方差2-方差的性质
随机变量方差的概念及性质

= ( n 2 n) p 2 + np.
D( X ) = E ( X 2 ) [ E ( X )]2
= ( n 2 n) p 2 + np ( np )2
= np(1 p ) ).
3. 泊松分布
设 X ~ π(λ ), 且分布律为
P{ X = k } =
λk
k!
e λ , k = 0,1,2,
π π 2 = 3π + 24 2 4 16
4 2
2
= 20 2π 2 .
2 0 例4 设 X ~ 1 1 3 2
1 3 , 求 D( 2 X 3 + 5). 1 1 12 12
解
D( 2 X 3 + 5) = D( 2 X 3 ) + D( 5)
= 4 D( X )
= E[ X E ( X )]2 + E[Y E (Y )]2 ± 2 E {[ X E ( X )][Y E (Y )]}
= D( X ) + D(Y ).
推广 若 X 1 , X 2 ,
D( X1 ± X 2 ±
, X n 相互独立 , 则有 + D( X n ).
± X n ) = D( X1 ) + D( X 2 ) +
= C E {[ X E ( X )] }
2 2
= C 2 D( X ).
(3) 设 X, Y 相互独立, D(X), D(Y) 存在, 则
D( X ± Y ) = D( X ) + D(Y ).
证明
D( X ± Y ) = E {[( X ± Y ) E ( X ± Y )]2 } = E {[ X E ( X )] ± [Y E (Y )]}2
方差的性质

一般地, 一般地,
若 i ~ N(µi ,σi2 ), i =1 2,L , 且 互 立 则 X , n 相 独 ,
C1X1 +C2 X2 +L+Cn Xn +C ~ N∑Ciµi +C, i=1
n
∑C σ . i=1
n 2 2 i i
这 , 1,C2,L Cn是 全 0 常 。 里 C , 不 为的 数
i=1 i =1 i =1 j≠i n n n n
2
性质4: 若随机变量 性质 若随机变量X1, X2, …, Xn相互独立, 相互独立, 则
Var( X1 + L+ X n ) = Var( X1 ) + L+ Var( X n )
n=2时由于 = 时由于 Var(X±Y)= Var(X) +Var(Y) ±2E(X-EX)(Y-EY) ± 独立, 若X, Y 独立,则 Var(X±Y)= Var(X) +Var(Y) ±
23
例9. 设 ( X ,Y ) ~ N ( µ1, σ12,µ2,σ22,ρ), 求 ρXY 解: cov( X,Y) = ∫−∞ ∫−∞(x − µ1)( y − µ2) f (x, y)dxdy
x−µ1 令 =s
+∞ +∞
σ1 y−µ2 =t σ2
+∞ +∞ σ1σ2 = ∫−∞ ∫−∞ ste 2π 1− ρ2
E | X | = ∫ | x | f (x)dx≥ ∫ | x | f (x)dx+ ∫ | x |α f (x)dx
−∞ −ε −∞
α
α
α
ε
≥ ∫ ε f (x)dx+ ∫ ε f (x)dx
随机变量方差的定义及性质

02
CATALOGUE
方差的性质
方差的非负性
总结词
方差具有非负性,即对于任何随机变量X,其方差Var(X)总是非负的。
详细描述
方差的独立性
要点一
总结词
如果两个随机变量X和Y是独立的,那么Var(X+Y) = Var(X) + Var(Y)。
要点二
详细描述
这是方差的一个重要性质,表明如果两个随机变量相互独 立,那么它们的和的方差等于它们各自方差的和。这个性 质在概率论和统计学中非常重要,因为它允许我们通过独 立随机变量的方差来计算复合随机变量的方差。
度。
方差主要关注数据点的离散程度 ,而峰态则关注数据点的集中趋
势。
如果数据分布更加尖锐,即数据 点更加集中在平均值附近,则方 差可能会减小,因为数据点之间
的差异较小。
THANKS
感谢观看
方差还可以表示为
Var(X)=E(X^2)-[E(X)]^2。这个公式可以用来计算方差,其中E(X^2)表示随机变量X的平方的期望值 ,E(X)表示随机变量X的期望值。
方差与期望值的关系
方差的大小与期望值有关。如果一个随机变量的期望值越大,其方差也越大;如果一个随机变量的期望值越小,其方差也越 小。
03
CATALOGUE
方差的应用
方差在统计学中的应用
描述数据分散程度
方差是衡量随机变量取值分散程度的量,用于描述数 据的离散程度。
检验假设
在统计学中,方差分析(ANOVA)等方法用于检验 多个总体均值是否相等,从而判断假设是否成立。
数学期望(均值)、方差和协方差的定义与性质

均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。
即()1k k k E X x p ∞==∑。
设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。
即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。
性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。
2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。
方差

