工程流体力学第四章 流动阻力和能量损失

合集下载

流体力学 第四章 流动阻力和能量损失(第一次)

流体力学 第四章 流动阻力和能量损失(第一次)
2
基准线 z1 1
z
0
z2 2
0
水力坡度: 常用符号 J 表示, J= hf / L。 含义: 单位长度流程上的水头损失。
核心问题4: 恒定气流能量方程
z1 +
p1 γ
+ α1v12 2g
=
z2
+
p2 γ
+ α2v22 2g
+ hw
恒定总流伯努利方程是在不可压缩这样的流动模 型基础上提出的,但在流速不高(小于 68m / s ) ,压 强变化不大的情况下,同样可以应用于气体。
这篇文章用实验说明水流分为层流与紊流两种形态,并提出以 无量纲数Re作为判别两种流态的标准。雷诺于1886年提出轴 承的润滑理论,1895年在湍流中引入应力的概念。他的成果 曾汇编成《雷诺力学和物理学课题论文集》两卷。
其相应的水头损失称局部水头损失(hm)。 局部水头损失一般发生在管道入口、转弯、突扩 (缩)、三通、阀门等附近的局部流段上。
总水头损失
hw hf hm
液流产生水头损失的两个条件
(1) 液体具有粘滞性。 (2) 由于固体边界的影响,液流内部质点 之间产生相对运动。 液体具有粘滞性是主要的,起决定性作用。
1、理想流体
总水头线
v2 z p 常数 H
2g
b
v12 / 2g
c
p1 /
b'
v22 / 2g
静水头线 c'
速 位压 度 置强 水 水水 头 头头






线
线


1

z1
0
a
总 水 头 线

《流体力学》第四章 流动阻力和能量损失4.8-4.9

《流体力学》第四章 流动阻力和能量损失4.8-4.9
ζ:局部阻力系数
2
实验研究表明:局部损失和沿程损失一样,不 同的流态遵循不同的规律。
如果流体以层流经过局部阻碍,而且受干扰后仍能 保持层流的话,局部阻力系数为: B
z=
Re
要使局部阻碍处受边壁强烈干扰的流动仍能保 持层流,只有当Re远小于2000才有可能。因此, 以紊流的局部损失讨论为主。
局部阻碍的种类很多,但按其流动特性 来分,主要是过流断面的扩大或收缩、流动 方向的改变、流量的合入与分出三种基本形 式以及这几种形式的不同组合。
2 a 1v12 a 2 v2 hm = 2g 2g v2 + (a 02 v2 - a 01v1 ) g
av a v v2 hm = + (a 02 v2 - a 01v1 ) 2g 2g g
(v1 - v2 ) hm = 2g
2
2 1 1
2 2 2
(取动能、动量修正系数均为1)
突然扩大的水头损失等于以平 均流速差计算的流速水头。 断面突然扩大时的水流图形
gQ p1 A2 - p2 A2 + g A2 ( Z1 - Z 2 ) = (a 02 v2 - a 01v1 ) g
Q = v2 A2 p1 p2 v2 ( Z1 + ) - ( Z 2 + ) = (a 02v2 - a 01v1 ) g g g
将上式代入能量方程
2 p1 a 1v12 p2 a 2 v2 hm = ( Z1 + + ) - (Z2 + + ) g 2g g 2g
Re=1000000时弯管的局部阻力系数
序号 断面形状 R/d(R/b) 1 圆形 方形 h/b=1.0 矩形 h/b=0.5 矩形 h/b=2.0

流体力学4流动阻力和能量损失

流体力学4流动阻力和能量损失

粘性切应力:各流层的时均流速不同,存在相对 du 运动。
1
惯性切应力: 脉动引起的 动量交换产 生的切应力。

y
dy
管心线 时均流速分布线 u f y
u u
y2

2 u ux u u ux y x y
u
A
A
l
y1
x

横向脉动产生的紊流惯性切应力
p1 A p2 A Al cos 0l 2 r0 0 p1 p2 2 0l Z1 Z 2 r0
2 0l hf r0

因而


2 0 r0 J 0 J l r0 2 hf

沿程水头损失与速度v的关系
1

Z1
p1

1v12
2g
Z2
2
p2

2 2v2
2g
hl
均匀流
1
p1 ) (Z 2
hl h f ( Z1
2
p2
) h
lg h f lg k m lg v h f kv m
层流:m=1,hf ~ v1 紊流:m=1.75~2,hf ~ v1.75~2
2、莫迪图

