2017年高考数学理试题分类汇编:导数及其应用
北京市部分区2017届高三上学期考试数学理试题分类汇编:导数及其应用含答案

北京市部分区2017届高三上学期考试数学理试题分类汇编导数及其应用1、(昌平区2017届高三上学期期末)设函数()ln(1)f x ax bx =++,2()()g x f x bx =-.(Ⅰ)若1,1a b ==-,求函数()f x 的单调区间;(Ⅱ)若曲线()y g x =在点(1,ln 3)处的切线与直线1130x y -=平行.(i ) 求,a b 的值;(ii )求实数(3)k k ≤的取值范围,使得2()()g x k xx >-对(0,)x ∈+∞恒成立.2、(朝阳区2017届高三上学期期末)设函数2()ln(1)1f x x axx =-+++,2()(1)e x g x x ax =-+,R a ∈.(Ⅰ)当1a =时,求函数()f x 在点(2,(2))f 处的切线方程; (Ⅱ)若函数()g x 有两个零点,试求a 的取值范围; (Ⅲ)证明()()f x g x ≤.3、(朝阳区2017届高三上学期期中)已知函数2()e ()xf x xa =-,a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若函数()f x 在(3,0)-上单调递减,试求a 的取值范围; (Ⅲ)若函数()f x 的最小值为2e -,试求a 的值.4、(东城区2017届高三上学期期末)设函数()ln(1)()1axf x x a x =+-∈+R . (Ⅰ)若(0)f 为()f x 的极小值,求a 的值;(Ⅱ)若()0f x >对(0,)x ∈+∞恒成立,求a 的最大值.5、(丰台区2017届高三上学期期末)已知函数()e xf x x =与函数21()2g x xax=+的图象在点(00),处有相同的切线. (Ⅰ)求a 的值;(Ⅱ)设()()()()h x f x bg x b =-∈R ,求函数()h x 在[12],上的最小值.6、(海淀区2017届高三上学期期末)已知函数()ln 1a f x x x =--.(Ⅰ)若曲线()y f x =存在斜率为1-的切线,求实数a 的取值范围; (Ⅱ)求()f x 的单调区间;(Ⅲ)设函数()ln x ag x x+=,求证:当10a -<<时,()g x 在(1,)+∞上存在极小值.7、(海淀区2017届高三上学期期中)已知函数3()9f x xx=-,函数2()3g x x a=+。
(2017-2019)高考理数真题分类汇编专题04 导数及其应用(解答题)(教师版)

专题04 导数及其应用(解答题)1.【2019年高考全国Ⅰ卷理数】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点; (2)()f x 有且仅有2个零点. 【答案】(1)见解析;(2)见解析.【解析】(1)设()()g x f 'x =,则1()cos 1g x x x=-+,21sin ())(1x 'x g x =-++. 当1,2x π⎛⎫∈- ⎪⎝⎭时,()g'x 单调递减,而(0)0,()02g'g'π><,可得()g'x 在1,2π⎛⎫- ⎪⎝⎭有唯一零点,设为α.则当(1,)x α∈-时,()0g'x >;当,2x α⎛π⎫∈ ⎪⎝⎭时,()0g'x <. 所以()g x 在(1,)α-单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,故()g x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点,即()f 'x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞.(i )当(1,0]x ∈-时,由(1)知,()f 'x 在(1,0)-单调递增,而(0)0f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点.(ii )当0,2x ⎛π⎤∈ ⎥⎝⎦时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,而(0)=0f ',02f 'π⎛⎫< ⎪⎝⎭,所以存在,2βαπ⎛⎫∈ ⎪⎝⎭,使得()0f 'β=,且当(0,)x β∈时,()0f 'x >;当,2x βπ⎛⎫∈ ⎪⎝⎭时,()0f 'x <.故()f x 在(0,)β单调递增,在,2βπ⎛⎫⎪⎝⎭单调递减. 又(0)=0f ,1ln 1022f ππ⎛⎫⎛⎫=-+> ⎪ ⎪⎝⎭⎝⎭,所以当0,2x ⎛π⎤∈ ⎥⎝⎦时,()0f x >.从而,()f x 在0,2⎛⎤⎥⎝⎦π没有零点.(iii )当,2x π⎛⎤∈π⎥⎝⎦时,()0f 'x <,所以()f x 在,2π⎛⎫π ⎪⎝⎭单调递减.而02f π⎛⎫> ⎪⎝⎭,()0f π<,所以()f x 在,2π⎛⎤π⎥⎝⎦有唯一零点. (iv )当(,)x ∈π+∞时,ln(1)1x +>,所以()f x <0,从而()f x 在(,)π+∞没有零点. 综上,()f x 有且仅有2个零点.【名师点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在性定理或最值点说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可.2.【2019年高考全国Ⅱ卷理数】已知函数()11ln x f x x x -=-+.(1)讨论f ()的单调性,并证明f ()有且仅有两个零点;(2)设0是f ()的一个零点,证明曲线y =ln 在点A (0,ln 0)处的切线也是曲线e xy =的切线.【答案】(1)函数()f x 在(0,1)和(1,)+∞上是单调增函数,证明见解析; (2)见解析.【解析】(1)f ()的定义域为(0,1)U (1,+∞). 因为212()0(1)f 'x x x =+>-,所以()f x 在(0,1),(1,+∞)单调递增. 因为f (e )=e 110e 1+-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--,所以f ()在(1,+∞)有唯一零点1,即f (1)=0.又1101x <<,1111111()ln ()01x f x f x x x +=-+=-=-,故f ()在(0,1)有唯一零点11x . 综上,f ()有且仅有两个零点.(2)因为0ln 01e x x -=,故点B (–ln 0,01x )在曲线y =e 上. 由题设知0()0f x =,即0001ln 1x x x +=-,故直线AB 的斜率0000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----.曲线y =e 在点001(ln ,)B x x -处切线的斜率是01x ,曲线ln y x =在点00(,ln )A x x 处切线的斜率也是01x , 所以曲线ln y x =在点00(,ln )A x x 处的切线也是曲线y =e 的切线.【名师点睛】本题考查了利用导数求已知函数的单调性、考查了曲线的切线方程,考查了数学运算能力. 3.【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由. 【答案】(1)见解析;(2)01a b =⎧⎨=-⎩或41a b =⎧⎨=⎩. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得=0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞⎪⎝⎭U 时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-. (ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =,与0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =或a =-或a =0,与0<a <3矛盾. 综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1.【名师点睛】这是一道常规的函数导数和不等式的综合题,题目难度比往年降低了不少,考查函数的单调性、最大值、最小值这种基本量的计算. 4.【2019年高考北京理数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ).当M (a )最小时,求a 的值.【答案】(Ⅰ)y x =与6427y x =-;(Ⅱ)见解析;(Ⅲ)3a =-. 【解析】(Ⅰ)由321()4f x x x x =-+得23()214f x x x '=-+.令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-,即y x =与6427y x =-.(Ⅱ)令()(),[2,4]g x f x x x =-∈-.由321()4g x x x =-得23()24g'x x x =-. 令()0g'x =得0x =或83x =.(),()g'x g x 的情况如下:所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (Ⅲ)由(Ⅱ)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力. 5.【2019年高考天津理数】设函数()e cos ,()xf x xg x =为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭;(Ⅲ)设n x 为函数()()1u x f x =-在区间2,242n n ππ⎛⎫π+π+ ⎪⎝⎭内的零点,其中n ∈N ,证明20022sin c s e o n n n x x x -πππ+-<-. 【答案】(Ⅰ)()f x 的单调递增区间为3ππ2π,2π(),()44k k k f x ⎡⎤-+∈⎢⎥⎣⎦Z 的单调递减区间为π5π2π,2π()44k k k ⎡⎤++∈⎢⎥⎣⎦Z .(Ⅱ)见解析;(Ⅲ)见解析.【解析】(Ⅰ)由已知,有()e (cos sin )xf 'x x x =-.因此,当52,244x k k ππ⎛⎫∈π+π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x >,得()0f 'x <,则()f x 单调递减;当32,244x k k ππ⎛⎫∈π-π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x <,得()0f 'x >,则()f x 单调递增.所以,()f x 的单调递增区间为32,2(),()44k k k f x ππ⎡⎤π-π+∈⎢⎥⎣⎦Z 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . (Ⅱ)证明:记()()()2h x f x g x x π⎛⎫=+-⎪⎝⎭.依题意及(Ⅰ),有()e (cos sin )x g x x x =-,从而()2e sin x g'x x =-.当,42x ππ⎛⎫∈ ⎪⎝⎭时,0()g'x <,故()()()()(1)()022h'x f 'x g'x x g x g'x x ππ⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫≥== ⎪ ⎪⎝⎭⎝⎭.所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭.(Ⅲ)证明:依题意,()()10n n u x f x =-=,即cos e 1n xn x =.记2n n y x n =-π,则,42n y ππ⎛⎫∈⎪⎝⎭,且()()()22e cos ecos 2e n n yx n n n n n f y y x n n π--π==-π=∈N .由()()20e1n n f y f y -π==≤及(Ⅰ),得0n y y ≥.由(Ⅱ)知,当,42x ππ⎛⎫∈ ⎪⎝⎭时,()0g'x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数,因此()()004n g y g y g π⎛⎫≤<= ⎪⎝⎭.又由(Ⅱ)知,()()02n n n f y g y y π⎛⎫+-≥ ⎪⎝⎭,故()()()()()022*******2sin cos sin c e e e e os e n n n n n n y n n f y y g y g y g y y y x x -π-π-π-ππ--=-≤=--≤<. 所以,20022sin c s e o n n n x x x -πππ+-<-.【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想和化归与转化思想.考查抽象概括能力、综合分析问题和解决问题的能力. 6.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x >(1)当34a =-时,求函数()f x 的单调区间; (2)对任意21[,)e x ∈+∞均有()f x ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)0,4⎛ ⎝⎦. 【解析】(1)当34a =-时,3()ln 04f x x x =->.3()4f 'x x =-=, 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+).(2)由1(1)2f a≤,得04a <≤.当04a <≤时,()2f x a ≤等价于22ln 0x a a--≥. 令1t a=,则t ≥.设()22ln ,g t t x t =≥则2()2ln g t t x =-.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-==.故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,()g t g =….令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦ , 则()10q'x=+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫ ⎪⎝⎭….由(i )得,11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此()0g t g =>….由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞…,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2f x a ….综上所述,所求a 的取值范围是⎛ ⎝⎦. 【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.7.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f ()的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f ()和()f 'x 的零点均在集合{3,1,3}-中,求f ()的极小值;(3)若0,01,1a b c =<=…,且f ()的极大值为M ,求证M ≤427. 【答案】(1)2a =;(2)见解析;(3)见解析.【解析】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=, 解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得121133b b x x ++==.列表如下:所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤.解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得13x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.8.【2018年高考全国Ⅰ卷理数】已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.【答案】(1)见解析;(2)见解析.【解析】(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x-+'=--+=-. (i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x -=或2a x +=.当(0,()22a a x -+∈+∞U 时,()0f x '<;当(22a a x -+∈时,()0f x '>. 所以()f x在)+∞单调递减,在单调递增. (2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >. 由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--. 【名师点睛】该题考查的是应用导数研究函数的问题,涉及的知识点有应用导数研究函数的单调性、应用导数研究函数的极值以及极值所满足的条件,在解题的过程中,需要明确导数的符号对单调性的决定性作用,再者就是要先确定函数的定义域,要对参数进行讨论,还有就是在做题的时候,要时刻关注第一问对第二问的影响,通过构造新函数解决问题的思路要明确. 9.【2018年高考全国Ⅲ卷理数】已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求. 【答案】(1)见解析;(2)16a =-. 【解析】(1)当0a =时,()(2)ln(1)2f x x x x =++-,()ln(1)1x f x x x'=+-+.设函数()()ln(1)1xg x f x x x'==+-+,则2()(1)x g x x '=+.当10x -<<时,()0g x '<;当0x >时,()0g x '>.故当1x >-时,()(0)0g x g ≥=,且仅当0x =时,()0g x =, 从而()0f x '≥,且仅当0x =时,()0f x '=. 所以()f x 在(1,)-+∞单调递增.