北师大版数学九年级下册:第三章 圆 知识点及习题
(完整版)北师大版数学初中九年级下册第三章圆的知识点归纳

《圆》章节知识点复习一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系<⇒点C在圆内;1、点在圆内⇒d r=⇒点B在圆上;2、点在圆上⇒d r>⇒点A在圆外;3、点在圆外⇒d r三、直线与圆的位置关系>⇒无交点;1、直线与圆相离⇒d r=⇒有一个交点;2、直线与圆相切⇒d r<⇒有两个交点;3、直线与圆相交⇒d r四、圆与圆的位置关系>+;外离(图1)⇒无交点⇒d R r=+;外切(图2)⇒有一个交点⇒d R r-<<+;相交(图3)⇒有两个交点⇒R r d R r=-;内切(图4)⇒有一个交点⇒d R r<-;内含(图5)⇒无交点⇒d R r五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
北师大数学九年级下《第三章圆》复习与训练含答案解析(2)

圆知识点与练习(1)圆是到定点的距离 定长的点的集合;圆的内部可以看作是到圆心的距离半径的点的集合; 圆的外部可以看作是到圆心的距离 半径的点的集合(2) 点和圆的位置关系:若⊙O 的半径为r ,点P 到圆心O 的距离为d ,那么:点P 在圆 d r 点P 在圆 d r 点P 在圆 d r例1:如图已知矩形ABCD 的边AB=3厘米,AD=4厘米,以点A 为圆心,4厘米为半径作圆A ,则点B 、C 、D 与圆A 的位置关系分别为点B 在圆A ,点C 在圆A ,点D 在圆A ,(3)定理: 的三个点确定一个圆(4)垂径定理: 垂直于弦的直径 这条弦并且平分弦所对的推论1 ①平分弦(不是直径)的直径 ,并且(注:运用垂径定理进行证明几何问题时,常需做出的辅助线的方法是 )推论2 圆的两条平行弦所夹的弧例2:如图,将半径为2厘米的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 例3:在的圆柱形油槽内装入一些油后,截面如图所示,若油面宽AB=800mm ,油的最大深度为200mm ,则油槽截面的直径为 。
(例2图) (例3图)(5)圆是轴对称图形,其对称轴是 ;圆也是中心对称图形,对称中心是(6)定理 在同圆或等圆中,相等的圆心角所对的弧 ,所对的弦 ,所对的弦的弦心距推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都例4:如图,AB 、AC 、BC 都是⊙O 的弦,∠AOC=∠BOC,则∠ABC 与∠BAC 相等吗?为什么?(7) 定理: 一条弧所对的圆周角等于它所对的圆心角的推论1 同弧或等弧所对的圆周角 ;同圆或等圆中,相等的圆周角所对的弧推论2 半圆(或直径)所对的圆周角是 ;90°的圆周角所对的弦是(注:当问题中有直径时,常需做出的辅助线是 )例5:如图,点A 、B 、C 、D 在⊙O 上,点A 与点D 在点B 、C 所在直线的同侧,∠BAC=350 ∠BOC =_______°、∠BDC =_______°⇔⇔⇔例6:如图,AB是⊙O的直径,若AB=AE①BD 和 CD相等吗?为什么?② BD与 CD的大小有什么关系?为什么?(8)圆的内接四边形定理:圆的内接四边形的对角例7:⊙O中,弦长等于半径的弦,所对的圆周角的度数为(9)直线和圆的位置关系:设⊙O的半径为r,点P到圆心的距离为d,直线L和⊙O相交⇔d r ;直线L和⊙O相切⇔d r ;直线L和⊙O相离⇔d r 例8:在△ABC中,AB=5cm,BC=4cm,AC=3cm,①若以C为圆心,2cm长为半径画⊙C,则直线AB与⊙C的位置关系;②若直线AB与半径为r的⊙C相切,则r的值为。
北师大版九年级数学下册第三章圆

A
错误 只有这两条弧在同圆或等圆中,且长度相等,才是等弧
B
错误 同圆要求圆心相同,半径相等,而等圆只要求半径相等,即圆心相同的等圆才是同圆
C
正确 符合直径与弦的定义
D
错误 同圆或等圆中的弦有无数条,不一定相等
答案 C
知识点二 点与圆的位置关系
若点到圆心的距离为d,圆的半径为r,则点与圆的位置关系如下表:
知识点二 点与圆的位置关系 4.(2019河北保定一模)已知☉O的半径OA长为 2 ,若OB= 3 ,则正确的图形 可能是 ( )
答案 A ∵☉O的半径OA长为 2 ,OB= 3 , ∴OA<OB,∴点B在圆外,故选A.
