流体力学第四章
合集下载
流体力学第四章

由连续方程 V2
2
A1 V1 A2
,代入上式,有
A V A h j (1 1 ) 2 1 ,即1 (1 1 ) 2 A2 2 g A2
如以
V1
A2 则有 V2代入,则有 A1
2 A2 2 V2 h j ( 1) , 即 2 ( A2 1) 2 A1 2g A1
4.3.2 混合长度理论
4.3.3 湍流的速度分布 1、粘性底层(层流底层)
dv (1) 很大; dy
(2)粘性底层的厚度δ很小。 2、湍流核心
dv (1) dy
很小;
(2)区域大。 3、 过渡层—有时可将它算在湍流核心的 范围。
速度分布:在粘性底层中速度分布是直 线规律;湍流核心中为对数关系。 粗糙度 Δ 管壁凹凸不平的平均尺寸。 水利光滑管 δ>Δ 粗糙度对湍流核心几乎没有影响。 水利粗糙管 δ<Δ 粗糙度的大小对湍流特性产生直接影响。
《流体力学》
教学课件
第4章 流体在圆管中的流动
1 流体在固体内部的管中流动和缝隙中流动; 2 流体在固体外部的绕流; 3 流体在固体一侧的明渠流动; 4 流体与固体不相接触的孔口出流和射流。
4.1 雷诺实验
雷诺实验
雷诺实验发现 1.用不同的流体在相同直径的管道中进行实验,
所测得的临界速度 vk 是各不相同的;
T
有
W W W ,代入上式,得
T
1 1 W W W dt W W dt T0 T0 T 1 所以 T W dt 0 0
T
即脉动量的时均值
W 0
运用时均统计法就将湍流分为两个组成部分:一部分是用时均值表示 的时均流动;另一部分是用脉动值表示的脉动运动。时均流动代表运动 的主流,脉动反映湍流的本质。
流体力学第四章:流体阻力及能量损失

减小摩擦阻力的方法
优化物体表面粗糙度、使用润滑剂、改变流体的流速和方 向等。
形状阻力
形状阻力
由于物体形状的不同,流体在绕过物体时产生的阻力。
形状阻力公式
$F_s = frac{1}{2} rho u^2 A C_s$,其中$C_s$为形状阻力系数, 与物体形状、流体性质和流速有关。
减小形状阻力的方法
详细描述
汽车设计中的流体阻力优化主要包括车身形 状设计和空气动力学套件的应用。设计师会 采用流线型设计来减小空气阻力,同时也会 采用导流板、扰流板等空气动力学套件来调 整汽车周围的空气流动,以提高汽车的行驶
稳定性、减小风噪,并降低燃油消耗。
THANKS FOR WATCHING
感谢您的观看
详细描述
船舶航行中的流体阻力主要来自船体与水之间的摩擦力以及水对船体的冲击力。为了减小流体阻力, 船舶设计师通常会采用流线型设计,优化船体表面的光滑度,以及减少不必要的突出物,从而提高航 行效率。
管道流动中的能量损失
总结词
管道中流体流动时,由于流体与管壁之 间的摩擦以及流体内部的湍流等效应, 会产生能量损失。
根据伯努利方程、欧拉方程等计算公式,结合物体的形状、速度和流体密度等 参数进行计算。
02 流体阻力现象
摩擦阻力
摩擦阻力
由于流体与物体表面的相对运动产生摩擦而形成的阻力。
摩擦阻力公式
$F_f = frac{1}{2} rho u^2 A C_f$,其中$rho$为流体密 度,$u$为流速,$A$为流体与物体接触的表面积,$C_f$ 为摩擦阻力系数。
流体力学第四章流体阻力及能量损 失
目录
• 流体阻力的概念 • 流体阻力现象 • 能量损失原理 • 流体阻力的减小方法 • 实际应用案例
优化物体表面粗糙度、使用润滑剂、改变流体的流速和方 向等。
形状阻力
形状阻力
由于物体形状的不同,流体在绕过物体时产生的阻力。
形状阻力公式
$F_s = frac{1}{2} rho u^2 A C_s$,其中$C_s$为形状阻力系数, 与物体形状、流体性质和流速有关。
减小形状阻力的方法
详细描述