又(0)0f =,故当10x -<<时,()0f x <;当0x >时,()0f x >.(2)(i )若0a ≥,由(1)知,当0x >时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与0x =是()f x 的极大值点矛盾.(ii )若0a <,设函数22()2()ln(1)22f x xh x x x ax x ax ==+-++++.由于当||min{x <时,220x ax ++>,故()h x 与()f x 符号相同. 又(0)(0)0h f ==,故0x =是()f x 的极大值点当且仅当0x =是()h x 的极大值点.2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++.如果610a +>,则当6104a x a +<<-,且||min{x <时,()0h x '>,故0x =不是()h x 的极大值点.如果610a +<,则224610a x ax a +++=存在根10x <,故当1(,0)x x ∈,且||min{x <时,()0h x '<,所以0x =不是()h x 的极大值点.如果610a +=,则322(24)()(1)(612)x x h x x x x -'=+--.则当(1,0)x ∈-时,()0h x '>;当(0,1)x ∈时,()0h x '<.所以0x =是()h x 的极大值点,从而0x =是()f x 的极大值点综上,16a =-. 【名师点睛】本题考查函数与导数的综合应用,第一问利用函数的单调性证明不等式,第二问分类讨论0a ≥和0a <,当0a <时构造函数2()()2f x h x x ax=++是解题的关键,并利用导数讨论函数()h x 的性质,本题难度较大.10.【2018年高考全国Ⅱ卷理数】已知函数2()e x f x ax =-.(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在(0,)+∞只有一个零点,求a .【答案】(1)见解析;(2)2e 4a =. 【解析】(1)当1a =时,()1f x ≥等价于2(1)e 10xx -+-≤.设函数2()(1)e1xg x x -=+-,则22()(21)e (1)e x x g'x x x x --=--+=--.当1x ≠时,()0g'x <,所以()g x 在(0,)+∞单调递减. 而(0)0g =,故当0x ≥时,()0g x ≤,即()1f x ≥. (2)设函数2()1e xh x ax -=-.()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.(i )当0a ≤时,()0h x >,()h x 没有零点; (ii )当0a >时,()(2)exh'x ax x -=-.当(0,2)x ∈时,()0h'x <;当(2,)x ∈+∞时,()0h'x >. 所以()h x 在(0,2)单调递减,在(2,)+∞单调递增. 故24(2)1eah =-是()h x 在[0,)+∞的最小值. ①若(2)0h >,即2e 4a <,()h x 在(0,)+∞没有零点;②若(2)0h =,即2e 4a =,()h x 在(0,)+∞只有一个零点;③若(2)0h <,即2e 4a >,由于(0)1h =,所以()h x 在(0,2)有一个零点,由(1)知,当0x >时,2e xx >,所以33342241616161(4)11110e (e )(2)a a a a a h a a a=-=->-=->.故()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,2e 4a =.【名师点睛】利用函数零点的情况求参数值或取值范围的方法: (1)利用零点存在性定理构建不等式(组)求解; (2)分离参数后转化为函数的值域(最值)问题求解;(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解. 11.【2018年高考北京理数】设函数()f x =[2(41)43ax a x a -+++]e x .(Ⅰ)若曲线y= f ()在点(1,(1)f )处的切线与轴平行,求a ; (Ⅱ)若()f x 在=2处取得极小值,求a 的取值范围. 【答案】(Ⅰ)1;(Ⅱ)(12,+∞). 【解析】(Ⅰ)因为()f x =[2(41)43ax a x a -+++]e x , 所以f ′()=[2a –(4a +1)]e+[a 2–(4a +1)+4a +3]e =[a 2–(2a +1)+2]e . f ′(1)=(1–a )e .由题设知f ′(1)=0,即(1–a )e=0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(Ⅱ)由(Ⅰ)得f ′()=[a 2–(2a +1)+2]e =(a –1)(–2)e . 若a >12,则当∈(1a,2)时,f ′()<0; 当∈(2,+∞)时,f ′()>0. 所以f ()在=2处取得极小值. 若a ≤12,则当∈(0,2)时,–2<0,a –1≤12–1<0, 所以f ′()>0.所以2不是f ()的极小值点. 综上可知,a 的取值范围是(12,+∞). 【名师点睛】利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起求解.12.【2018年高考天津理数】已知函数()xf x a =,()log a g x x =,其中a >1.(I )求函数()()ln h x f x x a =-的单调区间;(II )若曲线()y f x =在点11(,())x f x 处的切线与曲线()y g x =在点22(,())x g x 处的切线平行,证明122ln ln ()ln ax g x a+=-; (III )证明当1ee a ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线. 【答案】(I )函数()h x 的单调递减区间为(,0)-∞,单调递增区间为(0,)+∞;(II )见解析;(III )见解析.【解析】(I )由已知,()ln xh x a x a =-,有()ln ln xh x a a a '=-. 令()0h x '=,解得=0.由a >1,可知当变化时,()h x ',()h x 的变化情况如下表:所以函数()h x 的单调递减区间为(,0)-∞,单调递增区间为(0,)+∞.(II )由()ln x f x a a '=,可得曲线()y f x =在点11(,())x f x 处的切线斜率为1ln xa a .由1()ln g x x a'=,可得曲线()y g x =在点22(,())x g x 处的切线斜率为21ln x a .因为这两条切线平行,故有121ln ln xa a x a=,即122(ln )1x x a a =.两边取以a 为底的对数,得21log 2log ln 0a a x x a ++=,所以122ln ln ()ln ax g x a+=-. (III )曲线()y f x =在点11(,)xx a 处的切线l 1:111ln ()x x y a a a x x -=⋅-.曲线()y g x =在点22(,log )a x x 处的切线l 2:2221log ()ln a y x x x x a-=-. 要证明当1ee a ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线,只需证明当1ee a ≥时,存在1(,)x ∈-∞+∞,2(0,)x ∈+∞,使得l 1与l 2重合.即只需证明当1e e a ≥时,方程组1112121ln ln 1ln log ln x x x a a a x a a x a a x a ⎧=⎪⎪⎨⎪-=-⎪⎩①②有解.由①得1221(ln )x x a a =,代入②,得111112ln ln ln 0ln ln x x a a x a a x a a-+++=. ③ 因此,只需证明当1ee a ≥时,关于1的方程③存在实数解.设函数12ln ln ()ln ln ln xxau x a xa a x a a=-+++,即要证明当1e e a ≥时,函数()y u x =存在零点. 2()1(ln )x u x a xa '=-,可知(,0)x ∈-∞时,()0u x '>;(0,)x ∈+∞时,()u x '单调递减,又(0)10u '=>,21(ln )2110(ln )a u a a ⎡⎤'=-<⎢⎥⎣⎦,故存在唯一的0,且0>0,使得0()0u x '=,即0201(ln )0x a x a -=.由此可得()u x 在0(,)x -∞上单调递增,在0(,)x +∞上单调递减.()u x 在0x x =处取得极大值0()u x . 因为1ee a ≥,故ln(ln )1a ≥-, 所以0000002012ln ln 12ln ln 22ln ln ()ln 0ln ln (ln )ln ln xxa a a u x a x a a x x a a x a a a+=-+++=++≥≥. 下面证明存在实数t ,使得()0u t <. 由(I )可得1ln x a x a ≥+, 当1ln x a>时, 有2212ln ln 12ln ln ()(1ln )(1ln )(ln )1ln ln ln ln a au x x a x a x a x x a a a a≤+-+++=-++++, 所以存在实数t ,使得()0u t <.因此,当1ee a ≥时,存在1(,)x ∈-∞+∞,使得1()0u x =.所以,当1ee a ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线.【名师点睛】本小题主要考查导数的运算、导数的几何意义、运用导数研究指数函数与对数函数的性质等基础知识和方法.考查函数与方程思想、化归思想.考查抽象概括能力、综合分析问题和解决问题的能力.13.【2018年高考浙江】已知函数f−ln .(Ⅰ)若f ()在=1,2(1≠2)处导数相等,证明:f (1)+f (2)>8−8ln2;(Ⅱ)若a ≤3−4ln2,证明:对于任意>0,直线y =+a 与曲线y =f ()有唯一公共点. 【答案】(Ⅰ)见解析;(Ⅱ)见解析. 【解析】(Ⅰ)函数f()的导函数1()f x x'=, 由12()()f x f x ''=1211x x =, 因为12x x ≠12+=.=≥ 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +==.设()ln g x x =,则1()4)4g x x'=, 所以所以g ()在[256,+∞)上单调递增, 故12()(256)88ln 2g x x g >=-, 即12()()88ln 2f x f x +>-.(Ⅱ)令m =()e a k -+,n =21()1a k++,则 f (m )–m –a >|a |+––a ≥0, f (n )–n –a<)a n k n-≤)n k <0, 所以,存在0∈(m ,n )使f (0)=0+a ,所以,对于任意的a ∈R 及∈(0,+∞),直线y =+a 与曲线y =f ()有公共点. 由f ()=+a得k =设l (n )ah xx x -=,则22ln )1)((12x ag x x x a x h '=-+--+=,其中(n )l g x x -=. 由(Ⅰ)可知g ()≥g (16),又a ≤3–4ln2, 故–g ()–1+a ≤–g (16)–1+a =–3+4ln2+a ≤0,所以h ′()≤0,即函数h ()在(0,+∞)上单调递减,因此方程f ()––a =0至多1个实根. 综上,当a ≤3–4ln2时,对于任意>0,直线y =+a 与曲线y =f ()有唯一公共点.【名师点睛】本题主要考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力.14.【2018年高考江苏】某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ)平方米,sinθ的取值范围是[14,1];(2)当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.【解析】(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为12×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和,则G=N=10.令∠GO=θ0,则sinθ0=14,θ0∈(0,π6).当θ∈[θ0,π2]时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[14,1].答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ)平方米,sinθ的取值范围是[14,1].(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4,乙的单位面积的年产值为3(>0),则年总产值为4×800(4sinθcosθ+cosθ)+3×1600(cosθ–sinθcosθ)=8000(sinθcosθ+cosθ),θ∈[θ0,π2 ].设f (θ)=sin θcos θ+cos θ,θ∈[θ0,π2], 则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ'=--=-+-=--+. 令()=0f θ',得θ=π6, 当θ∈(θ0,π6)时,()0f θ'>,所以f (θ)为增函数; 当θ∈(π6,π2)时,()0f θ'<,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 【名师点睛】本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.15.【2018年高考江苏】记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f xg x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”. (1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. 【答案】(1)见解析;(2)e2;(3)见解析. 【解析】(1)函数f ()=,g ()=2+2-2,则f ′()=1,g ′()=2+2. 由f ()=g ()且f ′()= g ′(),得222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f ()与g ()不存在“S ”点.(2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),(). 设0为f ()与g ()的“S ”点,由f (0)=g (0)且f ′(0)=g ′(0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e 2a =时,120e x -=满足方程组(*),即0x 为f ()与g ()的“S ”点.因此,a 的值为e 2. (3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h ()的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =.令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x-'=-=′,. 由f ()=g ()且f ′()=g ′(),得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩,(**) 此时,0x 满足方程组(**),即0x 是函数f ()与g ()在区间(0,1)内的一个“S 点”. 因此,对任意a >0,存在b >0,使函数f ()与g ()在区间(0,+∞)内存在“S 点”.【名师点睛】本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.16.【2017年高考全国Ⅰ卷理数】已知函数2()e(2)e xx f x a a x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【答案】(1)见解析;(2)(0,1).【解析】(1)()f x 的定义域为(,)-∞+∞,2()2e (2)e 1(e 1)(2e 1)x x x x f x a a a '=+--=-+,(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>, 所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增. (2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n nf n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).【名师点睛】研究函数零点问题常常与研究对应方程的实数根问题相互转化.已知函数()f x 有2个零点求参数a 的取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a =与其交点的个数,从而求出a 的取值范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()f x 有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证最小值两边存在大于0的点.17.【2017年高考全国Ⅱ卷理数】已知函数2()ln f ax a x x x x =--,且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220e()2f x --<<.【答案】(1)1a =;(2)见解析. 【解析】(1)()f x 的定义域为(0,)+∞.设()ln g x ax a x =--,则()()f x xg x =,()0f x ≥等价于()0g x ≥. 因为()()10,0g g x =≥,故()01g'=,而1(),(11)g'a g'x a x=-=-,得1a =. 