随机变量的方差及其性质
概率论中的随机变量的期望与方差

概率论是数学中的一门重要学科,用于研究随机现象的规律及其概率性质。
其中,随机变量是概率论的一个核心概念,描述了在某个随机实验中可能的取值及其相应的概率分布。
而随机变量的期望与方差则是对随机变量的两个基本性质进行度量的重要指标。
首先,我们来谈谈随机变量的期望。
随机变量的期望是指随机变量所有可能取值的平均值,也可以理解为随机变量的中心位置。
对于离散型随机变量,其期望的计算方法为每个取值与其概率乘积的和。
例如,设X为一个服从二项分布的随机变量,取值为0和1,概率分别为p和1-p,则X的期望为E(X)=0p+1(1-p)=1-p。
而对于连续型随机变量,其期望的计算方法为对变量的概率密度函数进行积分求和。
例如,设X为一个服从均匀分布的随机变量,取值范围为[a,b],则X的概率密度函数为f(x)=1/(b-a),X的期望为E(X)=∫[a,b]xf(x)dx=(b^2-a^2)/(2(b-a))=(a+b)/2。
期望具有良好的加性和线性性质。
加性指的是对于两个随机变量X和Y,E(X+Y)=E(X)+E(Y)。
线性性是指对于一个随机变量X和常数a,E(aX)=aE(X)。
这些性质使得期望成为了许多概率论推导及应用的基本工具。
接下来,我们讨论随机变量的方差。
方差是对随机变量的离散程度进行度量的指标。
方差越大,表示随机变量取值的波动程度越大,反之亦然。
方差的计算方法为每个取值与其概率乘积与随机变量期望差的平方的和。
对于离散型随机变量,其方差的计算公式为Var(X)=Σ(x-E(X))^2P(x),其中Σ表示对所有可能取值求和。
对于连续型随机变量,方差的计算方法为Var(X)=∫(x-E(X))^2f(x)dx。
方差也具有一些重要的性质。
首先,方差非负,即Var(X)≥0。
其次,根据加和线性性质,方差的计算可以简化为Var(aX+b)=a^2Var(X),其中a和b为常数。
这个性质为方差的应用提供了便利。
最后,方差的平方根被定义为随机变量的标准差,它也是一个重要的度量指标。
随机变量方差的概念及性质

= ( n 2 n) p 2 + np.
D( X ) = E ( X 2 ) [ E ( X )]2
= ( n 2 n) p 2 + np ( np )2
= np(1 p ) ).
3. 泊松分布
设 X ~ π(λ ), 且分布律为
P{ X = k } =
λk
k!
e λ , k = 0,1,2,
π π 2 = 3π + 24 2 4 16
4 2
2
= 20 2π 2 .
2 0 例4 设 X ~ 1 1 3 2
1 3 , 求 D( 2 X 3 + 5). 1 1 12 12
解
D( 2 X 3 + 5) = D( 2 X 3 ) + D( 5)
= 4 D( X )
= E[ X E ( X )]2 + E[Y E (Y )]2 ± 2 E {[ X E ( X )][Y E (Y )]}
= D( X ) + D(Y ).
推广 若 X 1 , X 2 ,
D( X1 ± X 2 ±
, X n 相互独立 , 则有 + D( X n ).
± X n ) = D( X1 ) + D( X 2 ) +
= C E {[ X E ( X )] }
2 2
= C 2 D( X ).
(3) 设 X, Y 相互独立, D(X), D(Y) 存在, 则
D( X ± Y ) = D( X ) + D(Y ).
证明
D( X ± Y ) = E {[( X ± Y ) E ( X ± Y )]2 } = E {[ X E ( X )] ± [Y E (Y )]}2
方差的性质