5.若☉O的面积为25π,在同一平面内有一个点P,且点P到圆心O的距离为4. 9,则点P与☉O的位置关系为 ( ) A.点P在☉O外 B.点P在☉O上 C.点P在☉O内 D.无法确定
解析 E,F,G,H四点在以点O为圆心的圆上.理由如下: 如图3-1-2所示,连接OE,OF,OG,OH. ∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD.
又∵E为边AB的中点,∴OE= 12AB. 同理,OF= 12BC,OG= 12CD,OH= 12DA,
∴OE=OF=OG=OH.
点与圆的 位置关系
图形
数量关系
数学语 言描述
点在圆内
d=OA<r
d<r⇔点在圆内
点在圆上
d=OB=r
d=r⇔点在圆上
点在圆外
d=OC>r
d>r⇔点在圆外
例2 已知☉O的半径为10 cm,根据下列点P到圆心O的距离,判断点P和☉ O的位置关系,并说明理由. (1)8 cm;(2)10 cm;(3)12 cm.
北师大版 九年级数学下册 第三章 圆 专题课讲义 圆章节复习(解析版)

圆章节复习课前测试【题目】课前测试如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.【答案】;存在,DE=;y=(0<x<).【解析】(1)如图(1),∵OD⊥BC,∴BD=BC=,∴OD==;(2)如图(2),存在,DE是不变的.连接AB,则AB==2,∵D和E分别是线段BC和AC的中点,∴DE=AB=;(3)如图(3),连接OC,∵BD=x,∴OD=,∵∠1=∠2,∠3=∠4,∴∠2+∠3=45°,过D作DF⊥OE.∴DF==,由(2)已知DE=,∴在Rt△DEF中,EF==,∴OE=OF+EF=+=∴y=DF•OE=••=(0<x<).总结:本题考查的是垂径定理、勾股定理、三角形的性质,综合性较强,难度中等.【难度】4【题目】课前测试如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.【答案】OD=3;AE是⊙O的切线;【解析】(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,∵DA⊥AE,∴OE⊥AC,又∵OE为圆的半径,∴AE为圆O的切线;(3)∵OD∥AC,∴=,即=,∴AC=7.5,∴EC=AC﹣AE=7.5﹣3=4.5,∴S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG=×2×3+×3×4.5﹣=3+﹣=.总结:此题考查了切线的判定与性质,扇形的面积,锐角三角函数定义,平行四边形的判定与性质,以及平行线的性质,熟练掌握切线的判定与性质是解本题的关键.【难度】4知识定位适用范围:北师大版,初三年级,成绩中等以及中等以下知识点概述:圆是九年级下册的内容,是初中几何三大模块(三角形、四边形、圆)之一,也是中考几何必考内容,包含与园有关的圆性质、与圆有关的位置关系及与圆有关的计算三部分,相比三角形与四边形,圆部分的知识点更多,需要记忆的概念和公式也就更多,另外它还要跟三角形和四边形结合,综合考查几何知识,难度骤然提升,解题思维更要灵活。
(基础题)北师大版九年级下册数学第三章 圆含答案

北师大版九年级下册数学第三章圆含答案一、单选题(共15题,共计45分)1、如图,⊙O是△ABC的外接圆,BC=2,∠BAC=45°,则劣弧BC的长为()A. B. C.π D.2、如图,OA,OC是⊙O的半径,点B在⊙O上,若AB∥OC,∠BCO=21°,则∠AOC的度数是()A.42°B.21°C.84°D.60°3、如图,AB是⊙O的直径,C是⊙O上的一点,OD⊥BC于点D,AC=6,则OD的长为()A.2B.3C.3.5D.44、如图,在两个同心圆O中,大圆的弦AB交小圆于C、D两点,则AD与BC的数量关系是()A.AD>BCB.AD=BCC.AD<BCD.