若1a =,则1()1'x g x=-. 当01x <<时,()0g'x <,()g x 单调递减; 当1x >时,()0g'x >,()g x 单调递增.所以1x =是()g x 的极小值点,故()()10g x g ≥=. 综上,1a =.(2)由(1)知 ()2ln f x x x x x =--,()22ln f 'x x x =--.设()22ln h x x x =--,则1()2'x h x=-. 当1(0,)2x ∈时,()0h'x <;当1(,)2x ∈+∞时,()0h'x >,所以()h x 在1(0,)2上单调递减,在1(,)2+∞上单调递增.又()2e 0h ->,1()02h <,()10h =,所以()h x 在1(0,)2有唯一零点0x ,在1[,)2+∞有唯一零点1,且当()00,x x ∈时,()0h x >;当()0,1x x ∈时,()0h x <;当()1,x ∈+∞时,()0h x >. 因为()()f 'x h x =,所以0x x =是()f x 的唯一极大值点. 由0()0f 'x =得()00ln 21x x =-,故()()0001f x x x =-. 由()00,1x ∈得()014f x <. 因为0x x =是()f x 在(0,1)的最大值点,由()1e 0,1-∈,1(e )0f '-≠得120()(e )e f x f -->=.所以()220e2f x --<<.【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出.导数专题在高考中的命题方向及命题角度:从高考看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用. 18.【2017年高考全国Ⅲ卷理数】已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L ,求m 的最小值. 【答案】(1)1a =;(2)3.【解析】(1)()f x 的定义域为()0∞,+. ①若0a ≤,因为11ln 2022f a ⎛⎫<⎪⎝⎭=-+,所以不满足题意; ②若0a >,由()1a x af 'x x x-=-=知, 当()0x ,a ∈时,()0f 'x <; 当(),+x a ∈∞时,()0f 'x >,所以()f x 在()0,a 单调递减,在(),+a ∞单调递增, 故=a 是()f x 在()0∞,+的唯一最小值点.由于()10f =,所以当且仅当a =1时,()0f x ≥. 故a =1.(2)由(1)知当()1,x ∈+∞时,1ln 0x x -->. 令112n x =+得11ln 122nn ⎛⎫+< ⎪⎝⎭.从而 221111111ln 1ln 1ln 1112222222nn n⎛⎫⎛⎫⎛⎫++++++<+++=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L L . 故2111111e 222n ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L .而231111112222⎛⎫⎛⎫⎛⎫+++> ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以m 的最小值为3. 【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出.本专题在高考中的命题方向及命题角度:从高考看,对导数的应用的考查主要有以下几个角度:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.19.【2017年高考浙江】已知函数f ()=(e x -(12x ≥). (1)求f ()的导函数;(2)求f ()在区间1[+)2∞,上的取值范围.【答案】(1)1())2f x x '=>;(2)121[0,e ]2-.【解析】(1)因为(1x '-=-,(e )e x x'--=-,所以()(1(x xf x x --'=---1)2x x -=>.(2)由()0x f x -'==,解得1x =或52x =.因为又21()1)e 02x f x -=≥, 所以f ()在区间1[,)2+∞上的取值范围是121[0,e ]2-.【名师点睛】本题主要考查导数两大方面的应用:(一)函数单调性的讨论:运用导数知识讨论函数单调性时,首先考虑函数的定义域,再求出()f'x ,由()f'x 的正负,得出函数()f x 的单调区间;(二)函数的最值(极值)的求法:由单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.20.【2017年高考北京理数】已知函数()e cos x f x x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 【答案】(Ⅰ)1y =;(Ⅱ)最大值为1;最小值为π2-. 【解析】(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0xf x x x f ''=--=.又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.(Ⅰ)设()e (cos sin )1xh x x x =--,则()e (cos sin sin cos )2e sin x xh x x x x x x '=---=-. 当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点,需要两次求导数,因为通过()f x '不能直接判断函数的单调性,所以需要再求一次导数,设()()h x f x '=,再求()h x ',一般这时就可求得函数()h x '的零点,或是()0h x '>或()0h x '<恒成立,这样就能知道函数()h x 的单调性,再根据单调性求其最值,从而判断()y f x =的单调性,最后求得结果.21.【2017年高考天津理数】设a ∈Z ,已知定义在R 上的函数432()2336f x x x x x a =+--+在区间(1,2)内有一个零点0x ,()g x 为()f x 的导函数.(Ⅰ)求()g x 的单调区间;(Ⅱ)设00[1,)(,2]m x x ∈U ,函数0()()()()h x g x m x f m =--,求证:0()()0h m h x <; (Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数,p q ,且00[1,)(,2],px x q∈U 满足041||p x q Aq -≥. 【答案】(Ⅰ)增区间是(,1)-∞-,1(,)4+∞,减区间是1(1,)4-;(Ⅱ)证明见解析;(Ⅲ)证明见解析.【解析】(Ⅰ)由432()2336f x x x x x a =+--+,可得32()()8966g x f x x x x '==+--,进而可得2()24186g x x x '=+-. 令()0g x '=,解得1x =-或14x =. 当变化时,(),()g x g x '的变化情况如下表:所以,()g x 的单调递增区间是(,1)-∞-,1(,)4+∞,单调递减区间是1(1,)4-. (Ⅰ)由0()()()()h x g x m x f m =--,得0()()()()h m g m m x f m =--,000()()()()h x g x m x f m =--.令函数10()()()()H x g x x x f x =--,则10()()()H x g x x x ''=-. 由(Ⅰ)知,当[1,2]x ∈时,()0g x '>,故当0[1,)x x ∈时,1()0H x '<,1()H x 单调递减; 当0(,2]x x ∈时,1()0H x '>,1()H x 单调递增.因此,当00[1,)(,2]x x x ∈U 时,1100()()()0H x H x f x >=-=,可得1()0H m >,即()0h m >. 令函数200()()()()H x g x x x f x =--, 则20()()()H x g x g x '=-.由(Ⅰ)知,()g x 在[1,2]上单调递增,故当0[1,)x x ∈时,2()0H x '>,2()H x 单调递增; 当0(,2]x x ∈时,2()0H x '<,2()H x 单调递减.因此,当00[1,)(,2]x x x ∈U 时,220()()0H x H x <=,可得2()0H m <,即0()0h x <. 所以,0()()0h m h x <.(III )对于任意的正整数p ,q ,且00[1)(,],2px x q∈U , 令pm q=,函数0()()()()h g m x x x m f =--. 由(Ⅰ)知,当0[1),m x ∈时,()h x 在区间0(,)m x 内有零点;当0(,2]m x ∈时,()h x 在区间0(),x m 内有零点,所以()h x 在(1,2)内至少有一个零点, 不妨设为1x ,则110()()()()0p ph g x f q x qx =--=. 由(Ⅰ)知()g x 在[1,2]上单调递增, 故10()()12()g x g g <<<,于是432234041()|()||2336|||||()()(2)2p pf f p p p q p q pq aq q qx q g x g g q+--+-=≥=. 因为当[12],x ∈时,()0g x >,故()f x 在[1,2]上单调递增, 所以()f x 在区间[1,2]上除0x 外没有其他的零点, 而0p x q≠,故()0pf q ≠.又因为p ,q ,a 均为整数,所以432234|2336|p p q p q pq aq +--+是正整数,从而432234|2336|1p p q p q pq aq +--+≥,所以041|2|()p x q g q -≥. 所以,只要取()2A g =,就有041||p x q Aq -≥. 【名师点睛】(1)判断函数的单调性,只需对函数求导,根据导函数的符号判断函数的单调性,求出单调区间;(2)有关函数零点的问题,合理构造函数,根据函数的单调性、极值、零点等即可求解.22.【2017年高考山东理数】已知函数,()e (cos sin 22)xg x x x x =-+-,其中e 2.71828=L 是自然对数的底数.(1)求曲线在点()()π,πf 处的切线方程;(2)令()()()()h x g x af x a =-∈R ,讨论的单调性并判断有无极值,有极值时求出极值. 【答案】(1)22ππ2y x =--;(2)见解析. 【解析】(1)由题意2(π)π2f =-, 又, 所以(π)2πf '=,因此曲线在点()()π,πf 处的切线方程为2(π2)2π(π)y x --=-,即22ππ2y x =--.(2)由题意得2()e (cos sin 22)(2cos )x h x x x x a x x =-+--+,因为()e (cos sin 22)e (sin cos 2)(22sin )xxh x x x x x x a x x '=-+-+--+--2e (sin )2(sin )2(e )(sin )x x x x a x x a x x =---=--,令,则, 所以在R 上单调递增.因为(0)0,m =所以当时,()0m x >;当0x <时,, ①当时,e 0x a ->,当时,,单调递减,()22cos f x x x =+()y f x =()h x ()22sin f x x x '=-()y f x =()sin m x x x =-()1cos 0m x x '=-≥()m x 0x >()0m x <0a ≤0x <()0h x '<()h x。
【K12高考数学】2017年高考真题分类汇编(理数):专题2导数(解析版)

2017年高考真题分类汇编(理数):专题2导数一、单选题(共3题;共6分)1、(2017•浙江)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A、B、C、D、2、(2017•新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A、﹣1B、﹣2e﹣3C、5e﹣3D、13、(2017•新课标Ⅲ)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A、﹣B、C、D、1二、解答题(共8题;共50分)4、(2017•浙江)已知函数f(x)=(x﹣)e﹣x(x≥).(Ⅰ)求f(x)的导函数;(Ⅱ)求f(x)在区间[,+∞)上的取值范围.5、(2017•山东)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(13分)(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g(x)﹣af(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.6、(2017•北京卷)已知函数f(x)=e x cosx﹣x.(13分)(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.7、(2017·天津)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.8、(2017•江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(Ⅰ)求b关于a的函数关系式,并写出定义域;(Ⅱ)证明:b2>3a;(Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.9、(2017•新课标Ⅰ卷)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(12分)(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.10、(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(Ⅰ)求a;(Ⅱ)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.11、(2017•新课标Ⅲ)已知函数f(x)=x﹣1﹣alnx.(Ⅰ)若f(x)≥0,求a的值;(Ⅱ)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.答案解析部分一、单选题1、【答案】D【考点】函数的图象,函数的单调性与导数的关系【解析】【解答】解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选D【分析】根据导数与函数单调性的关系,当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,根据函数图象,即可判断函数的单调性,然后根据函数极值的判断,即可判断函数极值的位置,即可求得函数y=f(x)的图象可能2、【答案】A【考点】导数的运算,利用导数研究函数的单调性,利用导数研究函数的极值【解析】【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.【分析】求出函数的导数,利用极值点,求出a,然后判断函数的单调性,求解函数的极小值即可.3、【答案】C【考点】利用导数研究函数的单调性,导数在最大值、最小值问题中的应用,函数的零点与方程根的关系,函数的零点【解析】【解答】解:因为f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)=﹣1+(x﹣1)2+a(e x﹣1+)=0,所以函数f(x)有唯一零点等价于方程1﹣(x﹣1)2=a(e x﹣1+)有唯一解,等价于函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1+)的图象只有一个交点.①当a=0时,f(x)=x2﹣2x≥﹣1,此时有两个零点,矛盾;②当a<0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(e x﹣1+)在(﹣∞,1)上递增、在(1,+∞)上递减,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1+)的图象的最高点为B(1,2a),由于2a<0<1,此时函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1+)的图象有两个交点,矛盾;③当a>0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(e x﹣1+)在(﹣∞,1)上递减、在(1,+∞)上递增,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1+)的图象的最低点为B(1,2a),由题可知点A与点B重合时满足条件,即2a=1,即a=,符合条件;综上所述,a=,故选:C.【分析】通过转化可知问题等价于函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1+)的图象只有一个交点求a的值.分a=0、a<0、a>0三种情况,结合函数的单调性分析可得结论.二、解答题4、【答案】解:(Ⅰ)函数f(x)=(x﹣)e﹣x(x≥),导数f′(x)=(1﹣••2)e﹣x﹣(x﹣)e﹣x=(1﹣x+)e﹣x=(1﹣x)(1﹣)e﹣x;(Ⅱ)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f()=e,f(1)=0,f()=e,即有f(x)的最大值为e,最小值为f(1)=0.则f(x)在区间[,+∞)上的取值范围是[0,e].【考点】简单复合函数的导数,利用导数研究函数的单调性,导数在最大值、最小值问题中的应用【解析】【分析】(Ⅰ)求出f(x)的导数,注意运用复合函数的求导法则,即可得到所求;(Ⅱ)求出f(x)的导数,求得极值点,讨论当<x<1时,当1<x<时,当x>时,f(x)的单调性,判断f(x)≥0,计算f(),f(1),f(),即可得到所求取值范围.5、【答案】解:(Ⅰ)f(π)=π2﹣2.f′(x)=2x﹣2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣(π2﹣2)=2π(x﹣π).