汽车设计中的流体阻力优化主要包括车身形 状设计和空气动力学套件的应用。设计师会 采用流线型设计来减小空气阻力,同时也会 采用导流板、扰流板等空气动力学套件来调 整汽车周围的空气流动,以提高汽车的行驶
稳定性、减小风噪,并降低燃油消耗。
THANKS FOR WATCHING
感谢您的观看
详细描述
船舶航行中的流体阻力主要来自船体与水之间的摩擦力以及水对船体的冲击力。为了减小流体阻力, 船舶设计师通常会采用流线型设计,优化船体表面的光滑度,以及减少不必要的突出物,从而提高航 行效率。
管道流动中的能量损失
总结词
管道中流体流动时,由于流体与管壁之 间的摩擦以及流体内部的湍流等效应, 会产生能量损失。
根据伯努利方程、欧拉方程等计算公式,结合物体的形状、速度和流体密度等 参数进行计算。
02 流体阻力现象
摩擦阻力
摩擦阻力
由于流体与物体表面的相对运动产生摩擦而形成的阻力。
摩擦阻力公式
$F_f = frac{1}{2} rho u^2 A C_f$,其中$rho$为流体密 度,$u$为流速,$A$为流体与物体接触的表面积,$C_f$ 为摩擦阻力系数。
流体力学第四章流体阻力及能量损 失
目录
• 流体阻力的概念 • 流体阻力现象 • 能量损失原理 • 流体阻力的减小方法 • 实际应用案例
流体力学第四章

流体力学
动量方程16-运动控制体
已知V = 30m/s,U = 10m/s,忽略重力和摩擦力, 已知V = 30m/s,U = 10m/s,忽略重力和摩擦力, 出口截面A11= 0.003m22,求Rxx和 Ryy 出口截面A = 0.003m ,求R 和 R
解:(1) 坐标系 (2) 控制体
r r r Vr = V − U
流体力学
动量方程15-运动控制体
∂ ∂t
∫
CV
r r r r r ρVr dτ + ∫ ρVrVr ⋅ ndS = ΣF
CS
流体仅在控制面的有限个区域流入流出且 ρ,V 在进出口截面均布,定常流动
r r & ∑ F = ∑ mriVri
(
)
out
−∑
(
r & mriVri
)
in
r r r 其中 Vr = V − VCV
φ
流体力学
雷诺输运方程1
欧拉方法描述系统物理量对时间的变化率
CSIII CSI I
t
r V
II
III
dS3
dS1 r n
r n
r V
t +δ t
DN sys Dt
流体力学
= lim
N sys (t + δt ) − N sys (t )
δt → 0
δt
雷诺输运方程2
DN sys Dt
DN sys Dt
流体力学
质点导数与系统导数
质点导数
r Dφ ∂φ = + (V ⋅ ∇ )φ Dt ∂t
流体质点某物理量随时间的变化率同空 间点上物理量之间的关系 系统导数
DN ∂ = Dt ∂t r r φV ⋅ ndS
动量方程16-运动控制体
已知V = 30m/s,U = 10m/s,忽略重力和摩擦力, 已知V = 30m/s,U = 10m/s,忽略重力和摩擦力, 出口截面A11= 0.003m22,求Rxx和 Ryy 出口截面A = 0.003m ,求R 和 R
解:(1) 坐标系 (2) 控制体
r r r Vr = V − U
流体力学
动量方程15-运动控制体
∂ ∂t
∫
CV
r r r r r ρVr dτ + ∫ ρVrVr ⋅ ndS = ΣF
CS
流体仅在控制面的有限个区域流入流出且 ρ,V 在进出口截面均布,定常流动
r r & ∑ F = ∑ mriVri
(
)
out
−∑
(
r & mriVri
)
in
r r r 其中 Vr = V − VCV
φ
流体力学
雷诺输运方程1
欧拉方法描述系统物理量对时间的变化率
CSIII CSI I
t
r V
II
III
dS3
dS1 r n
r n
r V
t +δ t
DN sys Dt
流体力学
= lim