无法确定5、如图,AB是⊙O的直径,C、D是⊙O上的点,且OC∥BD,∠A=30°,则∠CBD=()A.10°B.15°C.30°D.45°6、如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E,设∠AED=α,∠AOD=β,则( )A.3α+β=180°B.2α+β=180°C.3α-β=90°D.2α-β=90°7、以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A. B. C. D.8、如图,正内接于半径是1的圆,则阴影部分的面积是()A. B. C. D.9、如图,为的直径,为弦,,垂足为E,若,则的度数为().A.135°B.120°C.150°D.110°10、在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆( )A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离11、如图,将矩形ABCD绕着点A逆时针旋转得到矩形AEFG,点B的对应点E落在边CD上,且DE=EF,若AD= ,则的长为( )A. B. C. D.π12、若⊙O的半径是5 cm,点A在⊙O内,则OA的长可能是()A.2 cmB.5 cmC.6 cmD.10 cm13、已知⊙O的半径为5,点P到圆心O的距离为6,那么点P与⊙O的位置关系是()A.点P在⊙O上B.点P在⊙O内C.点P在⊙O外D.无法确定14、如图,直线AB、CD相交于点O,∠AOD=30°,半径为1cm的⊙P的圆心在射线OA上,且与点O的距离为6cm.如果⊙P以1cm/s的速度沿由A向B的方向移动,那么()秒钟后⊙P与直线CD相切.A.4B.8C.4或6D.4或815、如图⊙O中,半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC,若AB=8,CD=2,则EC的长度为()A.2B.8C.2D.2二、填空题(共10题,共计30分)16、如图所示,AB是⊙O的直径,CD是⊙O的弦,连接AC,AD,若∠CAB=36°,则∠ADC的度数为________.17、如图,在平面直角坐标系中,已知点,为平面内的动点,且满足,为直线上的动点,则线段长的最小值为________.18、如图,在的正方形网格中,两条网格线的交点叫做格点,每个小正方形的边长均为1.以点为圆心,5为半径画圆,共经过图中________个格点(包括图中网格边界上的点).19、圆周角是24度,那么它所对的弧是________度.20、如图,AB是半圆的直径,点C在半圆周上,连接AC,∠BAC=30°,点P在线段OB上运动.则∠ACP的度数可以是________.21、如图,点是上⊙O两点,,点是⊙O上的动点(与不重合),连结,过点分别作于,于,则________.22、如图,DB为半圆的直径,A为BD延长线上一点,AC切半圆于点E,BC⊥AC 于点C,交半圆于点F.已知BD=2,设AD=x,CF=y,则y关于x的函数解析式是________.23、如图,在一张直径为20cm的半圆形纸片上,剪去一个最大的等腰直角三角形,剩余部分恰好组成一片树叶图案,则这片树叶的面积是________cm2.24、如图,平行四边形ABCD中,AB=AC=4,AB⊥AC,O是对角线的交点,若⊙O 过A、C两点,则图中阴影部分的面积之和为________.25、如图,已知直线AB与⊙O相交于A.B两点,∠OAB=30°,半径OA=2,那么弦AB=________.三、解答题(共5题,共计25分)26、如图,AB、CD是⊙O的直径,弦CE∥AB,的度数为70°.求∠EOC的度数.27、如图,⊙O的半径为2,弦AB=2 ,点C在弦AB上,AC= AB,求OC 的长.28、如图,在梯形ABCD中,AD∥BC,∠C=90°,AD+BC=AB,以AB为直径作⊙O,求证:CD是⊙O的切线.29、如图,在⊙O中,AB为直径,点B为的中点,直径AB交弦CD于E,CD=2, AE=5.(1)求⊙O半径r的值;(2)点F在直径AB上,连接CF,当∠FCD=∠DOB时,求AF的长.30、已知:如图, AB为⊙O的直径,CE⊥AB于E,BF∥OC,连接BC,CF.求证:∠OCF=∠ECB.参考答案一、单选题(共15题,共计45分)1、D2、A3、B4、B5、C6、D7、A8、A9、B10、C11、B12、A13、C14、D15、D二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)。