化为:2πx﹣y﹣π2﹣2=0.(Ⅱ)h(x)=g(x)﹣af(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx)h′(x)=e x(cosx﹣sinx+2x﹣2)+e x(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(i)a≤0时,e x﹣a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(﹣∞,0)单调递减.∴x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.(ii)a>0时,令h′(x)=2(x﹣sinx)(e x﹣e lna)=0.解得x1=lna,x2=0.①0<a<1时,x∈(﹣∞,lna)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(lna,0)时,e x﹣e lna>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].②当a=1时,lna=0,x∈R时,h′(x)≥0,∴函数h(x)在R上单调递增.③1<a时,lna>0,x∈(﹣∞,0)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(0,lna)时,e x﹣e lna<0,h′(x)<0,函数h(x)单调递减;x∈(lna,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].综上所述:a≤0时,函数h(x)在(0,+∞)单调递增;x<0时,函数h(x)在(﹣∞,0)单调递减.x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.0<a<1时,函数h(x)在x∈(﹣∞,lna)是单调递增;函数h(x)在x∈(lna,0)上单调递减.当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数h(x)在R上单调递增.a>1时,函数h(x)在(﹣∞,0),(lna,+∞)上单调递增;函数h(x)在(0,lna)上单调递减.当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].【考点】导数的加法与减法法则,导数的乘法与除法法则,函数的单调性与导数的关系,利用导数研究函数的单调性,利用导数研究函数的极值,利用导数研究曲线上某点切线方程【解析】【分析】(Ⅰ)f(π)=π2﹣2.f′(x)=2x﹣2sinx,可得f′(π)=2π即为切线的斜率,利用点斜式即可得出切线方程.(Ⅱ)h(x)=g(x)﹣af(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx),可得h′(x)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,可得函数u(x)在R上单调递增.由u(0)=0,可得x>0时,u(x)>0;x<0时,u(x)<0.对a分类讨论:a≤0时,0<a<1时,当a=1时,a>1时,利用导数研究函数的单调性极值即可得出.6、【答案】(1)解:函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)解:函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=e cos﹣=﹣.【考点】利用导数求闭区间上函数的最值,利用导数研究曲线上某点切线方程【解析】【分析】(1.)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;(2.)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g(x)在区间[0,]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值.7、【答案】(Ⅰ)解:由f(x)=2x4+3x3﹣3x2﹣6x+a,可得g(x)=f′(x)=8x3+9x2﹣6x﹣6,进而可得g′(x)=24x2+18x﹣6.令g′(x)=0,解得x=﹣1,或x=.当x变化时,g′(x),g(x)的变化情况如下表:x(﹣∞,﹣1)(﹣1,)(,+∞)g′(x)+﹣+g(x)↗↘↗所以,g(x)的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣1,).(Ⅱ)证明:由h(x)=g(x)(m﹣x0)﹣f(m),得h(m)=g(m)(m﹣x0)﹣f(m),h(x0)=g(x0)(m﹣x0)﹣f(m).令函数H1(x)=g(x)(x﹣x0)﹣f(x),则H′1(x)=g′(x)(x﹣x0).由(Ⅰ)知,当x∈[1,2]时,g′(x)>0,故当x∈[1,x0)时,H′1(x)<0,H1(x)单调递减;当x∈(x0,2]时,H′1(x)>0,H1(x)单调递增.因此,当x∈[1,x0)∪(x0,2]时,H1(x)>H1(x0)=﹣f(x0)=0,可得H1(m)>0即h(m)>0,令函数H2(x)=g(x0)(x﹣x0)﹣f(x),则H′2(x)=g′(x0)﹣g(x).由(Ⅰ)知,g(x)在[1,2]上单调递增,故当x∈[1,x0)时,H′2(x)>0,H2(x)单调递增;当x∈(x0,2]时,H′2(x)<0,H2(x)单调递减.因此,当x∈[1,x0)∪(x0,2]时,H2(x)>H2(x0)=0,可得得H2(m)<0即h(x0)<0,.所以,h(m)h(x0)<0.(Ⅲ)对于任意的正整数p,q,且,令m=,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[1,x0)时,h(x)在区间(m,x0)内有零点;当m∈(x0,2]时,h(x)在区间(x0,m)内有零点.所以h(x)在(1,2)内至少有一个零点,不妨设为x1,则h(x1)=g(x1)(﹣x0)﹣f()=0.由(Ⅰ)知g(x)在[1,2]上单调递增,故0<g(1)<g(x1)<g(2),于是|﹣x0|=≥=.因为当x∈[1,2]时,g(x)>0,故f(x)在[1,2]上单调递增,所以f(x)在区间[1,2]上除x0外没有其他的零点,而≠x0,故f()≠0.又因为p,q,a均为整数,所以|2p4+3p3q﹣3p2q2﹣6pq3+aq4|是正整数,从而|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.所以|﹣x0|≥.所以,只要取A=g(2),就有|﹣x0|≥.【考点】利用导数研究函数的单调性,利用导数研究函数的极值,不等式的证明,函数的零点【解析】【分析】(Ⅰ)求出函数的导函数g(x)=f′(x)=8x3+9x2﹣6x﹣6,求出极值点,通过列表判断函数的单调性求出单调区间即可.(Ⅱ)由h(x)=g(x)(m﹣x0)﹣f(m),推出h(m)=g(m)(m﹣x0)﹣f(m),令函数H1(x)=g(x)(x﹣x0)﹣f(x),求出导函数H′1(x)利用(Ⅰ)知,推出h(m)h(x0)<0.(Ⅲ)对于任意的正整数p,q,且,令m=,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[1,x0)时,当m∈(x0,2]时,通过h(x)的零点.转化推出|﹣x0|=≥=.推出|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.然后推出结果.8、【答案】(Ⅰ)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0,即a2﹣+>0,解得a>3,所以b=+(a>3).(Ⅱ)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(Ⅲ)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1,x2是y=f(x)的两个极值点,则x1+x2=,x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].【考点】导数的运算,利用导数研究函数的单调性,利用导数研究函数的极值,导数在最大值、最小值问题中的应用【解析】【分析】(Ⅰ)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b,进而再求导可知g′(x)=6x+2a,通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣,从而f(﹣)=0,整理可知b=+(a>0),结合f(x)=x3+ax2+bx+1(a >0,b∈R)有极值可知f′(x)=0有两个不等的实根,进而可知a>3.(Ⅱ)通过(1)构造函数h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),结合a>3可知h(a)>0,从而可得结论;(Ⅲ)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣,利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为﹣+2,进而问题转化为解不等式b﹣+﹣+2=﹣≥﹣,因式分解即得结论.9、【答案】(1)解:由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x ﹣1,当a=0时,f′(x)=2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;(2)由f(x)=ae2x+(a﹣2)e x﹣x=0,有两个零点,由(1)可知:当a>0时,f(x)=0,有两个零点,则f(x)min=a+(a﹣2)﹣ln,=a()+(a﹣2)×﹣ln,=1﹣﹣ln,由f(x)min<0,则1﹣﹣ln<0,整理得:a﹣1+alna<0,设g(a)=alna+a﹣1,a>0,g′(a)=lna+1+1=lna+2,令g′(a)=0,解得:a=e﹣2,当a∈(0,e﹣2),g′(a)<0,g(a)单调递减,当a∈(e﹣2,+∞),g′(a)>0,g(a)单调递增,g(a)min=g(e﹣2)=e﹣2lne﹣2+e﹣2﹣1=﹣﹣1,由g(1)=1﹣1﹣ln1=0,∴0<a<1,a的取值范围(0,1).【考点】导数的运算,利用导数研究函数的单调性,利用导数求闭区间上函数的最值,函数零点的判定定理【解析】【分析】(1.)求导,根据导数与函数单调性的关系,分类讨论,即可求得f (x)单调性;(2.)由(1)可知:当a>0时才有个零点,根据函数的单调性求得f(x)最小值,由f(x)min<0,g(a)=alna+a﹣1,a>0,求导,由g(a)min=g(e﹣2)=e﹣2lne﹣2+e﹣2﹣1=﹣﹣1,g(1)=0,即可求得a的取值范围.10、【答案】(Ⅰ)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,因为h′(x)=a﹣,且当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(Ⅱ)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)=﹣x0﹣x0lnx0=﹣x0+2x0﹣2=x0﹣,由x0<可知f(x0)<(x0﹣)max=﹣+=;由f′()<0可知x0<<,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=﹣+=>;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【考点】导数的运算,利用导数研究函数的极值,利用导数求闭区间上函数的最值,导数在最大值、最小值问题中的应用,不等式的综合【解析】【分析】(Ⅰ)通过分析可知f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,进而利用h′(x)=a﹣可得h(x)min=h(),从而可得结论;(Ⅱ)通过(Ⅰ)可知f(x)=x2﹣x﹣xlnx,记t(x)=f′(x)=2x﹣2﹣lnx,解不等式可知t(x)min=t()=ln2﹣1<0,从而可知f′(x)=0存在两根x0,x2,利用f(x)必存在唯一极大值点x0及x0<可知f(x0)<,另一方面可知f(x0)>f()=﹣+=>.11、【答案】解:(Ⅰ)因为函数f(x)=x﹣1﹣alnx,x>0,所以f′(x)=1﹣=,且f(1)=0.所以当a≤0时f′(x)>0恒成立,此时y=f(x)在(0,+∞)上单调递增,所以在(0,1)上f(x)<0,这与f(x)≥0矛盾;当a>0时令f′(x)=0,解得x=a,所以y=f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,即f(x)min=f(a),又因为f(x)min=f(a)≥0,所以a=1;(Ⅱ)由(Ⅰ)可知当a=1时f(x)=x﹣1﹣lnx≥0,即lnx≤x﹣1,所以ln(x+1)≤x当且仅当x=0时取等号,所以ln(1+)<,k∈N*,所以,k∈N*.一方面,因为++…+=1﹣<1,所以,(1+)(1+)…(1+)<e;另一方面,(1+)(1+)…(1+)>(1+)(1+)(1+)=>2,同时当n≥3时,(1+)(1+)…(1+)∈(2,e).因为m为整数,且对于任意正整数n(1+)(1+)…(1+)<m,所以m的最小值为3.【考点】函数的单调性与导数的关系,利用导数研究函数的单调性,等比数列的前n项和,反证法与放缩法【解析】【分析】(Ⅰ)通过对函数f(x)=x﹣1﹣alnx(x>0)求导,分a≤0、a>0两种情况考虑导函数f′(x)与0的大小关系可得结论;(Ⅱ)通过(Ⅰ)可知lnx≤x﹣1,进而取特殊值可知ln(1+)<,k∈N*.一方面利用等比数列的求和公式放缩可知(1+)(1+)…(1+)<e;另一方面可知(1+)(1+)…(1+)>2,且当n≥3时,(1+)(1+)…(1+)∈(2,e).。
(2017-2019)高考理数真题分类汇编专题03 导数及其应用(选择题、填空题)(学生版)

专题03 导数及其应用(选择题、填空题)1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2+b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-2.【2018年高考全国Ⅰ卷理数】设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x =D .y x =3.【2017年高考全国Ⅱ卷理数】若2x =-是函数21()(1)ex f x x ax -=+-的极值点,则()f x 的极小值为A .1-B .32e --C .35e -D .14.【2017年高考浙江】函数y=f ()的导函数()y f x '=的图象如图所示,则函数y=f ()的图象可能是5.【2018年高考全国Ⅱ卷理数】函数()2e e x xf x x--=的图像大致为6.【2018年高考全国Ⅲ卷理数】函数422y x x =-++的图像大致为7.【2019年高考天津理数】已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为 A .[]0,1 B .[]0,2 C .[]0,eD .[]1,e8.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0D .a >–1,b >09.【2017年高考全国Ⅲ卷理数】已知函数211()2(ee )x xf x x x a --+=-++有唯一零点,则a =A .12- B .13C .12D .110.【2019年高考全国Ⅰ卷理数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________.11.【2018年高考全国Ⅱ卷理数】曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.12.【2018年高考全国Ⅲ卷理数】曲线()1e xy ax =+在点()0,1处的切线的斜率为2-,则a =________.13.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 .14.【2018年高考全国Ⅰ卷理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________. 15.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 .16.【2019年高考北京理数】设函数()e e xxf x a -=+(a 为常数).若f ()为奇函数,则a =________;若f ()是R 上的增函数,则a 的取值范围是___________.17.【2018年高考江苏】若函数在有且只有一个零点,则在[−1,1]上的最大值与最小值的和为 . 18.【2017年高考江苏】已知函数31()2e exx f x x x =-+-,其中e 是自然对数的底数.若(1)f a -+2(2)0f a ≤,则实数a 的取值范围是 .19.【2017年高考山东理数】若函数e ()xf x (e 2.71828=L 是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2xf x -=②()3xf x -=③3()f x x =④2()2f x x =+。
高考数学理试题分类汇编:导数及其应用 Word版含答案