N sys (t + δt ) − N sys (t )
δt → 0
δt
雷诺输运方程2
DN sys Dt
DN sys Dt
流体力学
质点导数与系统导数
质点导数
r Dφ ∂φ = + (V ⋅ ∇ )φ Dt ∂t
流体质点某物理量随时间的变化率同空 间点上物理量之间的关系 系统导数
DN ∂ = Dt ∂t r r φV ⋅ ndS
流体力学第四章 水头损失

全)。
P59表4-1为不同形状导管的临界雷诺数(水力半径)。
雷诺数的物理意义: Re = V d/ 粘性大、 Re 小、 易层流
13
§4–5 层流的水头损失---圆管中的层流
在这一章节主要讨论粘性力和沿程水头损失 hf 的规律。
假设流体在等截面水平圆管中作层流运动。取出其中半径 为 r 的圆柱体作为研究对象,写出运动方程式:(因为是定常
因此在计算每一个具体流动的水头损失时,首先须要判 别该流体的流动状态,而雷诺数为判别流体是层流还是湍 流提供了准则。
11
§4-4 雷诺数
管中流体的平均流速不是一个独立不变的量。
由实验知:流体平均流速与流体运动粘性成正比、与管道直 径d成反比;则引入一个无量纲比例常数Re 可写为:
V= Re /d
其中 Re 称为雷诺数。
8
(c)继续增大管内流速,则染色流束剧烈地波动,最后个别部 分出现破裂,并失掉原来的清晰的形状,混杂在很多小旋涡中。 染色液体很快充满整个管,如图c。这表明此时管内的流体向前 流动时处于完全无规则的混乱状态,称其为“湍流”,或“紊 流”。
流体由层流转变为湍流时 的平均流速,称之为“上临 界速度VC `”。
长管、短管
不是由管道的长与短来决定,而是由局部水头损失与沿程水头 损失的比例大小来确定。
长管:沿程损失比局部损失和速度水头的和大,局部损失可忽略;
短管:局部损失和速度水头的和比沿程损失大,考虑局部损失;
§4-3 流体流动两种状态
在不同条件下,流体质点的运动可能表现为两种状态。 一是、流体质点作有规则的运动,在运动过程中质点之间
互不混杂、互不干扰。 二是、流体质点的运动非常混乱。 1883年英国科学家雷诺进行了负有盛名的雷诺实验。
P59表4-1为不同形状导管的临界雷诺数(水力半径)。
雷诺数的物理意义: Re = V d/ 粘性大、 Re 小、 易层流
13
§4–5 层流的水头损失---圆管中的层流
在这一章节主要讨论粘性力和沿程水头损失 hf 的规律。
假设流体在等截面水平圆管中作层流运动。取出其中半径 为 r 的圆柱体作为研究对象,写出运动方程式:(因为是定常
因此在计算每一个具体流动的水头损失时,首先须要判 别该流体的流动状态,而雷诺数为判别流体是层流还是湍 流提供了准则。
11
§4-4 雷诺数
管中流体的平均流速不是一个独立不变的量。
由实验知:流体平均流速与流体运动粘性成正比、与管道直 径d成反比;则引入一个无量纲比例常数Re 可写为:
V= Re /d
其中 Re 称为雷诺数。
8
(c)继续增大管内流速,则染色流束剧烈地波动,最后个别部 分出现破裂,并失掉原来的清晰的形状,混杂在很多小旋涡中。 染色液体很快充满整个管,如图c。这表明此时管内的流体向前 流动时处于完全无规则的混乱状态,称其为“湍流”,或“紊 流”。
流体由层流转变为湍流时 的平均流速,称之为“上临 界速度VC `”。
长管、短管
不是由管道的长与短来决定,而是由局部水头损失与沿程水头 损失的比例大小来确定。
长管:沿程损失比局部损失和速度水头的和大,局部损失可忽略;
短管:局部损失和速度水头的和比沿程损失大,考虑局部损失;
§4-3 流体流动两种状态
在不同条件下,流体质点的运动可能表现为两种状态。 一是、流体质点作有规则的运动,在运动过程中质点之间
互不混杂、互不干扰。 二是、流体质点的运动非常混乱。 1883年英国科学家雷诺进行了负有盛名的雷诺实验。
