ctype.h>1213const int Expmax_length = 1001;//表达式最⼤长度,可根据适当情况调整14struct Ope_unit15 {//定义操作单元16int flag;//=1表⽰是操作数 =0表⽰是操作符 -1表⽰符号单元17char oper;//操作符18double real;//操作数,为双精度浮点数19 };2021void Display();//菜单22void Instru(); //使⽤说明23int Check(char Exp_arry[]);24void Evalua(); //先调⽤Conver操作单元化,再调⽤Calculate函数计算结果并输出25int Conver(struct Ope_unit Opeunit_arry[],char Exp_arry[]);//将字符串处理成操作单元26int Isoper(char ch);//判断合法字符(+ - * / ( ) =)27int Ope_Compar(char ope1,char ope2);//操作符运算优先级⽐较28double Calculate(struct Ope_unit Opeunit_arry[],int Opeunit_count,int &flag);//⽤栈计算表达式结果29double Four_arithm(double x,double y,char oper);//四则运算3031int main()32 {33int select;34while(1)35 {36 Display();37 printf("请输⼊欲执⾏功能对应的数字:");38 scanf("%d",&select);39 printf("\n");40switch(select)41 {42case1: Evalua(); break;43case2: Instru(); break;44case0: return0;45default : printf("⽆该数字对应的功能,请重新输⼊\n");46 system("pause");47 }48 }49return0;50 }5152int Check(char Exp_arry[])53 {//检查是否有⾮法字符,返回1表⽰不合法,0表⽰合法54int Explength=strlen(Exp_arry),i;55for(i=0;i<Explength;i++)56 {57if(!Isoper(Exp_arry[i]) && Exp_arry[i] != '.' && !isdigit(Exp_arry[i]))58return1;59if(isdigit(Exp_arry[i]))60 {61int Dig_number=0,Cur_positoin=i+1;62while(isdigit(Exp_arry[Cur_positoin]) || Exp_arry[Cur_positoin]=='.')63 {64 Dig_number++;65 Cur_positoin++;66 }67if(Dig_number >= 16)//最多能够计算15位有效数字68return1;69 }70 }71return0;72 }7374void Evalua()75 {//先调⽤Conver函数将字符串操作单元化,再调⽤Calculate函数计算结果并输出76char Exp_arry[Expmax_length];77int flag=0;//假设刚开始不合法,1表达式合法,0不合法78struct Ope_unit Opeunit_arry[Expmax_length];7980 getchar();//吃掉⼀个换⾏符81 printf("请输⼊四则运算表达式,以=结尾:\n");82 gets(Exp_arry);83 flag=Check(Exp_arry);84if(flag)85 printf("该表达式不合法!\n");86else87 {88int Opeunit_count = Conver(Opeunit_arry,Exp_arry);89double ans = Calculate(Opeunit_arry,Opeunit_count,flag);90if(flag)91 {92 printf("计算结果为:\n");93 printf("%s%lf\n",Exp_arry,ans);94 }95else96 printf("该表达式不合法!\n");97 }98 system("pause");99 }100101int Conver(struct Ope_unit Opeunit_arry[],char Exp_arry[])102 {//将字符串操作单元化103int Explength=strlen(Exp_arry);104int i,Opeunit_count=0;105for(i=0;i<Explength;i++)106 {107if(Isoper(Exp_arry[i]))//是操作符108 {109 Opeunit_arry[Opeunit_count].flag=0;110 Opeunit_arry[Opeunit_count++].oper=Exp_arry[i];111 }112else//是操作数113 {114 Opeunit_arry[Opeunit_count].flag=1;115char temp[Expmax_length];116int k=0;117for(; isdigit(Exp_arry[i]) || Exp_arry[i]=='.' ;i++)118 {119 temp[k++]=Exp_arry[i];120 }121 i--;122 temp[k]='\0';123 Opeunit_arry[Opeunit_count].real=atof(temp);//将字符转化为浮点数124125//负数126if(Opeunit_count == 1 && Opeunit_arry[Opeunit_count-1].flag==0127 && Opeunit_arry[Opeunit_count-1].oper=='-')128 {129 Opeunit_arry[Opeunit_count-1].flag = -1;130 Opeunit_arry[Opeunit_count].real *= -1;131 }// -9132if(Opeunit_count >= 2 && Opeunit_arry[Opeunit_count-1].flag==0133 && Opeunit_arry[Opeunit_count-1].oper=='-' && Opeunit_arry[Opeunit_count-2].flag==0 134 && Opeunit_arry[Opeunit_count-2].oper !