EX kC p (1 p)
n
k 1
n
np
k k 2 E ( X 2 ) k 2Cn p (1 p) n k n n 1 p np k 1
DX n(n 1) p np n p np(1 p) npq
2 2 2
EX np
2 ( x EX ) pk , k DX k 1 ( x EX ) 2 p ( x)dx,
5
注:方差描述了随机变量的取值与其均值的偏离程度。
计算方差的简便公式:
DX E ( X ) ( EX )
2
2
展开
证明
DX E ( X EX )
k 1
k 1
k 1
k
15
5.均匀分布:
X ~ U (a, b) 参数为 a, b . 1 ,a xb 密度函数: p( x) b a 0 , other 2 b ab b x x dx EX xp( x)dx a 2(b a ) a ba 2 2 b x 2 2 E ( X ) x p( x)dx a b a dx x3 b a 2 ab b 2 2 2 DX E ( X ) ( EX ) 3(b a ) a 3
1 如第i次试验成功 Xi 0 如第i次试验失败
n i 1
i 1, 2,3,
, n.
X Xi
是n 次试验中“成功” 的次数
EX i P( X i 1) p
故
E( X i2 ) p
DX i E ( X i 2 ) ( EX i ) 2 p p 2 p(1 p)
方差

一、方差的概念 二、方差的计算 三、方差的性质 四、切比雪夫不等式 五、课堂练习
一、方差的概念 1.概念的引入
引例 设两个班的成绩X,Y 分布律分别为 A班 B班 X p Y p 60 0.2 70 0.7 80 0.1 90 100 0.2 0.05
40 50 60 70 80 0.1 0.2 0.15 0.1 0.2
D(CX ) C 2 D( X ).
证明 D(CX ) E {[CX E (CX )]2 }
C 2 E {[ X E ( X )]2 } C 2 D( X ).
(3)若 X,Y 独立,则 D(X+Y )=D(X )+D(Y );
证明: D ( X Y ) E{( X Y ) 2 } [ E ( X Y )]2
2
1
e x , x 0 f ( x) 0, x 0
x
,
2 2
E ( X ) x f ( x) d x 0 x e 用两次分部积分 2 2.
dx
D( X ) E ( X ) E ( X )
2 2
A班 B班
X p Y p
60 0.2
70 0.7
80 0.1 90 100 0.2 0.05
40 50 60 70 80 0.1 0.2 0.15 0.1 0.2
E(X )=69. E(Y )=69.
D( X ) [ xk E ( X )]2 pk
k 1
(60 69) 0.2 (70 69) 0.7 (80 69) 0.1 29. D(Y ) [ yk E (Y )]2 pk
概率论与数理统计4-2 方差

X
,
为X的 标准化 变量
E ( X ), D( X )。 X 1 * ) E( X ) 0 解 E( X ) E( X 2 * * 2 * 2 E[( ) ] D( X ) E([ X ] ) [ E( X )] 1 1 2 D( X ) 1 E[( X ) ] 2
推论
若 X i (i 1, 2,...n)相互独立,则有: D( X 1 X 2 ... X n ) D( X 1 ) D( X 2 ) ... D( X n ) 进一步有:D( Ci X i ) [C D( X i )]
i 1 i 1 2 i n n
4. D(X)=0
P{X= C}=1 , 这里C=E(X)
下面我们的举例说明方差性质应用 .
例7 设X~B(n,p),求E(X)和D(X). 解
X~B(n,p), 则X表示n重努里试验中的
“成功” 次数 .
1 如第i次试验成功 i=1,2,…,n 若设 X i 0 如第i次试验失败
则X
1 fZ ( z) e 3 2
( z 5)2 18
.
四、切比雪夫不等式
定理 设随机变量X具有数学期望 E ( X ) , 方差 D( X ) 2 , 则对于任意正数 ,有不等式
事件{|X-E(X)|< }的概率越大,即随机变量X 集
P{| X E ( X ) | } 2 2 或 P{| X E ( X ) | } 1 2 由切比雪夫不等式可以看出,若 2 越小,则
b 2
2
b a ab E( X ) , D( X ) 2 12
总结归纳方差的性质