莫迪以柯氏公式为基础绘制出工业管道沿程 阻力系数的曲线。
3、简化公式

莫迪公式

阿里特苏里公式
1 6 3 1 2000 K 10 0.0055 d Re 7 K 适于 Re 4000 ~ 10 , 0.01, 0.05 d
系列1
25 20

流体力学第四章:流体阻力及能量损失

流体力学第四章:流体阻力及能量损失
减小摩擦阻力的方法
优化物体表面粗糙度、使用润滑剂、改变流体的流速和方 向等。
形状阻力
形状阻力
由于物体形状的不同,流体在绕过物体时产生的阻力。
形状阻力公式
$F_s = frac{1}{2} rho u^2 A C_s$,其中$C_s$为形状阻力系数, 与物体形状、流体性质和流速有关。
减小形状阻力的方法
详细描述
汽车设计中的流体阻力优化主要包括车身形 状设计和空气动力学套件的应用。设计师会 采用流线型设计来减小空气阻力,同时也会 采用导流板、扰流板等空气动力学套件来调 整汽车周围的空气流动,以提高汽车的行驶
稳定性、减小风噪,并降低燃油消耗。
THANKS FOR WATCHING
感谢您的观看
详细描述
船舶航行中的流体阻力主要来自船体与水之间的摩擦力以及水对船体的冲击力。为了减小流体阻力, 船舶设计师通常会采用流线型设计,优化船体表面的光滑度,以及减少不必要的突出物,从而提高航 行效率。
管道流动中的能量损失
总结词
管道中流体流动时,由于流体与管壁之 间的摩擦以及流体内部的湍流等效应, 会产生能量损失。
根据伯努利方程、欧拉方程等计算公式,结合物体的形状、速度和流体密度等 参数进行计算。
02 流体阻力现象
摩擦阻力
摩擦阻力
由于流体与物体表面的相对运动产生摩擦而形成的阻力。
摩擦阻力公式
$F_f = frac{1}{2} rho u^2 A C_f$,其中$rho$为流体密 度,$u$为流速,$A$为流体与物体接触的表面积,$C_f$ 为摩擦阻力系数。
流体力学第四章流体阻力及能量损 失
目录
• 流体阻力的概念 • 流体阻力现象 • 能量损失原理 • 流体阻力的减小方法 • 实际应用案例

流体力学第四章 流动阻力及能量损失

流体力学第四章 流动阻力及能量损失
Re
du
du
判断: 层流 Re<2000 临界(过渡区) 4000> Re >2000 紊流 Re > 4000
第三节 均匀流基本方程
一、恒定均匀流的沿程水头损失 列1-1和2-2截面的 B Bernoulli 方程: 均匀流, v1=v2
说明: 在均匀流情况下,两过水断面间的沿 程水头损失等于两过水断面间的测压管 水头的差值,即液体用于克服阻力所消 耗的能量全部由势能提供。
4Q 4 144 1.( 27 m/s) 2 2 d 3600 3.14 0.2
由式
l V 2 64 l V 2 64 1000 1.27 2 hf 16.57 (m 油柱) d 2 g Re d 2 g 1587 .5 0.2 2 9.806
【例 】 输送润滑油的管子直径 d 8mm,管长 l 15m,如图所 示。油的运动黏度 15106 m2/s,流量 Q 12cm3/s,求油箱的 水头 h (不计局部损失)。
2.惯性切应力τt:
液体质点的脉动导致了质量交换,形成 了动量交换和质点混掺,从而在液层交 界面上产生了紊流附加切应力τt: 注意:紊流附加切应力是由微团惯性引起 的,只与流体密度和脉动强弱有关,而与 流体粘性无直接关系。
紊流流态下,紊流总切应力:
1)在雷诺数较小时,脉动较弱,粘性切应力 占主要地位。 2)雷诺数较大时,脉动程度加剧,紊流惯性 切应力加大,在已充分发展的紊流中,粘性切 应力与紊流惯性切应力相比忽略不计。 3)沿断面切应力分布不同,近壁处以粘性切 应力为主
第四节 圆管中的层流运动
一、恒定 1.恒定均匀流的沿程水头损失 列1-1和2-2截面的 B Bernoulli 方程: 均匀流, v1=v2