2020版九年级北师大数学下册 第3章 圆:3.3 垂径定理

3.3垂径定理知识要点基础练知识点1垂径定理及推论1.下列命题中错误的有( C)①弦的垂直平分线经过圆心;②平分弦的直径垂直于弦;③平分弦的直径平分弦所对的两段弧.A.0个B.1个C.2个D.3个2.如图,AB,BC是☉O的两条弦,AO⊥BC,垂足为D.若☉O的半径为10,BC=16,则AB的长为( D)A.16B.20C.8D.83.( 泸州中考)如图,AB是☉O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是( B)A. B.2 C.6 D.8【变式拓展】( 安顺中考)已知☉O的直径CD=10 cm,AB是☉O的弦,AB⊥CD,垂足为M,且AB=8 cm,则AC的长为( C )A.2cmB.4cmC.2cm或4cmD.2cm或4cm知识点2垂径定理的应用4.位于黄岩西城的五洞桥桥上老街目前正在修复,如图1是其中一处中式圆形门,图2是它的平面示意图.已知AB过圆心O,且垂直CD于点B,测得门洞高度AB为1.8米,门洞下沿CD宽为1.2米,则该圆形门洞的半径为( A)A.1米B.1.2米C.1.6米D.1.8米5.一条排水管的横截面如图所示,已知排水管的半径OA=1 m,水面宽AB=1.2 m.若某天下雨后,水管水面上升了0.2 m,则此时排水管水面宽CD等于1.6m.6.如图,已知AD是☉O的直径,AB,BC是☉O的弦,AD⊥BC,垂足是点E,BC=8,DE=2,求☉O的半径和sin ∠BAD的值.解:设☉O的半径为r,∵直径AD⊥BC,∴BE=CE=BC=×8=4,∠AEB=90°.在Rt△OEB中,由勾股定理得OB2=OE2+BE2,即r2=42+( r-2 )2,解得r=5,∴AE=5+3=8.在Rt△AEB中,由勾股定理得AB==4,∴sin ∠BAD=.综合能力提升练7.过☉O内一点M的最长弦长为10 cm,最短弦长为8 cm,则OM的长为( C)A.9 cmB.6 cmC.3 cmD.cm8.( 广州中考)如图,在☉O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是( D)A.AD=2OBB.CE=EOC.∠OCE=40°D.∠BOC=2∠BAD9.( 衢州中考)如图,AC是☉O的直径,弦BD⊥AO于点E,连接BC,过点O作OF⊥BC于点F.若BD=8 cm,AE=2 cm,则OF的长度是( D)A.3 cmB.cmC.2.5 cmD.cm10.( 德州中考)如图,CD为☉O的直径,弦AB⊥CD,垂足为E.若,CE=1,AB=6,则弦AF的长度为.提示:连接OA,OB,OB交AF于点G.∵AB⊥CD,∴AE=BE=AB=3.设☉O的半径为r,则OE=r-1,OA=r.在Rt△OAE中,32+( r-1 )2=r2,解得r=5.∵,∴OB⊥AF,AG=FG.在Rt△OAG中,AG2+OG2=52,①在Rt△ABG中,AG2+( 5-OG)2=62.②解由①②组成的方程组得到AG=,∴AF=2AG=.11.如图,AB是半圆O的直径,AC是弦,点P从点B开始沿BA边向点A以1 cm/s的速度移动.若AB的长为10 cm,点O到AC的距离为4 cm.( 1 )求弦AC的长;( 2 )问经过几秒后,△APC是等腰三角形.解:( 1 )过点O作OD⊥AC于点D,易知OD平分AC,AO=5 cm,OD=4 cm,从而AD=3 cm,AC=6 cm.( 2 )经过s后,AC=PC,△APC是等腰三角形;经过4 s后,AP=AC,△APC是等腰三角形;经过5 s后,AP=CP,△APC是等腰三角形.12.( 安徽中考)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨道是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB的长为6米,∠OAB=41.3°.若点C为运行轨道的最高点( C,O的连线垂直于AB),求点C到弦AB所在直线的距离.( 参考数据:sin 41.3°≈0.66,cos 41.3°≈0.75,tan 41.3°≈0.88 )解:连接CO并延长,交AB于点D,则CD⊥AB,∴D为AB的中点.