一、选择、填空题1、(赣州市2017届高三上学期期末考试)设函数'()f x 是函数()()f x x R ∈的导函数,(0)1f =,且1()'()13f x f x =-,则4()'()f x f x >的解集为( )A .ln 4(,)3+∞ B .ln 2(,)3+∞ C. )2+∞ D .()3+∞2、(上饶市2017届高三第一次模拟考试)已知()f x 是定义域为(0,)+∞的单调函数,若对任意的(0,)x ∈+∞,都有13()log 4f f x x ⎡⎤+=⎢⎥⎣⎦,且方程32|()3|694f x x x x a -=-+-+在区间[]0,3上有两解,则实数a 的取值范围是( ) A .05a <≤B .5a <C .05a <<D .5a ≥3、(江西省师大附中、临川一中2017届高三1月联考)已知()332f x x x m =-++ ()0m >,在区间[]0,2上存在三个不同的实数,,a b c ,使得以()()(),,f a f b f c 为边长的三角形是直角三角形,则m 的取值范围是 ( )A. 4m >+02m <<+C. 44m -<<+D. 04m <<+4、(新余市2017高三上学期期末考试)曲线2'(1)1()(0)2x f f x e f x x e =-+在点(1,(1))f 处的切线方程为 。
5、(南昌市八一中学2017届高三2月测试)已知定义在R 上的函数)(x f 和)(x g 分别满足222'(1)()2(0)2x f f x e x f x -=⋅+-⋅, 0)(2)('<+x g x g ,则下列不等式成立的是( ) A.(2)(2015)(2017)f g g ⋅< B.(2)(2015)(2017)f g g ⋅> C.(2015)(2)(2017)g f g <⋅D.(2015)(2)(2017)g f g >⋅二、解答题1、(红色七校2017届高三第二次联考)已知函数f (x )=a x +x 2﹣xln a (a >0,a ≠1).(1)求函数f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )单调增区间;(3)若存在x 1,x 2∈[﹣1,1],使得|f (x 1)﹣f (x 2)|≥e ﹣1(e 是自然对数的底数),求实数a 的取值范围.2、(赣吉抚七校2017届高三阶段性教学质量监测考试(二))已知()()2ln 1f x a x bx =++存在两个极值点12 x x ,.(1)求证:122x x +>;(2)若实数λ满足等式()()120f x f x a b λ+++=,试求λ的取值范围.3、(赣中南五校2017届高三下学期第一次联考)设函数()1,xf x e ax =--对(),0x R f x ∀∈≥恒成立.(1)求a 的取值集合; (2)求证:()()1111ln 1.23n n N n*++++>+∈.4、(赣州市2017届高三上学期期末考试)已知函数()ln 2,f x x ax a R =-∈. (1)若函数()y f x =存在与直线20x y -=平行的切线,求实数a 的取值范围; (2)设21()()2g x f x x =+,若()g x 有极大值点1x ,求证:1212ln 1x a x x +>.5、(上饶市2017届高三第一次模拟考试)已知函数()ln f x x mx =+(m 为常数).(1)讨论函数()f x 的单调区间;(2)当m ≤时,设21()()2g x f x x =+的两个极值点1x ,2x (12x x <)恰为2()2ln h x x ax x =--的零点,求1212()'()2x x y x x h +=-的最小值.6、(江西省师大附中、临川一中2017届高三1月联考)已知函数()212f x x =,()lng x a x =.(1)若曲线()()y f x g x =-在1x =处的切线的方程为6250x y --=,求实数a 的值; (2)设()()()h x f x g x =+,若对任意两个不等的正数12x x ,,都有()()12122h x h x x x ->-恒成立,求实数a 的取值范围;(3)若在[]1,e 上存在一点0x ,使得()()()()00001f x g x g x f x ''+<-'成立,求实数a 的取值范围.7、(新余市2017高三上学期期末考试)已知函数()()sin 3,cos f x x mx g x mx x mx =-=-. (1)讨论()f x 在区间[]0,π上的单调性;(2)若对任意0x ≥,都有()()f x g x ≤,求实数m 的取值范围.8、(江西省重点中学协作体2017届高三下学期第一次联考)若,x D ∀∈总有()()(),f x F x g x <<则称()F x 为()f x 与()g x 在D 上的一个“严格分界函数”.(1)求证:xy e =是1y x =+和212x y x =++在(1,0)-上的一个“严格分界函数”;(2)函数1(2)21x h x e x +=-+,若存在最大整数M 使得()10M h x >在(1,0)x ∈-恒成立,求M 的值.(2,718e =131.414,2 1.260≈≈)9、(江西师范大学附属中学2017届高三12月月考)已知函数()ln (,f x a x bx a b R =+∈),211()() (0)2g x x m x m m=-+>,且()y f x =在点(1,(1))f 处的切线方程为10x y --=. (Ⅰ)求,a b 的值;(Ⅱ)若函数()()()h x f x g x =+在区间(0,2)内有且仅有一个极值点,求m 的取值范围; (Ⅲ)设1(,) ()M x y x m m>+为两曲线() ()y f x c c R =+∈,()y g x =的交点,且两曲线在交点M 处的切线分别为12,l l .若取1m =,试判断当直线12,l l 与x 轴围成等腰三角形时c 值的个数并说明理由.10、(南昌市八一中学2017届高三2月测试)已知函数2()ln (,,1)x f x a x x a b a b R a =+--∈>,e 是自然对数的底数.(1)当,4a e b ==时,求整数k 的值,使得函数()f x 在区间(,1)k k +上存在零点; (2)若存在12,[1,1],x x ∈-使得12|()()|1f x f x e -≥-,试求a 的取值范围.11、(九江市十校2017届高三第一次联考)已知函数()()ln af x x a R x=+∈. (1)判断函数)(x f 在区间[),2+∞-e 上的零点个数; (2)若函数)(x f 在1x =处的切线平行于直线20x y -=.参考答案 一、选择、填空题1、B 提示:观察3()()3f x f x '=-,由已知可设函数3()2e 1xf x =-. 2、A 3、D 4、y =21-ex 5、D二、解答题1、解:(1)∵f (x )=a x +x 2﹣xlna ,∴f ′(x )=a xlna +2x ﹣lna ,∴f ′(0)=0,f (0)=1即函数f (x )图象在点(0,1)处的切线斜率为0, ∴图象在点(0,f (0))处的切线方程为y=1;(2)由于f'(x )=a x lna +2x ﹣lna=2x +(a x﹣1)lna①当a >1,y=2x 单调递增,lna >0,所以y=(a x ﹣1)lna 单调递增,故y=2x +(a x ﹣1)lna 单调递增,∴2x +(a x ﹣1)lna >2×0+(a 0﹣1)lna=0,即f'(x )>f'(0),所以x >0故函数f (x )在(0,+∞)上单调递增;②当0<a<1,y=2x单调递增,lna<0,所以y=(a x﹣1)lna单调递增,故y=2x+(a x﹣1)lna单调递增,∴2x+(a x﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0故函数f(x)在(0,+∞)上单调递增;综上,函数f(x)单调增区间(0,+∞);(3)因为存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,所以当x∈[﹣1,1]时,|(f(x))max﹣(f(x))min|=(f(x))max﹣(f(x))min≥e﹣1,由(2)知,f(x)在[﹣1,0]上递减,在[0,1]上递增,所以当x∈[﹣1,1]时,(f(x))min=f(0)=1,(f(x))max=max{f(﹣1),f(1)},而f(1)﹣f(﹣1)=(a+1﹣lna)﹣(+1+lna)=a﹣﹣2lna,记g(t)=t﹣﹣2lnt(t>0),因为g′(t)=1+﹣=(﹣1)2≥0(当t=1时取等号),所以g(t)=t﹣﹣2lnt在t∈(0,+∞)上单调递增,而g(1)=0,所以当t>1时,g(t)>0;当0<t<1时,g(t)<0,也就是当a>1时,f(1)>f(﹣1);当0<a<1时,f(1)<f(﹣1)①当a>1时,由f(1)﹣f(0)≥e﹣1⇒a﹣lna≥e﹣1⇒a≥e,②当0<a<1时,由f(﹣1)﹣f(0)≥e﹣1⇒+lna≥e﹣1⇒0<a≤,综上知,所求a的取值范围为a∈(0,]∪[e,+∞).2、.解:(1)∵()22222'11ax bx ax bf x bx x++=+=++,∴结合题意,12x x,为一元二次方程220bx ax b++=的两根,…………………………2分于是,22440a b∆=->且0b≠,可得:211a ab b⎛⎫>⇒>⎪⎝⎭,∴1212222a ax x x xb b+=-+=>,.………………………………5分(2)由(1)可得121x x =,∵()()()()22121122ln 1ln 1f x f x a a x bx a x bx a ++=++++++()()2222121212ln 1a x x x x b x x a ⎡⎤=++++++⎣⎦ ()21212ln 121a x x x x a ⎡⎤=++-+-⎣⎦212122ln 2ln 2lnaa x x a a x x a a a b=+-=+-=-, ∴由()()120f x f x a b λ+++=得22ln0aa ab bλ-+=,整理可得 22lna a ab b bλ=-,……………………………………7分 令,1ln 2t t t λ=-.设函数()1ln 221ln 22x x x x y x x x x ⎧->⎪⎪=⎨⎪--<-⎪⎩,,,求导得:()1ln 22'1ln 22x x x y x x ⎧-->⎪⎪=⎨⎪---<-⎪⎩,,,所以'0y <,函数()1ln 221ln 22x x x y x x x x ⎧->⎪⎪=⎨⎪--<-⎪⎩,,在() 2-∞-,和()2 +∞,上为减函数,………………11分 该函数的值域为()() 12ln 212ln 2 -∞--++∞,,, 因此λ的取值范围为()() 12ln 212ln 2 -∞--++∞,,.……………………12分 3、(解: (1)1)(--=ax e x f x ,a e x f x -=')(①当0<a 时,0)(≥'x f (不恒为0),)(x f 在R 上单调递增,又0)0(=f ,所以当0)(),0,(<-∞∈x f x ,不合题意,舍去;②当0≥a 时,)(,0)(),ln ,(x f x f a x <'-∞∈单调递减, )(,0)(),,(ln x f x f a x >'+∞∈单调递增,1ln )(ln )(min --==a a a a f x f ,则需01ln ≥--a a a 恒成立.令1ln )(--=a a a a g ,a a g ln )(-=',当)1,0(∈a 时,)(,0)(a g a g >'单调递增, 当),1(+∞∈a 时,)(,0)(a g a g <'单调递减,而0)1(=g ,所以01ln ≤--a a a 恒成立.所以a 的取值集合为{}1. …………………………………………………………7分(2)由(1)可得)0(01>>--x x e x ,)0)(1ln(>+>x x x ,令nx 1=,则 n n nn n n ln )1ln(1ln )11ln(1-+=+=+>,所以))(1ln()ln )1(ln()2ln 3(ln )1ln 2(ln 131211*∈+=-+++-+->++++N n n n n n………………………………………………………………………………12分4、(1)因为1()2,0f x a x x'=->………………………………………………………1分 因为函数()y f x =存在与直线20x y -=平行的切线,所以()2f x '=在(0,)+∞上有解……………………………………………………………2分 即122a x -=在(0,)+∞上有解,也即122a x+=在(0,)+∞上有解, 所以220a +>,得1a >-故所求实数a 的取值范围是(1,)-+∞………………………………………………………4分 (2)因为2211()()ln 222g x f x x x x ax =+=+- 因为2121()2x ax g x x a x x-+'=+-=……………………………………………………5分①当11a -≤≤时,()g x 单调递增无极值点,不符合题意………………………………6分 ②当1a >或1a <-时,令()0g x '=,设2210x ax -+=的两根为1x 和2x , 因为1x 为函数()g x 的极大值点,所以120x x <<, 又12121,20x x x x a =+=>,所以11,01a x ><<,所以211111()20g x x ax x '=-+=,则21112x a x +=………………………………………8分 要证明1211ln 1x a x x +>,只需要证明2111ln 1x x ax +> 因为332111111111111ln 1ln 1ln 1222x x x x x ax x x x x x ++-=-+=--++,101x <<, 令31()ln 122x h x x x x =--++,(0,1)x ∈……………………………………………9分 所以231()ln 22x h x x '=--+,记231()ln 22x p x x =--+,(0,1)x ∈, 则2113()3x p x x x x-'=-+=当0x <<时,()0p x '>1x <<时,()0p x '<,所以max ()(1ln 033p x p ==-+<,所以()0h x '<……………………………11分 所以()h x 在(0,1)上单调递减,所以()(1)0h x h >=,原题得证……………………12分5、解:(1)11'()mxf x m x x+=+=,0x >, 当0m <时,由10mx +>,解得1x m <-,即当10x m<<-时,'()0f x >,()f x 单调递增;由10mx +<解得1x m >-,即当1x m>-时,'()0f x <,()f x 单调递减;当0m =时,1'()0f x x=>,即()f x 在(0,)+∞上单调递增;当0m >时,10mx +>,故'()0f x >,即()f x 在(0,)+∞上单调递增. 所以当0m <时,()f x 的单调递增区间为1(0,)m -,单调递减区间为1(,)m-+∞; 当0m ≥时,()f x 的单调递增区间为(0,)+∞.(2)由21()ln 2g x x mx x =++得211'()x mx g x m x x x ++=++=,由已知210x mx ++=有两个互异实根1x ,2x , 由根与系数的关系得12x x m +=-,121x x =,因为1x ,2x (12x x <)是()h x 的两个零点,故21111()2ln 0h x x x ax =--=①22222()2ln 0h x x x ax =--= ②由②-①得:222212112ln()()0x x x a x x x ----=, 解得2121212ln()x x a x x x x =-+-,因为2'()2h x x a x=--,得1212124'()222x x x x h a x x ++=-⋅-+, 将2121212ln()x x a x x x x =-+-代入得2121212112212ln 4'()2()22x x x x x x h x x x x x x ⎡⎤⎢⎥++⎢⎥=-⋅--++-⎢⎥⎢⎥⎣⎦2121122ln 4x x x x x x =-+-+ 2221212211122111(1)2()22ln ln 21x x x x x x x x x x x x x x x x ⎡⎤-⎢⎥⎡⎤-⎢⎥=--=--⎢⎥-+-⎢⎥⎣⎦+⎢⎥⎣⎦, 所以21221122111()'()2ln 221x x x x xy x x h x x x ⎡⎤-⎢⎥+⎢⎥=-=-⎢⎥+⎢⎥⎣⎦, 设211x t x =>,因为22221212129()22x x x x x x m +=++=≥, 所以221252x x +≥,所以221212122152x x x x x x x x +=+≥,所以152t t +≥,所以2t ≥. 构造1()ln 21t F t t t -=-+,得22214(1)'()0(1)(1)t F t t t t t -=-=>++, 则1()ln 21t F t t t -=-+在[2,)+∞上是增函数, 所以min2()(2)ln 23F x F ==-,即1212()'()2x x y x x h +=-的最小值为42ln 23-.6、(1)由()()21ln 2y f x g x x a x =-=-,得a y x x '=-,由题意,13a -=,所以2a =-. ………………………………(1分) (2)()()()21ln 2h x f x g x x a x =+=+,因为对任意两个不等的正数12x x ,,都有()()12122h x h x x x ->-,设12x x >,则()()()12122h x h x x x ->-,即()()112222h x x h x x ->-恒成立,问题等价于函数()()2F x h x x =-,即()21ln 22F x x a x x =+-在()0,+∞为增函数.……(3分)所以()20a F x x x'=+-≥在()0,+∞上恒成立,即22a x x -≥在()0,+∞上恒成立,所以()2max21a x x -=≥,即实数a 的取值范围是[)1,+∞.……………………………(5分)(3)不等式()()()()00001f x g x g x f x ''+<-'等价于00001ln a x a x x x +<-,整理得0001ln 0a x a x x +-+<.设()1ln a m x x a x x+=-+,由题意知,在[]1,e 上存在一点0x ,使得()00m x <.………(6分)由()2222(1)(1)(1)11x ax a x a x a a m x x x x x --+--++'=--==. 因为0x >,所以10x +>,即令()0m x '=,得1x a =+.………………………………(7分) ① 当11a +≤,即0a ≤时,()m x 在[]1,e 上单调递增,只需()120m a =+<,解得2a <-. ………………………………………………(8分) ② 当11e a <+≤,即0e 1a <-≤时,()m x 在1x a =+处取最小值.