流体力学课件第四章流动阻力和水头损失

l v hf d 2g
2
r w g J 2
w v 8
定义壁剪切速度(摩擦速度) 则
w v
*
v v
*
8
§4-4 圆管中的层流
层流的流动特征
du dy
du du dy dr
du dr
g J
r 2
r du g J 2 dr
层流 紊流
§4-3 沿程水头损失与剪应力的关系
均匀流动方程式
P G cos P2 T 0 1
P p1 A1 1
P2 p2 A2
T w l
G cos gAl cos gA( z1 z2 )
w l p1 p2 ( z1 ) ( z2 ) g g gA
v2 hj 2g
§4-2 粘性流体的两种流态
两种流态
v小
' c
v小
v > vc
v大 v大
临界流速。 下临界流速 vc ——由紊流转化为层流时的流速称为下 临界流速。
vc' ——由层流转化为紊流时的流速称为上 上临界流速
vv
层流 紊流
' c
紊流 层流
a-b-c-e-f f-e-d-b-a
第四章 流动阻力和水头损失
水头损失产生的原因: 一是流体具有粘滞性, 二是流动边界的影响。
§4-1 流动阻力和水头损失的分类
沿程阻力和沿程水头损失
在边界沿程无变化(边壁形状、尺寸、过 流方向均无变化)的均匀流段上,产生的流动 阻力称为沿程阻力或摩擦阻力。由于沿程阻力 做功而引起的水头损失称为沿程水头损失。均 匀流中只有沿程水头损失 h f 。
流体力学 第四章 量纲分析

v l
F 3 l
3 Fp Fm3 300 20 2400000 N 2400 kN l
5.按雷诺准则和佛劳德准则导出的物理量比尺表 比尺
名称
λυ=1 长度比尺λl 流速比尺λv λl λl-1
雷诺准则 λυ≠1 λl λυλl-1
弗劳德准则 λl λl1/2
加速度比尺λa
取m个基本量,组成(n-m)个无量纲的π项
F 1 , 2 ,, nm 0
例:求有压管流压强损失的表达式 解:步骤
a.找出物理过程中有关的物理量,组成未知的函数关系
f p, ,, l , d , , v 0
b.选取基本量
n7
常取:几何学量l(d),运动学量v,动力学量ρ
vp vm
up um
v λv——速度比尺
l t tm lm vm v
tp lp vp
时间比例尺 加速度比尺
v 2 a v t l
qV p qVm
流量比例尺 q 运动粘度比例尺 角速度比例尺
3 3 l 2l v lm tm t
Re
vl
雷诺数——粘性力的相似准数
(2)佛劳德准则——重力是主要的力
FGP FIP FGm FIm
改成
FIm FIP FGP FGm
FG mg gl 3
FI l 2v 2
2 vm g p l p g m lm
v2 p
无量纲数
v2 Fr gl
佛劳德数——重力的相似准数 (3)欧拉准则——压力是主要的力
20 vm v p 300 6000km / h lm 1 lp
难以实现,要改变实验条件
流体力学第四章能量方程ppt完美版

tCV u 2 g d z V CS v n u 2 g d z A Cp S n v dA
pnvd A pnd v A vdA
CS
CS
CS
为0
管道流动
tCV u v 2 2 g d z V CS v n u v 2 2 g z p d A 0
例题
• 自然排烟锅炉,烟囱直径d=1m,烟气流
量Q=7.135m3/s。烟气密度ρ=1.2kg/m3
,烟囱的压强损失Pl=0.035(H/d)( v2/2g),为使烟囱底部入口断面的真空度
不小于10mm水柱。求烟囱的高度。
2
H
1
例题
• 消防喷枪如图所示,已知管道直径
d1=150mm,喷嘴出口直径d2=50mm, 测得水管相对压强为105Pa, (1)如果倾斜角为30度,求射程高度h; (2)要使射程高达h=6m,则倾斜角是多少?