流体力学 第4章流动阻力和能量损失

流体力学 第4章流动阻力和能量损失

雷诺的实验装置如图 4.1 所示,水箱 A 内水位保持不变,阀门 C 用于调节流量,容器 D 内盛有容重与相近的颜色水,容器 E 水位也保持不变,经细管 E 流入玻璃管 B,用以演 示水流流态,阀门 F 用于控制颜色水流量。
图 4.1 雷诺实验装置 ·73·
·74·
流体力学
当 B 管内流速较小时,管内颜色水成一股细直的流速,这表明各液层间毫不相混。这 种分层有规则的流动状态称为层流。如图 4.1(a)所示。当阀门 C 逐渐开大流速增加到某一 临界流速 vk 时,颜色水出现摆动,如图 4.1(b)所示。继续增大 B 管内流速,则颜色水迅速 与周围清水相混,如图 4.1(c)所示。这表明液体质点的运动轨迹是极不规则的,各部分流体 互相剧烈掺混,这种流动状态称为紊流或湍流。 能量损失在不同的流动状态下规律如何呢?雷诺在上述装置的管道 B 的两个相距为 L 的断面处加设两根测压管,定量测定不同流速时两测压管液面之差。根据伯努利方程,测 压管液面之差就是两断面管道的沿程损失,实验结果如图 4.2 所示。
流体力学
Z1 +
由均匀流的性质:
p1
γ
+
ห้องสมุดไป่ตู้
α 1v12
2g
=
= Z2 +
2 α 2 v2
p2
γ
+
2 α 2 v2
2g
+ hl1−2
α 1v12
2g
代入上式,得:
2g
hl = h f
⎛ p1 ⎞ ⎛ p2 ⎞ (4-11) ⎜ + Z1 ⎟ ⎟−⎜ ⎜ ⎟ + Z2 ⎟ hf = ⎜ ⎝γ ⎠ ⎝ γ ⎠ 上式说明,在均匀流条件下,两过流断面间的沿程水头损失等于两过流断面测压管水 头的差值,即流体用于克服阻力所消耗的能量全部由势能提供。考虑所取流段在流向上的 受力平衡条件。设两断面间的距离为 L,过流断面面积 A1=A2=A,在流向上,该流段所受 的作用力有:重力分量 γ Alcosα、断面压力 p1A 和 p2A、管壁切力 τ0.l.2πr0(τ0 为管壁切应力, r0 为圆管半径)。

4 流动阻力与能量损失

4 流动阻力与能量损失

雷诺实验揭示出
雷诺(O.Reynolds)实验
实际液体运动中存在两种不同流态: 层流和紊流
不同流态的液流,水头损失规律不同
§4.3 流体运动的两种流态
§4.3.1 雷诺实验 1.实验装置介绍:
①保持恒定流的水箱; ②带阀门的等直径圆管; ③带针管的有色液体漏斗.
§4.3 流体运动的两种流态

0.982438m
/
s
冬季:Re

vd


0.982438 0.2 1.092104
1799.3369

20300
,故属于层流;
夏季: Re

vd


0.982438 0.2 0.335104

5865.3011 23000
,故属于紊流。
欢迎提问
如果您有任何问题, 请毫不犹豫地提出 !
黏性是液流产生水头损失的决定因素。
水头损失的物理概念及其分类 水头损失:单位重量的流体自一断面流至另一断面
所损失的机械能。 分类: (1) 沿程水头损失; (2)局部水头损失。
4.1 流动阻力与水头损失的分类
流线
流速
分布
理 想液体
4.1 流动阻力与水头损失的分类
流线
流速
分布
实 际液体
4.1 流动阻力与水头损失的分类
m b
A (b mh)h
R
h
b 2h 1 m 2
§4.2 均匀流沿程水头损失与切应力的关系
4.2.2 圆管过流断面上切应力的分布
r
gRJ R 2 r
o gRJ R ro ro
2
y
o r