令()11ln(1)10m a a a a +=+-++<,即11ln(1)a a a ++<+,可得11ln(1)a a a ++<+.考查式子1ln 1t t t +<-,因为1e t <≤,可得左端大于1,而右端小于1,所以不等式不能成立.……………(10分) ③ 当1e a +>,即e 1a >-时,()m x 在[]1,e 上单调递减,只需()1e e 0ea m a +=-+<,解得2e 1e 1a +>-. 综上所述,实数a 的取值范围是()()2,2e 1,e 1-∞-++∞-. …………………………(12分)7、【解析】(1)()cos 3f x x m '=-,当13m ≥时,()f x 在区间[]0,π上为减函数; 当13m ≤-时,()f x 在区间[]0,π上为增函数;当1133m -<<时,则存在()00,x π∈使得0cos 3x m =,因此()f x 在区间[)00,x 上为增函数,在区间(]0,x π上为减函数.(2)0,0cos 2sin 0),()(≥≤--⇔≥≤x x mx mx x x x g x f()sin 2cos 0,02cos x x mx x x ⎛⎫⇔+-≤≥ ⎪+⎝⎭,(*)设()()sin 02cos xh x mx x x=-≥+,则()()222cos 111322cos 2cos 2cos x h x m m x x x +⎛⎫⎛⎫'=-=-+- ⎪ ⎪++⎝⎭⎝⎭+211132cos 33m x ⎛⎫=--+- ⎪+⎝⎭①当103m -≤即13m ≥时,()0h x '≤,即()h x 在[)0,+∞递减,所以()()00h x h ≤=,因此(*)恒成立;②当0m ≤时,取2x π=,则有()1022h x m π=->,因此(*)不恒成立; ③当103m <<时,则由(1)可知存在()00,x π∈使得()f x 在()00,x 递增, 所以()()00f x f >=,即sin 3x mx >, 因此当()00,x x ∈时,()sin 03xh x mx >->,因此(*)不恒成立, 综上,实数m 的取值范围是),31[+∞. 8、解:(1)证明:令()1,x x e x ϕ=--,['()1x x e ϕ=-.当0x <时,'()0x ϕ<,故()g x 在区间(1,0)-上为减函数,因此()(0)0x ϕϕ>=,故1x e x >+.···················2(分)再令2()12xx t x e x =---,当0x <时,'()10x t x e x =-->,故()t x 在区间(1,0)-上为增函数.()(0)0t x t <=,所以212xx e x <++,故xy e =是1y x =+和212x y x =++在(1,0)-上的一个“严格分界函数”···················5(分)(2)由(1)知11222(1)220.82(11)8x e x x h xx +->++-≥≈+=+. 又22111222(1)22121)1(xx e x x x x x h x x +-<+++-=+++=++,···················7分)令22'2111()2(1)1,()2(1),11(1)m x x x x m x x x x x =++=++-=+-+++'()0,m x =解得13011()2x =-+,易得()m x 在131(1,1())2--+单调递减,在131(1(),0)2-+单调递增,则121333min11(())(1())()2110.89022m x m =-+=+-=≈···················9(分)又2'()12(1)x x h e x -+=在(1,0)x ∈-存在0x 使得'0()0h x =,故()h x 在(1,0)x ∈-上先减后增,则有1133min11()(1())(1())0.89022h x h m ≤-+<-+≈,则min 0.828()0.890h x <<,所以min ()10Mh x >,则8M =····················12(分)9、解:(Ⅰ)()af x b x'=+,∴(1)1f a b '=+=,又(1)0f b ==,∴1,0a b ==. (Ⅱ)211()ln ()2h x x x m x m =+-+; ∴11()()h x x m x m'=+-+ 由()0h x '=得1()()0x m x m --=, ∴x m =或1x m=. ∵0m >,当且仅当102m m <<≤或102m m<<≤时,函数()h x 在区间(0,2)内有且仅有一个极值点. 若102m m <<≤,即102m <≤,当(0,)x m∈时()0h x '>;当(,2)x m ∈时()0h x '<,函数()h x 有极大值点x m =, 若102m m <<≤,即2m ≥时,当1(0,)x m ∈时()0h x '>;当1(,2)x m ∈时()0h x '<,函数()h x 有极大值点1x m =, 综上,m 的取值范围是1|022m m m ⎧⎫<≤≥⎨⎬⎩⎭或. (Ⅲ)当1m =时,设两切线12,l l 的倾斜角分别为,αβ,则1tan ()()2f x g x x xαβ''===-,ta n =, ∵2x >, ∴,αβ均为锐角, 当αβ>,即21x <<时,若直线12,l l 能与x 轴围成等腰三角形,则2αβ=;当αβ<,即1x >+时,若直线12,l l 能与x 轴围成等腰三角形,则2βα=.由2αβ=得,22tan tan tan 21tan βαββ==-,得212(2)1(2)x x x ---=, 即23830x x -+=,此方程有唯一解4(2,13x +=+,12,l l 能与x 轴围成一个等腰三角形.由2βα=得, 22tan tan tan 21tan αβαα==-,得212211x x x⋅-=-,即322320xx x --+=,设32()232F x x x x =--+,2()343F x x x '=--,当(2,)x ∈+∞时,()0F x '>,∴()F x 在(2,)+∞单调递增,则()F x在(1)++∞单调递增,由于5()02F <,且512+<,所以(10F +<,则(1(3)0F F +<,即方程322320x x x --+=在(2,)+∞有唯一解,直线12,l l 能与x 轴围成一个等腰三角形. 因此,当1m =时,有两处符合题意,所以12,l l 能与x 轴围成等腰三角形时,c 值的个数有2个. 10、解:2()4x f x e x x =+--,'()21x f x e x ∴=+-,'(0)0f ∴=当0x >时,1x e >,'()0f x ∴>,故()f x 是(0,)+∞上的增函数, 同理()f x 是(,0)-∞上的减函数,2(0)30,(1)40,(2)20f f e f e =-<=-<=->,且2x >时,()0f x >,故当0x >时,函数()f x 的零点在(1,2)内,1k ∴=满足条件. 同理,当0x <时,函数()f x 的零点在(-2,-1)内,2k ∴=-满足条件, 综上1,2k =-.....................5分(2)问题⇔当[1,1]x ∈-时,max min max min |()()|()()1f x f x f x f x e -=-≥-,'()ln 2ln 2(1)ln x x f x a a x a x a a =+-=+-①当0x >时,由1a >,可知10,ln 0,'()0x a a f x ->>∴>; ②当0x <时,由1a >,可知10,ln 0,'()0x a a f x -<>∴<; ③当0x =时,'()0f x =,()f x ∴在[1,0]-上递减,[0,1]上递增,∴当[1,1]x ∈-时,min max ()(0),()max{(1),(1)}f x f f x f f ==-,而1(1)(1)2ln f f a a a --=--,设1()2ln (0),g t t t t t=--> 22121'()1(1)0g t t t t=+-=-≥(仅当1t =时取等号), ()g t ∴在(0,)+∞上单调递增,而(1)0g =, ∴当1t >时,()0g t >即1a >时,12ln 0a a a-->, (1)(1),(1)(0)1f f f f e ∴>-∴-≥-即ln 1ln a a e e e -≥-=-,构造()ln (1)h a a a a =->,易知'()0h a >,()h a ∴在(1,)+∞递增,a e ∴≥,即a 的取值范围是[,)e +∞.....................12分11、【解析】(1)令=)(x f 0ln =+xa x , [),2+∞∈-e x 得x x a ln =- 记∈=x x x x H ,ln )([),2+∞-e ,,ln 1)('x x H +=由此可知)(x H 在[]12,--e e 上递减,在),(1+∞-e 上递增,且,2)(22---=e e H ,)(11---=e e H +∞→x 时+∞→)(x H故e a 1>时,)(x f 在[),2+∞-e 无零点 221e a e a <=或时,)(x f 在[),2+∞-e 恰有一个零点e a e 122<≤时,)(x f 在[),2+∞-e 有两个零点……5分(2))(x f 的定义域为),,0(+∞()()210,,'af x x x+∞=-,函数)(x f 在1x =处的切线平行于直线20x y -=.()112,1f a a '∴=-=∴=-.若在[]()1,2.71828...e e =上存在一点0x ,使得()0001x mf x x +<成立,构造函数()()11ln mh x x mf x x m x x x x=+-=+-+在[]1,e 上的最小值小于零.()()()222221111'1x x m m m x mx m h x x x x x x+-----=---==, ①当1m e +≥时,即1m e ≥-时,()h x 在[]1,e 上单调递减,所以()h x 的最小值为()h e ,由()10m h e e m e +=+-<可得211e m e +>-,22111,11e e e m e e ++>-∴>--; ②当11m +≤时,即0m ≤时,()h x 在[]1,e 上单调递增,所以()h x 的最小值为()1h ,由()1110h m =++<可得2m <-;③当11m e<+<时,即01m e <<-时,可得()h x 的最小值为()()()()()1,0ln 11,0ln 1,12ln 12h m m m m m h m m m m +<+<∴<+<+=+-+<,此时,()10h m +<不成立.综上所述:可得所求m 的范围是211e m e +>-或2m <-.…12分。
湖北省各地2017届高三最新考试数学理试题分类汇编:导数及其应用含答案

湖北省各地2017届高三最新考试数学理试题分类汇编导数及其应用 2017.02一、选择、填空题1、(黄冈市2017届高三上学期期末)已知函数()()ln ln ,1x f x x f x x=-+在0x x =处取得最大值,以下各式中:①()0f x x <②()0f x x =③()0f x x >④()012f x <⑤()012f x >正确的序号是A. ②④B. ②⑤C. ①④D. ③⑤2、(荆州市五县市区2017届高三上学期期末)设定义在(0,)+∞的函数()f x 的导函数是()f x ',且43()3()xx f x x f x e'+=,3(3)81e f =,则0x >时,()f xA .有极大值,无极小值B .有极小值,无极大值C .既无极大值,又无极小值D .既有极大值,又有极小值3、(天门、仙桃、潜江市2017届高三上学期期末联合考试)定义在(0,)2π上的函数()f x ,()f x '是它的导函数,且恒有()tan ()0f x x f x '+<成立,则 A ()()34f ππ> B ()()46ππC .()()36f ππ D ()()36f ππ< 4、(武汉市2017届高三毕业生二月调研考)已知函数()()2xx f x xe ax a R =-∈恰有两个极值点()1212,x x x x <,则实数a的取值范围为 。
5、(襄阳市2017届高三1月调研)已知下列四个命题:x x -2:p 若函数()()21,0,2,0,axax x f x a e x ⎧+≥⎪=⎨+<⎪⎩为R 上的单调函数,则实数a 的取值范围是()0,+∞;3:p 若函数()2ln f x x x ax =-有两个极值点,则实数a 的取值范围是10,2⎛⎫⎪⎝⎭;4:p 已知函数()f x 的定义域为R,()f x 满足()[)[)222,0,1,2,1,0,x x f x x x ⎧+∈⎪=⎨-∈-⎪⎩且()()2f x f x =+,()252x g x x +=+,则方程()()f x g x =在区间[]5,1-上所有实根之和为-7.其中真命题的个数是。
2017高考数学导数部分考题汇编详细解析太好了(请收藏)

2017高考数学导数部分考题汇编详细解析太好了(请收藏)
高中数学导数部分相关知识,无论文理学科,在高考中,都是作为难题,压轴题存在。
本章难度高,综合性较强,想要在数学成绩上达到中上等水平,就必须在本章有所突破。
本章的【学习目标】如下:1. 会利用导数解决曲线的切线的问题.2. 会利用导数解决函数的单调性等有关问题.3. 会利
用导数解决函数的极值、最值等有关问题.4. 能通过运用导数这一工具解决生活中的一些优化问题:例如利润最大、用料最省、效率最高等问题5. 定积分的应用。
下面是收集整理的2017年高考数学理科试卷的导数部分的考题汇编与详细解析,全部解析文档有16页,另外有原题文档,需要全部可编辑打印文档的可回复或私信输入“004”索取。
大家喜欢我的文章的话可以顺手点个赞,更可以加关注,我会经常发些初高中学习与教育方面的文章来供大家阅读与
参考,如有不当之处也多请大家包涵,谢谢!。
2017年高考真题分类汇编(理数)专题2导数(解析版)

2017年高考真题分类汇编(理数)专题2导数(解析版)D答案解析部分一、单选题1、【答案】D【考点】函数的图象,函数的单调性与导数的关系【解析】【解答】解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选D【分析】根据导数与函数单调性的关系,当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,根据函数图象,即可判断函数的单调性,然后根据函数极值的判断,即可判断函数极值的位置,即可求得函数y=f(x)的图象可能2、【答案】A【考点】导数的运算,利用导数研究函数的单调性,利用导数研究函数的极值【解析】【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.【分析】求出函数的导数,利用极值点,求出a,然后判断函数的单调性,求解函数的极小值即可.3、【答案】C【考点】利用导数研究函数的单调性,导数在最大值、最小值问题中的应用,函数的零点与方程根的关系,函数的零点【解析】【解答】解:因为f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)=﹣1+(x﹣1)2+a(e x﹣1+ )=0,所以函数f(x)有唯一零点等价于方程1﹣(x﹣1)2=a (e x﹣1+ )有唯一解,等价于函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1+ )的图象只有一个交点.①当a=0时,f(x)=x2﹣2x≥﹣1,此时有两个零点,矛盾;②当a<0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(e x﹣1+ )在(﹣∞,1)上递增、在(1,+∞)上递减,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1+ )的图象的最高点为B(1,2a),由于2a<0<1,此时函数y=1﹣(x﹣1)2的图象与y=a (e x﹣1+ )的图象有两个交点,矛盾;③当a>0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(e x﹣1+ )在(﹣∞,1)上递减、在(1,+∞)上递增,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1+ )的图象的最低点为B(1,2a),由题可知点A与点B重合时满足条件,即2a=1,即a= ,符合条件;综上所述,a= ,故选:C.【分析】通过转化可知问题等价于函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1+ )的图象只有一个交点求a的值.分a=0、a<0、a>0三种情况,结合函数的单调性分析可得结论.二、解答题4、【答案】解:(Ⅰ)函数f(x)=(x﹣)e﹣x (x≥ ),导数f′(x)=(1﹣••2)e﹣x﹣(x﹣)e﹣x=(1﹣x+ )e﹣x=(1﹣x)(1﹣)e﹣x;(Ⅱ)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥ ⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f()= e ,f(1)=0,f()= e ,即有f(x)的最大值为 e ,最小值为f(1)=0.则f(x)在区间[ ,+∞)上的取值范围是[0, e ].【考点】简单复合函数的导数,利用导数研究函数的单调性,导数在最大值、最小值问题中的应用【解析】【分析】(Ⅰ)求出f(x)的导数,注意运用复合函数的求导法则,即可得到所求;(Ⅱ)求出f(x)的导数,求得极值点,讨论当<x <1时,当1<x<时,当x>时,f(x)的单调性,判断f(x)≥0,计算f(),f(1),f(),即可得到所求取值范围.5、【答案】解:(Ⅰ)f(π)=π2﹣2.f′(x)=2x ﹣2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣(π2﹣2)=2π(x﹣π).化为:2πx﹣y﹣π2﹣2=0.(Ⅱ)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x ﹣2)﹣a(x2+2cosx)h′(x)=e x(cosx﹣sinx+2x﹣2)+e x(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(i)a≤0时,e x﹣a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(﹣∞,0)单调递减.