总流的伯努利方程与元流的伯努利方程区别 (1)z1、z2——总流过流断面上同一流线上的两个 计算点相对于基准面的高度; (2)p1、p2——对应z1、z2点的压强(同为绝对压 强或同为相对压强); (3)v1a、v2a——断面的平均流速
计算点相对于基准面的高度;
流体力学第四章能量方程
11黏性流体总流的伯努利方程
A
gv z
p g
dA
gq V z
p g
缓变流,Z+P/ρg为常数
A
gv
v2 dA
2g
1 A
3
A
v va
dA gq V
v2 a
2g
gq V
v2 a
2g
3
1 A
A
v va
dA
流体力学 第4章

模型与原型的流场动力相似,它们的牛顿数必定相等。
4.2 动力相似准则
4.2.1.重力相似准则
在重力作用下相似的流动,其重力场相似。
kF
Fg Fg
V g Vg
k kl3kg
代入
kF k kl2kv2
kv (kl kg )1/ 2
1
v (gl)1/ 2
v (gl)1/ 2
Fr
Fr——弗劳德数,惯性力与重力的比值。
自模化状态 紊流的阻力有两部分
例如:泵与风机的动力相似是自动满足的
如图为弧形闸门放水时的情形,已知水深h=6m, 模型闸门是按比例尺kl=1/20制作,试验时的开度与 原型相同。试求流动相似时模型闸门前的水深。在模 型 上 测 得 收 缩 截 面 的 平 均 流 速 vˊ=2.0m 流 量 qvˊ=30L/s, 水作用在闸门上的力Fˊ=92N,绕闸门的 力矩Mˊ=110N·m,试求原型上收缩截面的平均流速、 流量、以及作用在闸门上的力。
第4章 相似原理和量纲分析
4.1 流动的力学相似
一、几何相似
模型与原形的全部对应线形长度的比例相等
长度比例尺
kl
l l
面积比例尺
kA
A A
l2 l2
kl2
L
体积比例尺
kV
V V
l3 l3
kl3
L
二、运动相似
模型与原形的流场所有对应点上、对应时刻 的流速方向相同而流速大小的比例相等。
速度比例尺 时间比例尺 加速度比例尺 体积流量比例尺 运动粘度比例尺
力的比例尺
kF
FP FP
F F
Fg Fg
Fi Fi
FP ——总压力 F ——切向力 Fg ——重力 Fi ——惯性力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.圆 管 层 流 断 面 平 均 流 速 为0.9m/s, 管 轴 心ห้องสมุดไป่ตู้处 的 流 速为 A.0.9m/s B.1.35m/s C.1.8m/s D.3.6m/s
1..圆管流动的下临界雷诺数Re 为: A 300 B 1200 C 3600 D 2300
2. 半满管流,直径为d,则水力 半径R=_________. A d/2 B 2d C d/4 D 4d
3.如图所示,满流环形断面管道, 内径为d1,外径为d2,则水力半径 R= __________. A (d1+d2)/4 B (d2-d1)/4 C (d1+d2)/2 D (d2-d1)/2
7.变直径管流,细断面直径d1,粗 断面直径d2=2d1,粗细断面雷诺 数的关系是: A:Re1=0.5Re2 B:Re1=Re2 C:Re1=1.5Re2 D:Re1=2Re2
8.圆管紊流过渡区的沿程摩阻 系数: A:与雷诺数有关; B:与管壁相对粗糙有关; C:与雷诺数及相对粗糙有关; D:与雷诺数和管长有关.
9 .在渐变流过流断面上,动压 强分布满足( )规律。 A、z+p/γ>0 B、z+p/γ<0 C、z+p/γ=c D、以上都不是
10. 圆管均匀流动中, 过流断面上 切应力分布为( )
A
(a)
B
(b)
(c)
C
(d)
D
11. 粘度很大的流体在内径很小 的管内作低速流动时,易产生 ( ) A.紊流 B.层流 C.恒定流动 D.非恒定流动
4.圆管流动过流断面上的切应力 分布为: A:过流断面上是常数. B:管轴处是零,且与半径成正比. C:管壁处是零,向管轴线性增大. D:按抛物线分布.
5.在圆管流中,紊流的断面流速 分布符合: A:均匀规律 B:直线变化规律 C:抛物线规律 D:对数曲线规律
6.在圆管流中,层流的断面流速 分布符合: A:均匀规律 B:直线变化规律 C:抛物线规律 D:对数曲线规律