第4章 流动阻力和能量损失

第4章 流动阻力和能量损失

hf = λ
υ2 l
d 2g ⋅
⇒ pf = λ
ρυ 2 l
d ⋅ 2
2
2
• 第4章 流动阻力和能量损失 • 流体力学基础 • 4.1 沿程损失和局部损失
1. 沿程阻力和沿程损失
3
3
• 第4章 流动阻力和能量损失 • 流体力学基础 • 4.1 沿程损失和局部损失
2. 局部阻力与局部损失 局部阻力:粘性流体流经各种局部障碍装置时, 局部阻力:粘性流体流经各种局部障碍装置时,由于过流断 面变化,流动方向改变,速度重新分布, 面变化,流动方向改变,速度重新分布,质点间进行动量交 换而产生的集中分布阻力。 换而产生的集中分布阻力。 产生原因:漩涡,速度大小方向的变化。 产生原因:漩涡,速度大小方向的变化。 局部损失(长度损失 流体克服局部阻力所消耗机械能。 长度损失): 局部损失 长度损失 :流体克服局部阻力所消耗机械能。 局部水头损失:单位重量流体的局部损失。 局部水头损失:单位重量流体的局部损失。
2g
=
2 α 2υ 2
2g
, hl = hf
) − ( Z2 + p2 )
∴ hf = ( Z1 +
γ
p1
γ
12
12
• 第4章 流动阻力和能量损失 • 流体力学基础 • 4.3 圆管中的层流运动
1. 均匀层流方程 流段受力分析: 流段受力分析: 重力分量: 重力分量:γAl cos α = γA( Z1 − Z 2 ) 端面压力: 端面压力: p1 A, p2 A 管壁切力: 管壁切力: 2πr0τ 0 l 均匀流体质点等速运动,受力平衡: 均匀流体质点等速运动,受力平衡: p1 A − p2 A + γA( Z1 − Z 2 ) − 2πr0τ 0 l = 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

均匀各向同性湍流、自由剪切湍流和有壁剪切湍流。
(2) 由于紊流脉动的随机性 ,较适宜的数学处理方法是统计平均方法。对于流体的
系数和动量方程动量修正系数的定义式,可导出圆管层流运动的动能修正系数 和
动量修正系数 :
2 1.33
四、湍流运动
1 湍流运动特征及分析方法
(1)雷诺实验研究表明:湍流是一种无
规 则随机脉动的运动形式,流体质点相
互掺混、碰撞,致使速度、压强等也呈
现随机脉动的状态。如右图所示:
湍流形式:
在雷诺实验装置上,流速由小变大,得到如 右图所示的流速与沿程阻力损失关系曲线
OABDE:流速由小变大、EDCAO:流速由大变小 其中AD部分不重合。 B点流速即上临界流速,A点下临界流速。 AC段和BD段试验点分布比较散乱,是流态不稳定 的过渡区域。
进一步实验表明:上临界流速是不稳定,随着流动的起始条 件和实验条件的扰动程度不同,有很大差异;但是下临界流 速却能保持相对稳定,波动较小。 在实际工程中,扰动普遍存在,因此,上临界流速没有实际 意义。一般所指的临界流速即是下临界流速。
力满足牛顿内摩擦定律.
即:
du
dr
与均匀流方程比较得: du J rdr
2
积分并化简得:
u