∴x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.(ii)a>0时,令h′(x)=2(x﹣sinx)(e x﹣e lna)=0.解得x1=lna,x2=0.①0<a<1时,x∈(﹣∞,lna)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(lna,0)时,e x﹣e lna>0,h′(x)<0,函数h (x)单调递减;x∈(0,+∞)时,e x﹣e lna>0,h′(x)>0,函数h (x)单调递增.∴当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a ﹣2lna+sin(lna)+cos(lna)+2].②当a=1时,lna=0,x∈R时,h′(x)≥0,∴函数h (x)在R上单调递增.③1<a时,lna>0,x∈(﹣∞,0)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(0,lna)时,e x﹣e lna<0,h′(x)<0,函数h (x)单调递减;x∈(lna,+∞)时,e x﹣e lna>0,h′(x)>0,函数h (x)单调递增.∴当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a ﹣2lna+sin(lna)+cos(lna)+2].综上所述:a≤0时,函数h(x)在(0,+∞)单调递增;x<0时,函数h(x)在(﹣∞,0)单调递减.x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.0<a<1时,函数h(x)在x∈(﹣∞,lna)是单调递增;函数h(x)在x∈(lna,0)上单调递减.当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna 时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数h(x)在R上单调递增.a>1时,函数h(x)在(﹣∞,0),(lna,+∞)上单调递增;函数h(x)在(0,lna)上单调递减.当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a ﹣2lna+sin(lna)+cos(lna)+2].【考点】导数的加法与减法法则,导数的乘法与除法法则,函数的单调性与导数的关系,利用导数研究函数的单调性,利用导数研究函数的极值,利用导数研究曲线上某点切线方程【解析】【分析】(Ⅰ)f(π)=π2﹣2.f′(x)=2x ﹣2sinx,可得f′(π)=2π即为切线的斜率,利用点斜式即可得出切线方程.(Ⅱ)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x ﹣2)﹣a(x2+2cosx),可得h′(x)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,可得函数u(x)在R上单调递增.由u(0)=0,可得x>0时,u(x)>0;x<0时,u(x)<0.对a分类讨论:a≤0时,0<a<1时,当a=1时,a>1时,利用导数研究函数的单调性极值即可得出.6、【答案】(1)解:函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)解:函数f(x)=e x cosx﹣x的导数为f′(x)=e x (cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=e cos ﹣=﹣.【考点】利用导数求闭区间上函数的最值,利用导数研究曲线上某点切线方程【解析】【分析】(1.)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;(2.)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g(x)在区间[0,]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值.7、【答案】(Ⅰ)解:由f(x)=2x4+3x3﹣3x2﹣6x+a,可得g(x)=f′(x)=8x3+9x2﹣6x﹣6,进而可得g′(x)=24x2+18x﹣6.令g′(x)=0,解得x=﹣1,或x= .当x变化时,g′(x),g (x)的变化情况如下表:x (﹣∞,﹣(﹣1,)(,+∞)1)g′(x)+ ﹣+g(x)↗↘↗所以,g(x)的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣1,).(Ⅱ)证明:由h(x)=g(x)(m﹣x0)﹣f(m),得h(m)=g(m)(m﹣x0)﹣f(m),h(x0)=g(x0)(m﹣x0)﹣f(m).令函数H1(x)=g(x)(x﹣x0)﹣f(x),则H′1(x)=g′(x)(x﹣x0).由(Ⅰ)知,当x∈[1,2]时,g′(x)>0,故当x∈[1,x0)时,H′1(x)<0,H1(x)单调递减;当x∈(x0, 2]时,H′1(x)>0,H1(x)单调递增.因此,当x∈[1,x0)∪(x0, 2]时,H1(x)>H1(x0)=﹣f(x0)=0,可得H1(m)>0即h(m)>0,令函数H2(x)=g(x0)(x﹣x0)﹣f(x),则H′2(x)=g′(x0)﹣g(x).由(Ⅰ)知,g(x)在[1,2]上单调递增,故当x∈[1,x0)时,H′2(x)>0,H2(x)单调递增;当x∈(x0, 2]时,H′2(x)<0,H2(x)单调递减.因此,当x∈[1,x0)∪(x0, 2]时,H2(x)>H2(x0)=0,可得得H2(m)<0即h(x0)<0,.所以,h(m)h(x0)<0.(Ⅲ)对于任意的正整数p,q,且,令m= ,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[1,x0)时,h(x)在区间(m,x0)内有零点;当m∈(x0, 2]时,h(x)在区间(x0, m)内有零点.所以h(x)在(1,2)内至少有一个零点,不妨设为x1,则h(x1)=g(x1)(﹣x0)﹣f()=0.由(Ⅰ)知g(x)在[1,2]上单调递增,故0<g(1)<g(x1)<g(2),于是| ﹣x0|= ≥ = .因为当x∈[1,2]时,g(x)>0,故f(x)在[1,2]上单调递增,所以f(x)在区间[1,2]上除x0外没有其他的零点,而≠x0,故f()≠0.又因为p,q,a均为整数,所以|2p4+3p3q﹣3p2q2﹣6pq3+aq4|是正整数,从而|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.所以| ﹣x0|≥ .所以,只要取A=g(2),就有| ﹣x0|≥ .【考点】利用导数研究函数的单调性,利用导数研究函数的极值,不等式的证明,函数的零点【解析】【分析】(Ⅰ)求出函数的导函数g(x)=f′(x)=8x3+9x2﹣6x﹣6,求出极值点,通过列表判断函数的单调性求出单调区间即可.(Ⅱ)由h(x)=g(x)(m﹣x0)﹣f(m),推出h(m)=g(m)(m﹣x0)﹣f(m),令函数H1(x)=g(x)(x﹣x0)﹣f(x),求出导函数H′1(x)利用(Ⅰ)知,推出h(m)h(x0)<0.(Ⅲ)对于任意的正整数p,q,且,令m= ,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[1,x0)时,当m∈(x0, 2]时,通过h(x)的零点.转化推出| ﹣x0|= ≥ =.推出|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.然后推出结果.8、【答案】(Ⅰ)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+ ﹣+1=0,所以b= + (a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0,即a2﹣+ >0,解得a>3,所以b= + (a>3).(Ⅱ)证明:由(1)可知h(a)=b2﹣3a= ﹣+ = (4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(Ⅲ)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1, x2是y=f(x)的两个极值点,则x1+x2= ,x1x2= ,所以f(x 1)+f(x2)= + +a(+ )+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2= ﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+ ﹣+2= ﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].【考点】导数的运算,利用导数研究函数的单调性,利用导数研究函数的极值,导数在最大值、最小值问题中的应用【解析】【分析】(Ⅰ)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b,进而再求导可知g′(x)=6x+2a,通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣,从而f(﹣)=0,整理可知b= +(a>0),结合f(x)=x3+ax2+bx+1(a>0,b∈R)有极值可知f′(x)=0有两个不等的实根,进而可知a>3.(Ⅱ)通过(1)构造函数h(a)=b2﹣3a= ﹣+ = (4a3﹣27)(a3﹣27),结合a>3可知h(a)>0,从而可得结论;(Ⅲ)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣,利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为﹣+2,进而问题转化为解不等式b﹣+ ﹣+2= ﹣≥﹣,因式分解即得结论.9、【答案】(1)解:由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+ )(e x﹣),令f′(x)=0,解得:x=ln ,当f′(x)>0,解得:x>ln ,当f′(x)<0,解得:x<ln ,∴x∈(﹣∞,ln )时,f(x)单调递减,x∈(ln ,+∞)单调递增;当a<0时,f′(x)=2a(e x+ )(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln )是减函数,在(ln ,+∞)是增函数;(2)由f(x)=ae2x+(a﹣2)e x﹣x=0,有两个零点,由(1)可知:当a>0时,f(x)=0,有两个零点,则f(x)min=a +(a﹣2)﹣ln ,=a()+(a﹣2)× ﹣ln ,=1﹣﹣ln ,由f(x)min<0,则1﹣﹣ln <0,整理得:a﹣1+alna<0,设g(a)=alna+a﹣1,a>0,g′(a)=lna+1+1=lna+2,令g′(a)=0,解得:a=e﹣2,当a∈(0,e﹣2),g′(a)<0,g(a)单调递减,当a∈(e﹣2,+∞),g′(a)>0,g(a)单调递增,g(a)min=g(e﹣2)=e﹣2lne﹣2+e﹣2﹣1=﹣﹣1,由g(1)=1﹣1﹣ln1=0,∴0<a<1,a的取值范围(0,1).【考点】导数的运算,利用导数研究函数的单调性,利用导数求闭区间上函数的最值,函数零点的判定定理【解析】【分析】(1.)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2.)由(1)可知:当a>0时才有个零点,根据函数的单调性求得f(x)最小值,由f(x)min<0,g(a)=alna+a﹣1,a>0,求导,由g(a)min=g(e﹣2)=e﹣2lne ﹣2+e﹣2﹣1=﹣﹣1,g(1)=0,即可求得a的取值范围.10、【答案】(Ⅰ)解:因为f(x)=ax2﹣ax﹣xlnx=x (ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,因为h′(x)=a﹣,且当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(Ⅱ)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x= ,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0, x2,且不妨设f′(x)在(0,x0)上为正、在(x0, x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x 0)= ﹣x0﹣x0lnx0= ﹣x0+2x0﹣2 =x0﹣,由x 0<可知f(x0)<(x0﹣)max=﹣+ = ;由f′()<0可知x0<<,所以f(x)在(0,x 0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=﹣+ = >;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【考点】导数的运算,利用导数研究函数的极值,利用导数求闭区间上函数的最值,导数在最大值、最小值问题中的应用,不等式的综合【解析】【分析】(Ⅰ)通过分析可知f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,进而利用h′(x)=a﹣可得h(x)min=h(),从而可得结论;(Ⅱ)通过(Ⅰ)可知f(x)=x2﹣x﹣xlnx,记t(x)=f′(x)=2x﹣2﹣lnx,解不等式可知t(x)min=t()=ln2﹣1<0,从而可知f′(x)=0存在两根x0,x2,利用f(x)必存在唯一极大值点x0及x0<可知f(x0)<,另一方面可知f(x0)>f()=﹣+ = >.11、【答案】解:(Ⅰ)因为函数f(x)=x﹣1﹣alnx,x>0,所以f′(x)=1﹣= ,且f(1)=0.所以当a≤0时f′(x)>0恒成立,此时y=f(x)在(0,+∞)上单调递增,所以在(0,1)上f(x)<0,这与f(x)≥0矛盾;当a>0时令f′(x)=0,解得x=a,所以y=f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,即f(x)min=f(a),又因为f(x)min=f(a)≥0,所以a=1;(Ⅱ)由(Ⅰ)可知当a=1时f(x)=x﹣1﹣lnx≥0,即lnx≤x﹣1,所以ln(x+1)≤x当且仅当x=0时取等号,所以ln(1+ )<,k∈N*,所以,k∈N*.一方面,因为+ +…+ =1﹣<1,所以,(1+ )(1+ )…(1+ )<e;另一方面,(1+ )(1+ )…(1+ )>(1+ )(1+ )(1+ )= >2,同时当n≥3时,(1+ )(1+ )…(1+ )∈(2,e).因为m为整数,且对于任意正整数n(1+ )(1+ )…(1+ )<m,所以m的最小值为3.【考点】函数的单调性与导数的关系,利用导数研究函数的单调性,等比数列的前n项和,反证法与放缩法【解析】【分析】(Ⅰ)通过对函数f(x)=x﹣1﹣alnx (x>0)求导,分a≤0、a>0两种情况考虑导函数f′(x)与0的大小关系可得结论;(Ⅱ)通过(Ⅰ)可知lnx≤x﹣1,进而取特殊值可知ln(1+ )<,k∈N*.一方面利用等比数列的求和公式放缩可知(1+ )(1+ )…(1+ )<e;另一方面可知(1+ )(1+ )…(1+ )>2,且当n≥3时,(1+ )(1+ )…(1+ )∈(2,e).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年高考数学理试题分类汇编:导数及其应用sin2 x(2017年新课标I 文)&函数y的部分图像大致为1 cosx【答案】A令f (x)0,解得x 2或x 1,所以f(x)在(,2),(1,)单调递增,在(2,1)单调递减所以f (x)极小值 f(1) (1 11)e 1 11,故选A 。
3.(2017年新课标I 文)9 •已知函数f (x) lnx ln(2 x),贝y (C)A • f(x)在(0,2)单调递增B • f (x)在(0,2)单调递减C • y= f(x)的图像关于直线x=1对称D • y= f (x)的图像关于点(1,0)对称4.(2017年浙江卷)函数y=f(x )的导函数y f (x)的图像如图所示,则函数y=f(x)的图像可能是【答案】D【解析】原函数先减再增,再减再增,因此选 D.2x 1x 15.(2017年新课标川卷理)11 •已知函数f(x) x 2x a(e e )有唯一零点,则 a=(C )1.2. (2017年新课标n 卷理A.)11.若x 2是函数f (x)(x 2ax x 1'1)e 的极值点,则f (x)的极小值为()B. 2e 3C. 5e 3D.1【解析】由题可得 f (x) (2x a)e x 1 (x 2x 12ax 1)e[x(a 2)x a 1]e x 1因为f ( 2)0,所以af(x) (x 2x 1)e x 1,故 f (x) (x 2x 1x 2)e111A.-B. -C . —D . 12 3 2【答案】C【解析】£ -2 “ -a {訂十严J ,谡g M =訐+童创,『(© =尸-产 J 戶-二r 二 j当現0 = 0咋r=l,函数里调递矶当11巧 /(x)>0, MM 调递增.当*1时,團数职得最小值胃⑴二2,设/i(x) = x 2-2x f 当*1时、函数取得最小1S-1J 若-GA O,函数矗(£ ,和口冒(兀)浚有交点,当一口 vO 时,一口雷(1)二方⑴日寸「止匕时函数工|和昭(尤)有一个交点,即 p K 2 二 一1 二 a =—、故选 C 1设g x = ax - a - l nx ,贝y f x = xg x , f x 0 等价于 g x 0 因为 g 1 =0, g x 1 0,故g' 1 =0,而g' x a, g' 1 =a 1,得a 1x若 a=1,则 g' x =11 •当0 v x v 1时,g' x <0, g x 单调递减;当 x > 1时,g' x > 0, g x 单调递增•所以x=1x是g x 的极小值点,故 g x g 1 =0 综上,a=1(2)由 11)知 f ( JT : = x 2 - jr * jr In jr T f ' (r) = 2x - 2 - In A当兀三卫;时.^T (x) <0 i 当才=二十力时,/rUD , 调递增1 1 1又he 2 >0,h $ v 0,h 1 0,所以h x 在0,2有唯一零点x 。