所求运行轨道的最高点C到弦AB所在直线的距离即为线段CD的长.在Rt△AOD中,∵AD=AB=3,∠OAD=41.3°,∴OD=AD·tan 41.3°≈2.64,OA=≈4,∴CD=CO+OD=AO+OD=2.64+4=6.64.答:运行轨道的最高点C到弦AB所在直线的距离约为6.64米.拓展探究突破练13.( 金华中考)如图1是小明制作的一副弓箭,A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60 cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30 cm,∠B1D1C1=120°.( 1 )图2中,求弓臂两端B1,C1的距离.( 2 )如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为多少?解:( 1 )如图,连接B1C1,B1C1与AD1相交于点E,∵D是弓弦BC的中点,∴AD1=B1D1=C1D1=30 cm,由三点确定一个圆可知,D1是弓臂B1AC1的圆心.∵A是弓臂B1AC1的中点,∴∠B1D1D=∠B1D1C1=60°,B1E=C1E,AD1⊥B1C1.在Rt△B1D1E中,B1E=B1D1·cos ∠D1B1E=30×=15cm,则B1C1=2B1E=30cm.( 2 )连接B2C2,B2C2与AD1相交于点E1,∵将弓箭继续拉到点D2,使弓臂B2AC2为半圆,∴E1是弓臂B2AC2的圆心.∵弓臂B2AC2长不变,∴,解得B2E1=20 cm.在Rt△B2D2E1中,由勾股定理得D2E1==10cm,则AD2=AE1+D2E1=( 20+10) cm,即D1D2=AD2-AD1=20+10-30=( 10-10 ) cm.。
(完整版)北师版九年级下册第三章圆知识点及习题

九年级下册第三章圆【知识梳理】一、圆的认识1. 圆的定义:描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的圆形叫做圆.;固定的端点O叫做圆心..;以点O为圆心的圆,记作⊙..;线段OA叫做半径O,读作“圆O”集合性定义:圆是平面内到定点距离等于定长的点的集合。
其中定点叫做圆心....,圆..,定长叫做圆的半径心定圆的位置,半径定圆的大小,圆心和半径确定的圆叫做定圆..。
对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)。
2、与圆相关的概念①弦和直径:弦:连接圆上任意两点的线段叫做弦.。
直径:经过圆心的弦叫做直径..。
②弧、半圆、优弧、劣弧:弧:圆上任意两点间的部分叫做圆弧..,简称弧.,用符号“⌒”表示,以CD为端点的弧记为“”,读作“圆弧CD”或“弧CD”。
半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆..。
优弧:大于半圆的弧叫做优弧..。
劣弧:小于半圆的弧叫做劣弧..。
(为了区别优弧和劣弧,优弧用三个字母表示。
)③弓形:弦及所对的弧组成的图形叫做弓形..。
④同心圆:圆心相同,半径不等的两个圆叫做同心圆...。
⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。
⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧..。
⑦圆心角:顶点在圆心的角叫做圆心角....⑧弦心距:从圆心到弦的距离叫做弦心距....3、点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则①点在圆上 <===> d=r;②点在圆内 <===> d<r;③点在圆外 <===> d>r.其中点在圆上的数量特征是重点,它可用来证明若干个点共圆,方法就是证明这几个点与一个定点、的距离相等。
二. 圆的对称性:1、圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。
北师大版数学初中九年级下册第三章圆的知识点归纳(20200814075904)

圆》章节知识点复习一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