一般地, 一般地,
若 i ~ N(µi ,σi2 ), i =1 2,L , 且 互 立 则 X , n 相 独 ,
C1X1 +C2 X2 +L+Cn Xn +C ~ N∑Ciµi +C, i=1
n
∑C σ . i=1
n 2 2 i i
这 , 1,C2,L Cn是 全 0 常 。 里 C , 不 为的 数
i=1 i =1 i =1 j≠i n n n n
2
性质4: 若随机变量 性质 若随机变量X1, X2, …, Xn相互独立, 相互独立, 则
Var( X1 + L+ X n ) = Var( X1 ) + L+ Var( X n )
n=2时由于 = 时由于 Var(X±Y)= Var(X) +Var(Y) ±2E(X-EX)(Y-EY) ± 独立, 若X, Y 独立,则 Var(X±Y)= Var(X) +Var(Y) ±
23
例9. 设 ( X ,Y ) ~ N ( µ1, σ12,µ2,σ22,ρ), 求 ρXY 解: cov( X,Y) = ∫−∞ ∫−∞(x − µ1)( y − µ2) f (x, y)dxdy
x−µ1 令 =s
+∞ +∞
σ1 y−µ2 =t σ2
+∞ +∞ σ1σ2 = ∫−∞ ∫−∞ ste 2π 1− ρ2
E | X | = ∫ | x | f (x)dx≥ ∫ | x | f (x)dx+ ∫ | x |α f (x)dx
−∞ −ε −∞
α
α
α
ε
≥ ∫ ε f (x)dx+ ∫ ε f (x)dx
随机变量方差的定义及性质

02
CATALOGUE
方差的性质
方差的非负性
总结词
方差具有非负性,即对于任何随机变量X,其方差Var(X)总是非负的。
详细描述
方差的独立性
要点一
总结词
如果两个随机变量X和Y是独立的,那么Var(X+Y) = Var(X) + Var(Y)。
要点二
详细描述
这是方差的一个重要性质,表明如果两个随机变量相互独 立,那么它们的和的方差等于它们各自方差的和。这个性 质在概率论和统计学中非常重要,因为它允许我们通过独 立随机变量的方差来计算复合随机变量的方差。
度。
方差主要关注数据点的离散程度 ,而峰态则关注数据点的集中趋
势。
如果数据分布更加尖锐,即数据 点更加集中在平均值附近,则方 差可能会减小,因为数据点之间
的差异较小。
THANKS
感谢观看
方差还可以表示为
Var(X)=E(X^2)-[E(X)]^2。这个公式可以用来计算方差,其中E(X^2)表示随机变量X的平方的期望值 ,E(X)表示随机变量X的期望值。
方差与期望值的关系
方差的大小与期望值有关。如果一个随机变量的期望值越大,其方差也越大;如果一个随机变量的期望值越小,其方差也越 小。
03
CATALOGUE
方差的应用
方差在统计学中的应用
描述数据分散程度
方差是衡量随机变量取值分散程度的量,用于描述数 据的离散程度。
检验假设
在统计学中,方差分析(ANOVA)等方法用于检验 多个总体均值是否相等,从而判断假设是否成立。
方差

EX kC p (1 p)
n
k 1
n
np
k k 2 E ( X 2 ) k 2Cn p (1 p) n k n n 1 p np k 1
DX n(n 1) p np n p np(1 p) npq
2 2 2
EX np
2 ( x EX ) pk , k DX k 1 ( x EX ) 2 p ( x)dx,
5
注:方差描述了随机变量的取值与其均值的偏离程度。
计算方差的简便公式:
DX E ( X ) ( EX )
2
2
展开
证明
DX E ( X EX )
k 1
k 1
k 1
k
15
5.均匀分布:
X ~ U (a, b) 参数为 a, b . 1 ,a xb 密度函数: p( x) b a 0 , other 2 b ab b x x dx EX xp( x)dx a 2(b a ) a ba 2 2 b x 2 2 E ( X ) x p( x)dx a b a dx x3 b a 2 ab b 2 2 2 DX E ( X ) ( EX ) 3(b a ) a 3
1 如第i次试验成功 Xi 0 如第i次试验失败
n i 1
i 1, 2,3,
, n.
X Xi
是n 次试验中“成功” 的次数
EX i P( X i 1) p
故
E( X i2 ) p
DX i E ( X i 2 ) ( EX i ) 2 p p 2 p(1 p)
连续型随机变量的数学期望与方差