=')')135 {136 Opeunit_arry[Opeunit_count-1].flag = -1;137 Opeunit_arry[Opeunit_count].real *= -1;138 }// )-9139140//正数141if(Opeunit_count == 1 && Opeunit_arry[Opeunit_count-1].flag==0142 && Opeunit_arry[Opeunit_count-1].oper=='+')143 {144 Opeunit_arry[Opeunit_count-1].flag = -1;145 }// +9146if(Opeunit_count >= 2 && Opeunit_arry[Opeunit_count-1].flag==0147 && Opeunit_arry[Opeunit_count-1].oper=='+' && Opeunit_arry[Opeunit_count-2].flag==0148 && Opeunit_arry[Opeunit_count-2].oper !=')')149 {150 Opeunit_arry[Opeunit_count-1].flag = -1;151 }// )+9152 Opeunit_count++;153 }154 }155/*for(i=0;i<Opeunit_count;i++)156 {//查看各操作单元是否正确,1是操作数,0是操作符157 if(Opeunit_arry[i].flag == 1)158 printf("该单元是操作数为:%lf\n",Opeunit_arry[i].real);159 else if(Opeunit_arry[i].flag == 0)160 printf("该单元是操作符为:%c\n",Opeunit_arry[i].oper);161 else162 printf("该单元是负号符为:%c\n",Opeunit_arry[i].oper);163 }*/164return Opeunit_count;165 }166167double Calculate(struct Ope_unit Opeunit_arry[],int Opeunit_count,int &flag)168 {//根据运算规则,利⽤栈进⾏计算169int i,dS_pointer=0,oS_pointer=0;//dS_pointer为操作数栈顶指⽰器,oS_pointer为操作符栈顶指⽰器170double Dig_stack[Expmax_length];//操作数栈(顺序存储结构)171char Ope_stack[Expmax_length];//操作符栈172173for(i=0;i<Opeunit_count-1;i++)174 {175if( Opeunit_arry[i].flag != -1 )176 {177if(Opeunit_arry[i].flag)//是操作数178 {179 Dig_stack[dS_pointer++]=Opeunit_arry[i].real;//⼊操作数栈180//printf("%lf\n",Digit[dS_pointer-1]);181 }182else//是操作符 + - * / ( )183 {184//操作符栈为空或者左括号⼊栈185if(oS_pointer==0 || Opeunit_arry[i].oper=='(')186 {187 Ope_stack[oS_pointer++]=Opeunit_arry[i].oper;188//printf("%oS_pointer\Ope_u_count",Operator[oS_pointer-1]);189 }190else191 {192if(Opeunit_arry[i].oper==')')//是右括号将运算符⼀直出栈,直到遇见左括号193 {194 oS_pointer--;//指向栈顶195 dS_pointer--;//指向栈顶196while(Ope_stack[oS_pointer] != '(' && oS_pointer != 0)197 {198 Dig_stack[dS_pointer-1] = Four_arithm(Dig_stack[dS_pointer-1],Dig_stack[dS_pointer], 199 Ope_stack[oS_pointer--]);//oS_pointer--为操作符出栈200201 dS_pointer--;//前⼀个操作数出栈202//printf("操作数栈顶元素等于%lf\n",Digit[dS_pointer]);203 }204 oS_pointer--;//左括号出栈205206 oS_pointer++;//恢复指向栈顶之上207 dS_pointer++;208 }209else if(Ope_Compar(Opeunit_arry[i].oper,Ope_stack[oS_pointer-1]))//和栈顶元素⽐较210 {211 Ope_stack[oS_pointer++]=Opeunit_arry[i].oper;212//printf("%oS_pointer\Ope_u_count",Operator[oS_pointer-1]);213 }214else//运算符出栈,再将该操作符⼊栈215 {216 oS_pointer--;//指向栈顶217 dS_pointer--;//指向栈顶218while(Ope_Compar(Opeunit_arry[i].oper,Ope_stack[oS_pointer])==0 && oS_pointer != -1) 219 {//当前操作符⽐栈顶操作符优先级⾼220 Dig_stack[dS_pointer-1]=Four_arithm(Dig_stack[dS_pointer-1],Dig_stack[dS_pointer], 221 Ope_stack[oS_pointer--]);222 dS_pointer--;223//printf("操作数栈顶元素等于%lf\n",Digit[dS_pointer]);224 }225 oS_pointer++;//恢复指向栈顶之上226 dS_pointer++;227 Ope_stack[oS_pointer++]=Opeunit_arry[i].oper;228 }229 }230 }231 }232 }233/*for(i=0;i<oS_pointer;i++)234 printf("操作符栈%oS_pointer\Ope_u_count",Operator[i]);235 for(i=0;i<dS_pointer;i++)236 printf("操作数栈%lf\n",Digit[i]);*/237 oS_pointer--;//指向栈顶元素238 dS_pointer--;//指向栈顶元素239while(oS_pointer != -1)240 {241 Dig_stack[dS_pointer-1]=Four_arithm(Dig_stack[dS_pointer-1],Dig_stack[dS_pointer], 242 Ope_stack[oS_pointer--]);//oS_pointer--为操作符出栈243 