三、直线与圆的位置关系1、直线与圆相离d r 无交点;1、 点在圆内 d r2、 点在圆上 d r 点C 在圆 点B 在圆 内; 上;3、点在圆外 d r 点A 在圆外;2、直线与圆相切d r 有一个交点; 3、直线与圆相交 d r 有两个交点;外离(图1)无交点 d R r ;d R r ;外切(图2)有一个交点相交(图3)有两个交点R r d R r ;内切(图4)有一个交点 d R r ;内含(图5)无交点 d R r ;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1: (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中, 只要知道其中2个即可推出其它3个结论,即:①AB是直径② AB CD ③ CE DE ④弧BC弧BD ⑤弧AC 弧AD中任意2个条件推出其他3个结论推论2:圆的两条平行弦所夹的弧相等。
即:在O O 中,T AB // CD• ••弧AC 弧BD六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级下册第三章圆【知识梳理】一、圆的认识1. 圆的定义:描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的圆形叫做圆.;固定的端点O叫做圆心..;以点O为圆心的圆,记作⊙..;线段OA叫做半径O,读作“圆O”集合性定义:圆是平面内到定点距离等于定长的点的集合。
其中定点叫做圆心....,圆..,定长叫做圆的半径心定圆的位置,半径定圆的大小,圆心和半径确定的圆叫做定圆..。
对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)。
2、与圆相关的概念①弦和直径:弦:连接圆上任意两点的线段叫做弦.。
直径:经过圆心的弦叫做直径..。
②弧、半圆、优弧、劣弧:弧:圆上任意两点间的部分叫做圆弧..,简称弧.,用符号“⌒”表示,以CD为端点的弧记为“”,读作“圆弧CD”或“弧CD”。
半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆..。
优弧:大于半圆的弧叫做优弧..。
劣弧:小于半圆的弧叫做劣弧..。
(为了区别优弧和劣弧,优弧用三个字母表示。
)③弓形:弦及所对的弧组成的图形叫做弓形..。
④同心圆:圆心相同,半径不等的两个圆叫做同心圆...。
⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。
⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧..。
⑦圆心角:顶点在圆心的角叫做圆心角....⑧弦心距:从圆心到弦的距离叫做弦心距....3、点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则①点在圆上 <===> d=r;②点在圆内 <===> d<r;③点在圆外 <===> d>r.其中点在圆上的数量特征是重点,它可用来证明若干个点共圆,方法就是证明这几个点与一个定点、的距离相等。
二. 圆的对称性:1、圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。
2、圆是中心对称图形,对称中心为圆心3、定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦相等、所对的弦心距相等。
推论: 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.2. 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。
上述五个条件中的任何两个条件都可推出其他三个结论。