(1)D( )
E[
E( )]2
[x
E( )]2
p( x)dx
(2)方差的简便计算公式
D( )=E( 2) E(2 )
x2 p(x)dx
x p( x)dx
例2 随机变量的概率密度函数
6x(1 x),当0 x 1
p(x)
0
当x 0或x 1时
求随机变量的方差。
12
4、方差的性质 设 k ,b,c均为常数,则有
E( ) xp(x)dx
15
2、数学期望的性质
(1)EaX b aEX b
(2)EaX aEX
(3)EX b EX b
(4)Eb b
(5)EX Y EX EY
(6)E( f ( )) f (x)p(x)dx
(6)E f ( ) f (xk )PK
k
16
(二)连续型随机变量ξ取值的方差
(1)D(c) 0
(2)D(k ) k 2D( ) (3)D( b) D( )
(4)D(k b) k 2D( )
13
下页
三、练习
• 课本第90页 第6题
14
四、小结 (一)连续型随机变量ξ取值的数学期望
1、连续型随机变量的数学期望的定义 p(x) 设连续型随机变量 的密度函数为
若积分 xp(x绝)d对x 收敛,则 的数学期望为:
x0 x1 x2 L xn
xi xi1 xi
b i
【xi
,
xi
)
+1
y p(x)
o
x0b0 x1 xi bi xi1
xn x
6
连续型随机变量ξ的概率分布
ξ 【x0 , x1)【x1, x2)
3.2随机变量的方差

一样的,还必须考虑这两个班级学生的两极分
化情况.为了反映随机变量的这种离散程度,我
们引入方差概念.
一、方差的概念
1.定义1 定义3.2.1 设 是一个随机变量,数学期望 E
2 为随机 存在,则称 E ( E ) E ( E ) 存在,如果
2
变量的方差,并记为. D 或Var
这个结论的充分性是显然的,下面证明必要性:
1 1 D 0 P( E 0) P( E ) P( E ) 0 n n 1 n n 1 1 2 n 1 ( ) n
由此知
P( E ) 0
更一般地,若 1 , 2
, n 两两独立,则
D1 n D1 D n
性质4 对任意的常数 C E ,则有 D E( C) 2 事实上 E ( C )2 E ( E E C ) 2
E ( E ) 2 2( E C ) E ( E ) ( E C ) 2 D ( E C ) 2 .
E 2
a
2 2 x a ab b x 2 p ( x)dx 4(b a ) a 3 2 2 2
(b a ) D E ( E ) . 12
7) 指数分布 设 ~ E( ) ,已知 E , 因为
E x p( x)dx x e dx x 2d (e x )
契贝晓夫不等式也可以表示成
P( a ) 1 D
2
由切比雪夫不等式看出, D 越小,事件 发生的概率越小, 越是集中在 的附近取值.由
此可见,方差刻划了随机变量取值的离散程度.
随机变量的方差、协方差与相关系数

目 录
• 随机变量的方差 • 随机变量的方差 • 随机变量的协方差 • 相关系数 • 方差、协方差与相关系数的关系 • 实例分析
01
CATALOGUE
随机变量的方差
协方差的定义
协方差是衡量两个随机变量同时偏离其各自期望值程度的量,表示两个随机变量 之间的线性相关程度。
03
当两个随机变量的尺度相差很大时,直接计算协方差可能 得出不准确的结果,此时归一化的相关系数更为适用。
方差、协方差与相关系数的应用场景
方差在统计学中广泛应用于衡量数据的离散程度,例如在计算平均值、中位数等统计量时需要考虑数 据的离散程度。
协方差在回归分析、时间序列分析等领域中有着广泛的应用,用于衡量两个变量之间的线性相关程度。
3
当只考虑一个随机变量时,方差即为该随机变量 与自身期望值之差的平方的期望值,因此方差是 协方差的一种特例。
协方差与相关系数的关系
01
相关系数是协方差的一种归一化形式,用于消除两个随机变量 尺度上的差异,计算公式为 $r = frac{Cov(X,Y)}{sigma_X sigma_Y}$。
02
相关系数的取值范围是 [-1,1],其中 1 表示完全正相关,1 表示完全负相关,0 表示不相关。
详细描述
对称性是指如果随机变量X和Y的相关系数是r,那么随机变量Y和X的相关系数也是r。有界性是指相关 系数的绝对值不超过1,即|r|≤1。非负性是指相关系数的值总是非负的,即r≥0。
相关系数的计算
总结词
相关系数的计算方法有多种,包括皮尔 逊相关系数、斯皮尔曼秩相关系数等。
VS
详细描述
皮尔逊相关系数是最常用的一种,其计算 公式为r=∑[(xi-x̄)(yi-ȳ)]/[(n-1)sxy],其 中xi和yi分别是随机变量X和Y的第i个观测 值,x̄和ȳ分别是X和Y的均值,sxy是X和 Y的协方差。斯皮尔曼秩相关系数适用于 有序分类变量,其计算方法是根据变量的 秩次进行计算。