dS_pointer--;//前⼀个操作数出栈244//printf("操作数栈顶元素为%lf\Ope_u_count",Digit[dS_pointer]);245 }246//printf("%dS_pointer,%dS_pointer\n",oS_pointer,dS_pointer);247if(oS_pointer==-1 && dS_pointer==0)248 flag=1;//为1表⽰表达式合法249return Dig_stack[0];250 }251252int Ope_Compar(char ope1,char ope2)253 {//操作符运算优先级⽐较254char list[]={"(+-*/"};255int map[5][5]={//先⾏后列,⾏⽐列的运算级优先级低为0,⾼为1256// ( + - * /257/* ( */1,0,0,0,0,258/* + */1,0,0,0,0,259/* - */1,0,0,0,0,260/* * */1,1,1,0,0,261/* / */1,1,1,0,0 };262int i,j;263for(i=0;i<5;i++)264if(ope1==list[i]) break;265for(j=0;j<5;j++)266if(ope2==list[j]) break;267return map[i][j];268 }269270double Four_arithm(double x,double y,char oper)271 {//四则运算272switch(oper)//保证不含其它运算符273 {274case'+': return x+y;275case'-': return x-y;276case'*': return x*y;277case'/': return x/y;//y不能为0278default : return0;279 }280 }281282int Isoper(char ch)283 {//判断合法字符 + - * / ( ) =284if(ch=='+' || ch=='-' || ch=='*' || ch=='/' || ch=='(' || ch==')' || ch=='=')285return1;286return0;287 }288289void Display()290 {//打印菜单291 system("cls");292 printf("/******************************************************************************/\n");293 printf("\t\t 欢迎使⽤本四则运算表达式求值系统\n");294 printf("\n\t说明:建议请您先阅读使⽤说明,再输⼊相应的数字进⾏操作,谢谢配合!\n"); 295 printf("\n\t\t1 四则运算表达式求值\n");296 printf("\n\t\t2 使⽤说明\n");297 printf("\n\t\t0 退出\n");298 printf("/******************************************************************************/\n");299 }300301void Instru()302 {//打印使⽤说明303 FILE *fp;304char ch;305if( ( fp=fopen("使⽤说明.txt","r") ) == NULL)306 {307 printf("⽂件打开失败!\n");308 exit(0);309 }310for(; (ch = fgetc(fp)) != EOF; )311 putchar(ch);312 fclose(fp);313 printf("\n");314 system("pause");315 }。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五四则运算表达式求值一.问题描述:四则运算表达式求值,将四则运算表达式用中缀表达式,然后转换为后缀表达式,并计算结果。
二.基本要求:使用二叉树来实现。
三.实现提示:利用二叉树后序遍历来实现表达式的转换,同时可以使用实验二的结果来求解后缀表达式的值。
输入输出格式:输入:在字符界面上输入一个中缀表达式,回车表示结束。
输出:如果该中缀表达式正确,那么在字符界面上输出其后缀表达式,其中后缀表达式中两相邻操作数之间利用空格隔开;如果不正确,在字符界面上输出表达式错误提示。
测试实例:输入:21+23* (12-6 )输出:21 23 12 6 -*+四.设计概要用二叉树表示表达式:若表达式为数或简单变量,则相应二叉树中仅有一个根结点,其数据域存放该表达式信息若表达式= (第一操作数)(运算符)(第二操作数),则相应的二叉树中以左子树表示第一操作数,右子树表示第二操作数,根结点的数据域存放运算符(若为一元算符,则左子树空)。
操作数本身又为表达式.后缀遍历二叉树码实现和静态检查上机调试及测试数据的调试五.源程序:#include <iostream.h>#include <string.h>#include <malloc.h>#include <stdlib.h>#include <stack>#include <string.h>#define STACK_INIT_SIZE 100#define DATA_SIZE 10#define STACKINCREMENT 10#define OK 1#define TRUE 1#define FALSE 0#define ERROR 0#define OVERFLOW -2using namespace std;typedef float SElemtype;typedef int Status;typedef char * TElemType;typedef struct BiTNode {TElemType data;int len; //data字符串中字符的个数struct BiTNode * lchild, * rchild;}BiTNode, *BiTree;typedef struct{SElemtype *base;SElemtype *top;int stacksize;} SqStack;Status IsDigital(char ch)if(ch>='0'&&ch<='9'){return 1; //是数字字母}return 0; //不是数字字母}int CrtNode(stack <BiTree> &PTR, char *c){BiTNode * T;int i=0;T = (BiTNode *)malloc(sizeof(BiTNode));T->data = (char *)malloc(DATA_SIZE*sizeof(char));while(IsDigital(c[i])){T->data [i] = c[i];i++;}T->len = i;T->lchild = T->rchild = NULL;PTR.push (T);return