三. 圆周角和圆心角的关系:1.1°的弧的概念: 把顶点在圆心的周角等分成360份时,每一份的角都是1°的圆心角,相应的整个圆也被等分成360份,每一份同样的弧叫1°弧.2. 圆心角的度数和它所对的弧的度数相等.这里指的是角度数与弧的度数相等,而不是角与弧相等.即不能写成 ∠AOB= , 这是错误的.3. 圆周角的定义: 顶点在圆上,并且两边都与圆相交的角,叫做圆周角.4. 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1: 同弧或等弧所对的圆周角相等;反之,在同圆或等圆中,相等圆周角所对的弧也相等; 推论2: 半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径; 推论3:圆内接四边形的对角互补。
圆周角的三种情况:四. 确定圆的条件:1. 理解确定一个圆必须的具备两个条件:BA CO OABCBACO圆心和半径,圆心决定圆的位置,半径决定圆的大小.经过一点可以作无数个圆,经过两点也可以作无数个圆,其圆心在这个两点线段的垂直平分线上. 2. 经过三点作圆要分两种情况:(1)经过同一直线上的三点不能作圆.(2)经过不在同一直线上的三点,能且仅能作一个圆. 定理: 不在同一直线上的三个点确定一个圆.3. 三角形的外接圆、三角形的外心、圆的内接三角形的概念:(1)三角形的外接圆和圆的内接三角形: 经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个三角形叫做圆的内接三角形.(2)三角形的外心: 三角形外接圆的圆心叫做这个三角形的外心. (3)三角形的外心的性质:三角形外心到三顶点的距离相等. 五. 直线与圆的位置关系 1. 直线和圆相交、相切相离设⊙O 的半径为r ,圆心O 到直线的距离为d ;①d<r <===> 直线L 和⊙O 相交.——两个公共点②d=r <===> 直线L 和⊙O 相切.——惟一公共点,惟一的公共点做切点. ③d>r <===> 直线L 和⊙O 相离.——没有公共点相离 相切 相交 2. 切线的总判定定理: 经过半径的外端并且垂直于这个条半径的直线是圆的切线. 3. 切线的性质定理: 圆的切线垂直于过切点的半径. ※推论1 经过圆心且垂直于切线的直线必经过切点. ※推论2 经过切点且垂直于切线的直线必经过圆心.※分析性质定理及两个推论的条件和结论间的关系,可得如下结论: 如果一条直线具备下列三个条件中的任意两个,就可推出第三个. ①垂直于切线; ②过切点; ③过圆心.切线长定理:过圆外一点所画的圆的两切线长相等即:∵PA 、PB 是的两条切线 ∴PA PB = PO 平分BPA ∠外接圆rdd=rdrBOOBCAC BAOCBAO4. 三角形的内切圆、内心、圆的外切三角形的概念.和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心, 这个三角形叫做圆的外切三角形.三角形内心的性质: (1)三角形的内心到三边的距离相等.(2)过三角形顶点和内心的射线平分三角形的内角.由此性质引出一条重要的辅助线: 连接内心和三角形的顶点,该线平分三角形的这个内角. 六. 圆和圆的位置关系.1. 外离、外切、相交、内切、内含(包括同心圆)外离(图1)⇒ 无交点 ⇒ d R r >+;外切(图2)⇒ 有一个交点 ⇒ d R r =+;相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+;(R ≥r) 内切(图4)⇒ 有一个交点 ⇒ d R r =-;(R>r) 内含(图5)⇒ 无交点 ⇒ d R r <-;(R>r)2. 相切两圆的性质: 如果两个圆相切,那么切点一定在连心线上.3. 相交两圆的性质: 相交两圆的连心线垂直平分公共弦. 七. 弧长及扇形的面积1. 圆周长公式: 圆周长C=2πR (R 表示圆的半径)2. 弧长公式: 弧长180Rn l π=(R 表示圆的半径, n 表示弧所对的圆心角的度数) 3. 扇形定义: 一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形. 4. 弓形定义: 由弦及其所对的弧组成的图形叫做弓形.弓形弧的中点到弦的距离叫做弓形高. 5. 圆的面积公式:圆的面积2R S π= (R 表示圆的半径) 6. 扇形的面积公式: 扇形的面积3602R n S π=扇形 =l R 21(R 表示圆的半径, n 表示弧所对的圆心角的度数,l 表示弧长) 弓形的面积公式: 图1rRd图3rR dr Rd 图4rRd 图5r Rd内切圆(1)当弓形所含的弧是劣弧时, 三角形扇形弓形S S S -= (2)当弓形所含的弧是优弧时, 三角形扇形弓形S S S += (3)当弓形所含的弧是半圆时, 扇形弓形S R S ==221π 八. 