,在訂 有唯一零点1,且当x O,xo 时,x 0,1 时,h x v 0,当 x 1,+ 时,h x >0 .因为f 'x h x ,所以X=X 0是f(x)的唯一极大值点已知函数 2f x axax xln x ,且 f x 0。
(1)求 a ; (2)证明:fx 存在唯一的极大值点x °,且 e 2【解析】(1) fx的定义域为0,+X oh x > 0 ;当 x6.( 2017年新课标n 卷理)21.在由 f ' X o 0得 In X o 2x °1),故f X o =X o (1 X o )1由 X o 0,1 得f ' X o v4因为X=X o 是f(X )在(o,1)的最大值点,由e 1o,1 ,f ' e 1 o 得1 2f X O >f e e所以 e 2v f X O v 2-221 . (2o17年新课标川卷理)已知函数 f (x) =x - 1 - aln X .( 1 )若 n , (1 + 丄)(1 + A)K(1+2) < m ,求 m 的最小值.2 2 2解: (1) f'(x)1 a (x 0)X•- ln(1•- m min 1) 函数f(x)=(1-x 2)e X . (1)讨论f(x)设的单调性;(2) 当 21. 解(1) f'x)=(1-2x-x 2)e X 令 f '(x)=0 得 x=-1-,x=-1 +所以 f(x)在(-a, -1- ,2 ), (-1+ •• 2 , +a)单调递减, (2) f (x)=(1 + x) (1-x ) e x当 a > 1 时,设函数 h(x)= (1-x ) e x , h'X)= -xe X v 0 (x >0),因此 h(x)在[0 , + a )单调递减,而 h(0)=1 , 故h(x) w 1,所以f(x)= (x+1) h(x)< x+1 w ax+1o 时,f'(X ) o , X o 时 f(x)不满足o 时,f (x)在(o , a),(a, f ( X)minf (a)a 1 alna 令 y a 1 aln aIn a ••• y 在(o , 1),(1,ymaxy(1) o ,即 y o因此1 时 f (X)min满足•( 2)(1)有In xnln(1 n)i 121 . 1 21 1 221 2n1 2n当 x €( -a, -1- 2 )时,f (x)<o ; 当 x €( -1- 2 ,1+ 2)时,f ')>0 ;当 X €( -1-, +oa )时,f (x)<0f (x) 0,求a 的值;(2 )设m 为整数,且对于任意正整数 (21) (2017年新课标n 文Xo 时,f(x) ax+1,求a 的取值范围. 在(-1- 2 , -1+ 2 )单调递增当 0 v a v 1 时,设函数 g (x ) =e x -x-1, g ' (x ) =e x -1 > 0 (x > 0),所以 g (x )在在[0, + g )单调递增,而 g(0)=0 ,故 e x > x+1 0 v x v 1, f(x) (1 x)(1 x)2, (1 x)(1 x)2 ax 1 x(1 aX 2),取 X 0 W4J2X 。
2(0,1),(1 X °)(1 X 。
)ax ° 0,故 f(x °) ax ° J 5 1 0时,取 X 0 , f(x 0) (1- x 0)(1 X 0)2 2 1 ax 0 1综上, a 的取值范围[1, +g) (2017 年新课标 I 文)21 .已知函数 f(x)=e x (e x -a) - a 2x . 21. (12分)(1)函数f (X)的定义域为(,),f ①若a 0,则 f(x) € 尹,在(,)单调递增. ②若a 0,则由f (X) 0得x ln a当x ( ,ln a)时,f (x) 0; 当X (ln a,)时, 调递增. ③若a 0,则由f (x)0得x ln( 旦).2当x ( ,ln( a))时, 2f (x) 0 ;当当 x (ln( a2),(ln(|) ),)单调递增.(1)讨论f (x)的单调性;(2)若f(x) 0,求a 的取值范围. )时,f (x),所以f(x)0.f (x) 0 , 2x (x) 2e (2)①若 a 0,则 f(x) e 2x xae所以 ②若a 0,则由(1)得,当x 即 a 1 时,f (x) 0. ③若a 0,则由(1)得,当xa (2ef (x)在(a)(e x a), ,ln a)单调递减,在(In a,0 ,故f (x)在(,ln(-))单调递减,2In a 时,f (x)取得最小值,最小值为f (In a)2 2a ln a .从而当且仅当 a ln a当 a2[4|n(訓 0,即卩aaln(/时,f(x)取得最小值,最小值为f(ln(a 2 3 a-))a [- ln(-)].从而当且仅432e 4时 f (x)0.3 综上,a 的取值范围为[2e 4,1]. 2114. (2017年新课标I 文)曲线y X —在点(1, 2)处的切线方程为_y=x+1x(2017年新课标I ) 21.已知函数f(x) ae2x (a 2)e x x.(1) 讨论f (x)的单调性;(2) 若f (x)有两个零点,求a的取值范围(1) 的定冥域再(一卷八方=20』十9一2”一1=(鹵一1)(2才+。
,(1)若口则ge 所a/w在(-理炖)单倜ii减(ii)若占A(h则由厂(力=0得尤=一由卫当处(一孔一血C时,八力<0;当疋(-hg+巧时』『如 X所以f(刃在(一扯一血①里调還亦在(-la fl=+x)M调递増,(2)( i )若go,由⑴知,/■!>)至多有一个零点.(ii)若sO.由⑴矢[L当工二Tz时,炖取得最小值;最小值为八一由巧二1—纟十山口a①当盘=1时,由于f(-lz〕=lh故几<1只有一个霉吊②当族(i.H)时y由于i--+in^>o, ai/eiQ G)>o;故子(力没有零点j dTT③当«e(O=l)时,l--+Ln^<0,即/(-In a)<0.a又/(-2) = oe_4+(a-2)e-:+2 >-2e_3+2>0 ,故/(©在(有一零鼠设正整数悅满足则f (如=申⑺严4白-2)-吨k*-%、严-咤>0 □3J■ ' .「,门- ■■:':•」:’一>"■'综上,a的取值范围为(0,1)X 120. (2017年浙江卷)已知函数f(x)= (x- 2x 1 ) e ( x —) .(I)求f(x)的导函数;21(n)求f(x)在区间[―,+ )上的取值范围.2所EXT M二(i—=)了卞「a「Vzx-i(I )因为(v -乜2戈一1〉x1S)1(口1(匸)Fed-0+ 0-f ( x) 0J0J解得W = 1或/ ix) - t - 1 - I) 2e_j>o 又________所以f (X)在区间[二2二)上的取值范围是;.(2017年北京卷理)(19)已知函数f (x) =e X cosx-x. (I)求曲线y= f (x)在点(0, f ( 0))处的切线方程;(H)求函数f (x)在区间[0, n]上的最大值和最小值.2【答案】(I)f(x)=e x cosx- x.・. f(0)=1 ••• f'(x)=e x(cosx- sinx)—1 f'(0)=0••• y=f(x)在(0, f(0))处切线过点(0,1), k=0 •切线方程为y=1(n) f'(x)=e x( cosx-sinx)—1,设f (x)=g(x)• g'(x)= —2sinx bw 0 g(x)在]0, ]上单调递减,2• g(x) W(0)=0 • f' (x) WO'. f(x)在[0,—]上单调递减,2f(X)max=f(0)=1 • f(x)min = f()=—2 21(2017年江苏卷)11 .已知函数f(x) x32x e x-,其中e是自然对数的底数.若f(a 1) f(2a2) 0,则实数a的 e 取值范围是▲.【解析】因为f( x) x3 2x x e x f(x),所以函数f (x)是奇函数,e因为f'(x) 3x2 2 e x e x3x2 2 2. e x e x0 ,所以数f(x)在R上单调递增,又f (a 1) f(2a2) 0,即f(2a2) f (1 a),所以2a2 1 a,即2a2 a 1 0,1 1解得1 a —,故实数a的取值范围为[1-].2 2(2017年江苏卷)20 .已知函数f (x) x3ax2bx 1(a 0,b R)有极值,且导函数f (x)的极值点是f (x)的零点.(极值点是指函数取2 32极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域;7(3)若f (X ),f (X )这两个函数的所有极值之和不小于2,求a 的取值范围.2 20.【解析】(1)因为 f (x) 3x 2ax b ,所以 f (x) 6x 2a所以 f( a) 2a 3 0,所以b339a因为4a 2 12b 0,所以a3.(2) b 2 -3a 465 3 na a 9,81 34 25 3y芽 3t 9(t a 27) 因为 t 135 27 ,8所以 y miny(27)0 ,所以 b2>3a.12. ( 2017年全国川卷文)已知函数f (x )x 2 2x a(e x 1 e x 1)有唯一零点,则 a【解析】 f (x) 2x 2 a(e x 1 e x 1) 01=\ \ - A , r -3A .A . ] _ ■:t\_ - A . ? - 2A .,;.]-玮屯, : - 2)sin xx —的部分图像大致为(xFifl™7. ( 2017年全国川卷文)函数y 1答案:D(2)证明:b 2 3a ;得x 1即x 1为函数的极值点,故 f (1)1则 12 2a 0, a -2221. ( 2017年全国川卷文)设函数f(x) In x ax (2a 1)x .(1) 讨论f (x)的单调性;3(2) 当 a 0时,证明 f(x) —2. 4a 解:(1)由 f(x) In x ax 1 2 (2a 1)x,( x 0)若' 1 有 f (x) 2ax 2a 1x2ax 2 (2a 1)x 1x..............................…… ..2 ①当a 0时, f '(x) 1 0, f (x)单增①当a时,令 f '(x)0 , 2即2ax (2 a 1)x 1 0 解得x 111(舍),x2区••…g(x) 2 ax 2 (2 a 1)x 1 i .当a 0时, g(x)开口向上, 1 2a 0,g(x)0 .即 f '(x)0 , f (x)单增ii .当 a 0时, g(x)开口向上,1 0,2a此时,在 (0,-1)上,g(x)0,即 f ' (x) 0, f (x)单减具有M 性质.下列函数中所有具有M 性质的函数的序号为 ________ .在(,)上,g(x) 0,即 f '(x)0 , f (x)单增 (6)(2) 由 (1)可得:f(x) maxf (丄)ln( 1 1 ) 12a2a 4a故要证■3 f(x) 24a1 131 1 即证In( )12 - ••…即证ln( )2a 4a4a2a 2a即证Int t 1 0(t 0).• •令g(t)ln t t 1 则 g '(t)令 g '(t) 0,得t1 g(t) maxg(1) 0g(t) 0 ….12(15)(2017年山东卷理)若函数e x f2.71828L 是自然对数的底数)在f x 的定义域上单调递增,则称函数f x1 011 t故原命题得证① fx2x② fx3x③ fxx3④ fxx22【答案】①④x2a(10) (2017年天津卷文)已知a R ,设函数ax In x 的图象在点(1, f (1))处的切线为I ,距为 【答案】1【解析】由題可得mu 则切点为〔1®,因为f 3丄,所以切线F 的斜率为f (D N —1,xy-o =(CI -1X X -1) ?令可得故『在F 轴上的謝功(20) (2017年山东卷理)已知函数f x x 2 2cosx , g x e x cosx sinx 2x 2,其中e 2.71828L 是自然对数的底数(I)求曲线y f x 在点 ,f x 处的切线方程;(n)令h x g x af x a R ,讨论h x 的单调性并判断有无极值,有极值时求出极值.【答案】(I) y 2 x 22.(n)综上所述:当a 0时,h x 在 ,0上单调递减,在 0, 上单调递增,函数h x 有极小值,极小值是 h 0 2a 1 ;当0 a 1时,函数h x 在 ,1 n a 和0,lna 和0, 上单调递增,在 ln a,0上单调递减,函数h x 有极大值,也有极小值,【解析】① 在R 上单调递增,故f x 22x具有 性质;② e x f x xe在R 上单调递减,故33 x 不具有性质;③ e x f x x 3,令 g x3 x 小2x e 3x2时, g x 0,当x 2时, x 3在上单调递减, 在2,上单调递增,x 3不具有性质; ④ e x f x x 2e x 2 ,令 x 2,则g x2 e x2x2110,e xx 22在R 上单调递增,故2x 2具有 性质.f(x)I 在y 轴上的截【答案】①④极大值是h ln a ln2a2ln a sin lna cos lna 2x极小值是h2a 1;a 1 时,函数hx 上单调递增,无极值;a 1 时,函数hx ,0 和lna, 上单调递增,在0,ln a 上单调递减,函数x 有极大值,也有极小值,极大值是h0 2a 1 ;极小值是h ln a a ln2 a 2ln a sin lna cos lna 2 .(I)由题意f2x 2sin x ,解析】解:所以f 2 ,因此曲线 f x 在点处的切线方程为22 2 x ,即2x 2.(n)由题意得h x e2 cosx sinx 2x 2 x2 2cosx ,因为h x e x cosx sinx 2x 2 e x sin x cosx 2 a 2x 2sin x 2e x sin x 2a x sin x 2 e x x sinx ,x x sinx 则m x 1 cosx 0 所以m x 在R 上单调递增.所以x 0 时,m x 单调递减,当x 0 时,m x 0当 a 0时,e x a 0函数h x 有极小值,极小值是 h 0 2a 1 ; 当M 时,wz,妣刃里调递减,当 “0时,¥(x)>0 ,所以当工=0时列町取得极小值』极小值是A(0]=^-b⑵当 a 0 时,h x 2 e x e lna x sinx 由 h x 0 得 x 1 In a , x 2=0①当0 a 1时,In a 0 ,当 x,lna 时,e x e lna 0,h x 0 , h x 单调递增;当 x In a,0 时,e x e na 0,h x 0 , h x 单调递减;当 x 0,时,e x e lna 0,h x 0 , h x 单调递增.所以当x In a 时h x 取得极大值.时,h x 0 ,函数h x 在 , 上单调递增,无极值;£f>lE 寸,Ina >0 所以当仏3小时,战巧丸上何单週递増;当班(OJ M )时』eOj 科工)"上何单调递漏当日寸『贰—hf y (i)>O a A(r)单调递増$ 当工=也心时扯工)取得根小值一极小值是 h In a a In 2a 2ln a sin Ina cos Ina 2综上所述:当a 0时,h x 在 ,0上单调递减,在 0, 上单调递增,极大值为h I n a2a In a 2In a sin In acos Ina 2 ,当x 0时h x 取到极小值,极小值是h 0 2a 1 ;②当a 1时,In a 0,所以当x有极小值,极大值是h 0 2a 1 ;极小值是 h In a a In 2a 2Ina sin Ina cos Ina 2 .(10)(2017年山东卷文)若函数e x f x (e=2.71828L 是自然对数的底数)在f x 的定义域上单调递增,f xx2x(A ) f x 2 ( B ) f x x ( C ) f x 3 ( D ) f x cosx【答案】A1 1【解析】对于 A,令 g(x) e x2 x, g (x) e x(2 x2 xl n —) e x2 x(1 In —) 0,则 g(x)在 R 上单调递增,故 f(x)具 2 2有M 性质,故选A. (20)(2017年山东卷文)1 3 1 2已知函数f x x ax ,a R .3 2(I)当a=2时,求曲线y f x 在点3,f 3 处的切线方程;(n)设函数g x f x x a cosx sin x ,讨论g x 的单调性并判断有无极值,有极值时求出极值.【答案】(I) 3x y 90, (n )见解析.< I > 由题意所以,当口 =2时,/(3) = 0i当0 a 1时,函数h x 在,ln a 和 0,ln a 和0, 上单调递增,在In a,0上单调递减,函数h x 有极大值,也极大值是h In aIn 2 a 2ln a sin In acos Ina极小值是h 2aa 1时, 函数 上单调递增,无极值;当a 1时, 函数,0 和In a, 上单调递增,在0,ln a 上单调递减,函数x 有极大值,也有极小值,函数h x 有极小值,极小值是 h 0 2a 1 ;(II )因为 g(© -打Yin 尢;所 V 、兀)=/(x) + cos x -(兀一 a) sifi x-co s x ;—Xx —<?}-{JC 一口)£n x-(x —a)(x- sin x) f ^h(x) = JC —SIILX F则A r (x) = l-cosx>0 ,所決A(x)在R 上里调递增』因为風0)二0 , 祈以,当兀>0时,ft(x> > 0 ;当兀V0时』fi(x)<0.当 avO 日寸,g r (x) =(x —aXx-sin x), 当血(〜卫)时』工—*0,『(对>0, £(©单调递憎i 当丘匕0)吋,x-(7 >0 , g r (x)<0>畧(工)单调ii 减; 仪€©林”九x-^>Q f 氏(力如里调递増斫次当丸=川寸如取到根大值,极大倩是庫@) = — —品s当X=0时£(工)取到极小值,极小值是ff<0)=-4.I(2) 当应二0时,^(x) = x(x -sinx):当 xc(^+oo)时,^(x)>0, g(x)^调連増;所以覚鬥在(Y .W)上单调递魯g ⑶无极大值也无极小值(3) 当口>0B 寸》/(或二(尤一心乂兀一比口工)"当號(TD。