总结归纳⽅差的性质总结归纳⽅差的性质 ⽅差是在概率论和统计⽅差衡量随机变量或⼀组数据时离散程度的度量。
概率论中⽅差⽤来度量随机变量和其数学期望(即均值)之间的偏离程度。
统计中的⽅差(样本⽅差)是每个样本值与全体样本值的平均数之差的平⽅值的平均数。
在许多实际问题中,研究⽅差即偏离程度有着重要意义。
以下是⼩编整理的总结归纳⽅差的性质,⼀起来看看吧。
总结归纳⽅差的性质篇1 ⼀.⽅差的概念与计算公式 例1 两⼈的5次测验成绩如下: X: 50,100,100,60,50 E(X )=72; Y: 73, 70, 75,72,70 E(Y )=72。
平均成绩相同,但X 不稳定,对平均值的偏离⼤。
⽅差描述随机变量对于数学期望的偏离程度。
单个偏离是 消除符号影响 ⽅差即偏离平⽅的均值,记为D(X ): 直接计算公式分离散型和连续型,具体为: 这⾥是⼀个数。
推导另⼀种计算公式 得到:“⽅差等于平⽅的均值减去均值的平⽅”。
其中,分别为离散型和连续型计算公式。
称为标准差或均⽅差,⽅差描述波动 ⼆.⽅差的性质 1.设C为常数,则D(C) = 0(常数⽆波动); 2. D(CX )=C2 D(X ) (常数平⽅提取); 证: 特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(⽅差⽆负值) 特别地 独⽴前提的逐项求和,可推⼴到有限项。
⽅差公式: 平均数:M=(x1+x2+x3+…+xn)/n (n表⽰这组数据个数,x1、x2、x3……xn表⽰这组数据具体数值) ⽅差公式:S=〈(M-x1)+(M-x2)+(M-x3)+…+(M-xn)〉╱n 三.常⽤分布的⽅差 1.两点分布 2.⼆项分布 X ~ B ( n, p ) 引⼊随机变量 Xi (第i次试验中A 出现的次数,服从两点分布), 3.泊松分布(推导略) 4.均匀分布 另⼀计算过程为 5.指数分布(推导略) 6.正态分布(推导略) 7.t分布 :其中X~T(n),E(X)=0;D(X)=n/(n-2); 8.F分布:其中X~F(m,n),E(X)=n/(n-2); ~ 正态分布的后⼀参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的 总结归纳⽅差的性质篇2 第⼀章实数 ⼀、重要概念 1.数的分类及概念数系表: 说明:"分类"的原则:1)相称(不重、不漏) 2)有标准 2.⾮负数:正实数与零的统称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20.2.2 方差2
• 方差的性质
一、研究方差性质
数 据 平均数
xA= A
x 8
2
xB= B 方差
原 始 数 据x 10 5
数据A:x+4 数据B:3x 14 9
8
6
11
x 8 s = 26 x A 12/ 5
2
xC = S C 26 / 5
12 10 15
A
S
31
1
1
2
3
2
4
5
3
的平均数和方差是( D )
1 A、4, D、4,3 , x 3 , x 4 , x 5 , , 3 x 1 B、4,12 , 3 x 3 C、4,-13 x 5 2 , 2, 3 x2 2, 3 x4 2, 2 3
3
1
4
5
2
3
4
5
x, s , x A
2
2 2 2 2 数据C=mx+k ,sx22,,ss22 m mx22sk22, s 2 m 2 s 2 s ks x A , x,Bs B s m s C C m s C m A x B 2Biblioteka 一、研究方差性质小结:
1、在原始数据的基础上加减一个常数,
x+3 x x-2
二、方差性质练习
1、计算数据6,6,6,6,6的方差
x 答案: 6 s 0
2
5
, 3 x1 2, 3 x 2 2, 3 x 结合“方差是用来考察数据波动程度”的 2、已知一组数据 x 1 , x 2 , x 3 , x 4 , x 5 , 的平均数是2,方差是3 2 3 1 1 一个量,分析一下为什么2s,23 0 ?, 3 x 2 , x ,,那么另一组数据 3, x x 2 ,, 3 x ,2 , x 3 x x, 3, xx , 2 , 3 ,x 2 3 2 2 3x 2 x 3 6 ,x , x , x 2
2 2 A A 2
26/5
30 15 24 18 33 x B = 24
2
S 2 234/5 B B
2 S C 234/5 C
2
数据C:3x+4 34 19 28 22 37 x C = 28 C
S2 A 2 2 x, s x x x , 原 始 数 据 x , s , x A2A x x , k 2, ,xxB,A Amx k s 2 S B 2 2 2 2 , 2 , 2 x s 2 s B 2 数据A=x+k s 2 , x 2A sx x s s ,xxB2A Am22 ,s2k, ,xx m m s s , x 2 B m 2 m s s B C x, k m , 方差性质 s A , B s A 2 C SC 2 2 2 2 2 2 2 2 2 数据B=mx, s ,,sx B s msmx2,xxCB,, Bm m 2, xkC2 ,s C s 2 s 2 m m s 2 m x2 s xA x A x 归纳 x , s , x A xs k x ,A k, s s C B
会改变平均数的大小,但不会改变方差的大小;
平均数会跟着加减一个常 数 2、在原始数据的基础上乘以一个常数,
平均数和方差的大小都会改变.
方差会跟着乘以这个常数的平方
平均数会跟着乘以这个常
一、研究方差性质
为什么“在原始数据的基础上加减一个常数,
会改变平均数的大小,但不会改变方差的大小”呢?
新数据A 原始数据 新数据B