J 4
(r02

r
2
)
即为圆管层流速度分布表达式,右图所示。
轴心速度:
umax

J 4
r02
J 16
d2
过流断面平均速度:v

Q

A udA

r0 0
u

2
(2)由于某种干扰,流层发生波动,在波峰断面压缩,流线较密,流速增大,压强 降低;在波谷过流断面增大,流线稀疏,流速减小,压强增大。因此流层受到压差 作用,发展成涡体。如下图所示:
涡体脱离、掺混 涡体形成后,一侧的旋转切线速度与流动方向一致,故流速较大,压强较小。而另一侧与流动方 向相反,流速较小,压强较大。在两侧压差作用下,脱离原来位置,将由一层转到另一层,形成 涡体的脱离。 脱离的涡体与其它流层、微团或别的涡体进行摩擦、碰撞,形成湍流的掺混现象。
5 雷诺数
雷诺等人进一步实验研究表明:流动状态不仅和流速有关,还和管径、流体的 动力粘滞系数和密度有关。即流态既反映管道中流体的特性,同时也反映管道的特 性。
由以上四个参数可组合成一个无因次数,用Re表示,称做雷诺数。
Re vd vd
4 流态判别标准
实验表明:尽管当管径或流动介质以及外界条件不同时,临界流速不同,但 临界雷诺数却是相同的,大小约为2000~2300,工程中常取为2000。即 :
雷诺实验: 雷诺于1883年在类似于右图
的实验装置上进行了流动实验。 实验结果表明,流体流动有两种不 同的流动状态:
1 层流
定向、不混杂、层状的流动 如右图(a)所示
2 湍流 横向、混杂、不规则的流动如右图(c)所示
3 过渡状态
水的流动出现了不规则的摆动,不再继续保持直线流动 如右图(b) 所示
4 流速与沿程阻力关系
rdr
比较得:
v
1 2 umaxA NhomakorabeaA
A
v

J 8
r02

J 32
d2
圆管层流运动时,断面平均流速等于最大流速的一半。
4 圆管层流沿程阻力系数
由于:
v

J 8
r02

J 32
d2
整理得:
32vl 64 l v2
hf
d2
Re d 2g
J=hf/L
比较得: 64
Re
根据上述圆管层流过流断面流速分布表达式,结合第三章伯努利方程动能修正
层流与湍流
当流体粘性的稳定作用起主导作用,扰动就受到阻滞而衰减,层流就稳定。
当扰动占上风,粘性的稳定作用无法使扰动衰减下来,流动便变为湍流。
流动呈现什么流态,取决于起扰动作用的惯性和起稳定作用的粘性相互争斗的结果。
雷诺数之所以能判别流态,是因为它反映了惯性力和粘性力的对比关系:
[惯性力] [粘性力]
Re<2000 层流 Re>2000 湍流
5 流态分析
层流和湍流区别: 层流:各流层间互不掺混,只存在各流层间的滑动摩擦阻力 湍流:有涡体动荡于各流层之间,除粘性阻力外,还存在惯性阻力
涡体形成
(1)流体具有粘滞性,流体流动时,流层间产生摩擦切应力,流速较快的层产生沿 流动方向的切应力;流速慢的层产生与流向相反切应力,这两力作用下,选定的流 层或微团构成力矩,促成涡体产生。

z2
p2
2v22 2g
hf
v1 v2
hf
(z1
p1
)

(z2

p2 )
受力分析
p1A p2 A Al cos 0l2 r0 0
l cos z1 z2
整理得:(z1
p1
)

(
z2

p2 )

2 0l r0
二式比较得:
=
[
[m][a] ][A][du /
dn]

[][L]3[L] / [T ]2 [][L]2[ ] / [L]
[][v][L] []
[Re]
因此,在进行阻力计算时,区分层流和湍流是很有必要的。
三、层流沿程阻力系数确定
1 圆管层流运动均匀流方程
右图圆管均匀流:
z1
p1
1v12 2g
第四章 流动阻力和能量损失
一、流动阻力损失分类及计算
1 沿程水头损失:沿流程产生的损失
hf
l
d
v2 2g
2 局部水头损失:流体流过局部构建物时产生的阻力损失
hm

v2 2g
3 总阻力损失:
hl hf hm
沿程阻力系数 和局部阻力系数
的计算求解是解决问题的关键
二、层流、湍流及雷诺数
hf
2 0l r0
式中 hf—单位长度沿程阻力损失,称为水力坡度;
l
0

r0 2
J
2 圆管过流断面切应力分布
如取半径为r的同轴圆柱形流束来讨论,可类似地求得管内任一点轴向切应力与水利坡 度之间的关系: r J
2
由于圆管内流体流动为恒定均匀流,断面上的压力分布满足静压分布,因此,同轴流
束的水力坡度与总流的水力坡度相等,即J= J 。
比较可得: r 0 r0
圆管均匀流过流断面上切应力与半径成线性关系,轴线最小为零,管壁达最大值。
3 圆管层流运动速度分布
圆管层流是有规则的流动,除了微观分子间的干扰外,流层之间互不掺混,可视为无
数无限薄的圆筒层,一个套着一个地相对滑动。由于流体具有粘滞性,认为流动切应
相关文档
最新文档