i;}void CrtSubTree(stack <BiTree> &PTR, char c){BiTNode * T;T = (BiTNode *)malloc(sizeof(BiTNode));T->data = (char *)malloc(DATA_SIZE*sizeof(char));T->data [0] = c;T->len = 1;T->rchild = PTR.top(); //先右子树,否则运算次序反了PTR.pop ();T->lchild = PTR.top();PTR.pop ();PTR.push (T);}char symbol[5][5]={{'>', '>', '<', '<', '>'}, //符号优先级{'>', '>', '<', '<', '>'},{'>', '>', '>', '>', '>'},{'>', '>', '>', '>', '>'},{'<', '<', '<', '<', '='}};int sym2num(char s) //返回符号对应优先级矩阵位置{switch(s){case '+': return 0; break;case '-': return 1; break;case '*': return 2; break;case '/': return 3; break;case '#': return 4; break;}}char Precede(char a, char b) //返回符号优先级{return(symbol[sym2num(a)][sym2num(b)]);void CrtExptree(BiTree &T, char exp[]){//根据字符串exp的内容构建表达式树Tstack <BiTree> PTR;//存放表达式树中的节点指针stack <char> OPTR;//存放操作符char op;int i=0;OPTR.push ('#');op = OPTR.top();while( !((exp[i]=='#') && (OPTR.top()=='#')) ) //与{if (IsDigital(exp[i])){//建立叶子节点并入栈PTRi+=CrtNode(PTR, &exp[i]);}else if (exp[i] == ' ')i++;else{switch (exp[i]){case '(': {OPTR.push (exp[i]);i++;break;}case ')': {op = OPTR.top (); OPTR.pop ();while(op!='('){CrtSubTree(PTR, op);op = OPTR.top (); OPTR.pop ();}//end whilei++;break;}default: //exp[i]是+ - * /while(! OPTR.empty ()){op = OPTR.top ();if (Precede(op, exp[i])=='>'){CrtSubTree(PTR, op);OPTR.pop ();}if(exp[i]!='#'){OPTR.push (exp[i]);i++;}break;}}//end switch}//end else}//end whileT = PTR.top();PTR.pop ();}void PostOrderTraverse(BiTree &T, char * exp ,int &count){//后序遍历表达式树T,获取树中每个结点的数据值生成逆波兰表达式exp //T是表达式树的根节点;字符串exp保存逆波兰表达式;count保存exp中字符的个数//后序遍历中,处理根结点时,依据T->len的值,把T->data中的字符依次添加到当前exp字符串的尾端//添加完T->data后,再添加一个空格字符,同时更新count计数器的值。
//填空//int i;if(T){PostOrderTraverse(T->lchild,exp,count);PostOrderTraverse(T->rchild,exp,count);strncpy(exp+count,T->data,T->len);exp[count+=(T->len)]=' ';count++;}}//---------------------------------//逆波兰表达式计算//填空Status InitStack(SqStack &S){S.base = (SElemtype *)malloc(STACK_INIT_SIZE*sizeof(SElemtype)); if (! S.base) exit(OVERFLOW);S.top = S.base;S.stacksize = STACK_INIT_SIZE;//printf("程序运行到构建栈\n");return OK;}int StackLength(SqStack S)return S.top-S.base;//printf("程序运行到获得堆栈元素的个数\n");//获得堆栈元素的个数}Status Push(SqStack &S, SElemtype e){if(S.top-S.base>=S.stacksize){S.base=(SElemtype*)realloc(S.base,(S.stacksize+STACKINCREMENT)*sizeof(SElemtype));if(!S.base)exit(OVERFLOW);S.top=S.base+S.stacksize;S.stacksize+=STACKINCREMENT;}*S.top++=e;//printf("程序运行到入栈\n");return OK;//入栈}Status Pop(SqStack &S, SElemtype &e) {if(S.top==S.base)return ERROR;e=*--S.top;// printf("程序运行到出栈\n");return OK;//出栈}int EvalValue(char *ch, SqStack &S) {int i=0;SElemtype result=0;char a;a=ch[i];while(IsDigital(a)){result=10*result+(int)(a-48);a=ch[++i];}Push(S, result);//printf("程序运行标志1\n");return i;}void EvalExpr(char ch, SqStack &S){float p ,q,r;if((ch=='+')||(ch=='-')||(ch=='*')||(ch=='/')){Pop(S,p);Pop(S,q);switch(ch){case '+':r=p+q;break;case '-':r=q-p;break;case '*':r=q*p;break;case '/':r=q/p;break;default:;}Push(S,r);//printf("程序运行标志2\n");}//如果ch中保存的是操作符,则从堆栈中弹出两个元素,并把操作符应用在这两个元素之上,//然后把操作结果压入到栈中。