圆锥的有关概念:1. 圆锥可以看作是一个直角三角形绕着直角边所在的直线旋转一周而形成的图形,另一条直角边旋转而成 的面叫做圆锥的底面,斜边旋转而成的面叫做圆锥的侧面.2. 圆锥的侧面展开图与侧面积计算:圆锥的侧面展开图是一个扇形,这个扇形的半径是圆锥侧面的母线长、弧长是圆锥底面圆的周长、圆心是圆锥的顶点.如果设圆锥底面半径为r,侧面母线长(扇形半径)是l, 底面圆周长(扇形弧长)为c,那么它的侧面积是:rl rl cl S ππ=⋅==22121侧 )(2l r r r rl S S S +=+=+=πππ底面侧表 圆锥的体积:213V r h π=圆柱: (1)圆柱侧面展开图 2S S S =+侧表底=222rh r ππ+(2)圆柱的体积:2V r h π= *九. 与圆有关的辅助线1.如圆中有弦的条件,常作弦心距,或过弦的一端作半径为辅助线.2.如圆中有直径的条件,可作出直径上的圆周角.3.如一个圆有切线的条件,常作过切点的半径(或直径)为辅助线.4.若条件交代了某点是切点时,连结圆心和切点是最常用的辅助线. *十. 圆内接四边形若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆.圆内接四边形的特征: ①圆内接四边形的对角互补;②圆内接四边形任意一个外角等于它的内错角.十一.北师版数学未出现的有关圆的性质定理1.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
如图6,∵PA ,PB 分别切⊙O 于A 、B∴PA=PB ,PO 平分∠APB2.弦切角定理:弦切角等于它所夹的弧所对的圆周角。
推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。
如图7,CD 切⊙O 于C ,则,∠ACD=∠B_ 图6_ P_ O_ B _ AB1Rr CBO3.和圆有关的比例线段:①相交弦定理:圆内的两条弦相交,被交点分成的两条线段长的积相等;②推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
如图8,AP •PB=CP •PD如图9,若CD ⊥AB 于P ,AB 为⊙O 直径,则CP 2=AP •PB 4.切割线定理①切割线定理,从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项; ②推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
如图10, ①PT 切⊙O 于T ,PA 是割线,点A 、B 是它与⊙O 的交点,则PT 2=PA •PB②PA 、PC 是⊙O 的两条割线,则PD •PC=PB •PA5.两圆连心线的性质①如果两圆相切,那么切点一定在连心线上,或者说,连心线过切点。
②如果两圆相交,那么连心线垂直平分两圆的公共弦。
如图11,⊙O 1与⊙O 2交于A 、B 两点,则连心线O 1O 2⊥AB 且AC=BC 。
6.两圆的公切线两圆的两条外公切线的长及两条内公切线的长相等。
如图12,AB 分别切⊙O 1与⊙O 2于A 、B ,连结O 1A ,O 2B ,过O 2作O 2C ⊥O 1A 于C ,公切线长为l ,两圆的圆心距为d ,半径分别为R ,r 则外公切线长:22)(r R d L --=如图13,AB 分别切⊙O 1与⊙O 2于A 、B ,O 2C ∥AB ,O 2C ⊥O 1C 于C ,⊙O 1半径为R ,⊙O 2半径为r ,则内公切线长:22)(r R d L +-=_O_B_D _P_A_C图8_ 图9_P_A_B_C_D_O _ 图10_B_D_C_O_A_T _P_ 图11_B _C _A _O _2 _O _1 _O _2 _d_C_R _r_A_B_O _1 _ 图13_O_C_D_A_B_ 图7O DCBA 3. 1 圆的认识1、(1)下列命题:①直径是弦;②半径确定了,圆就确定了;③半圆是弧,弧不一定是半圆;④长度相等的弧是等弧;⑤弦是直径。