二次函数的最大值与最小值[优质ppt]

合集下载

二次函数的最大值和最小值

二次函数的最大值和最小值

2
4
对称轴为x a
2
xa 2
y
(1) 当 a 1即a 2时
2
1
y x2 ax 3在[1,1]上单调递增 -1 0
x
当x 1时 ymin 4 a 当x 1时 ymax 4 a
(2)当 1 a 2
1

2a2
当 x a 时 2
a2 ymin 3 4
0
a 2
1

2
y - 01 x 1
例4: 求函数 y x2 2 x 3 在 [t , t 1] 上的最大值
和最小值
解: y x2 2x 3 ( x 1)2 2
对称轴 x 1
(1) 当 t 1 1 即 t 0 时
y
01
t t+1 x
y x2 2x 3 在 [t , t 1] 上单调递减
1 3a
-1
1
0
x


x=a x=a x=a

2. 1 a 1 ymin f ( a ) a a 2

3. a 1 ymin f ( 1 ) 1 a

y
y
y

-1
1
-1
1
-1
1

0
x
0
x
0
x
x=a
x=a
x=a
例4:已知函数 y x2 2x 2 x [t,t 1]
当x t 时 ymax t 2 2t 3
当x=t+1时 ymin=t2+2
(2)当t 1 即0 t 1时 t 1 1
1[t , t 1]
当x 1时 ymin 2
当t 1 1即t 1 时

二次函数在给定区间的最值ppt课件

二次函数在给定区间的最值ppt课件

(3)当
a 2
≥2,
即 a≥4 时,
函数 f(x) 在[0, 2]上是减函数.
∴ f(x)min=f(2)=a2-10a+18. 由 a2-10a+18=3 得: a=5 10.
∵a≥4, ∴a=5+ 10.
综上所述, a=1- 2 或 a=精5选+pp1t课0件.
29
回顾小结:
1、数学结合在求闭区间上二次
y的最小值为f(0)=1-a
01
x
X=a
精选ppt课件
22
変题1 求函数y =-x2+2ax+1-a在区间
[0,1]上的最值.
解:∵函数的对称轴为直线x=a
⑴当a ≤ 0 时
y
y的最大值为f(0) =1-a
X=a 0O1 x y
0XO1=a x y
y的最小值为f(1) =4+a
(2)当 0< a<1 时
函数 f(x) 在[0, 2]上是增函数.
∴ f(x)min=f(0)=a2-2a+2. 由 a2-2a+2=3 得: a=1 2 .
∵a≤0, ∴a=1- 2.
(2)当
0<
a 2
<2,
由 -2a+2=3
即 得:
0<a<4 时,
a=-
1 2
(0,
f(x)min=f( 4), 舍去.
a 2
)=-2a+2.
y
y
y
O 01 x
X=a
O 01
X=a
精选ppt课件
x 01
x
X=a
18
思考2:求函数y =-x2+2ax+1-a在区间 [0,1]上的最小值.

二次函数的最值公式最大值和最小值二次函数图像平移规律

二次函数的最值公式最大值和最小值二次函数图像平移规律

二次函数的最大值和最小值
•二次函数的最值:
1.如果自变量的取值范围是全体实数,则当a>0时,抛物线开口向上,有最低点,
那么函数在处取得最小值y最小值=;
当a<0时,抛物线开口向下,有最高点,即当时,函数取得最大值,y最大
值=。

也即是:如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,,那么,首先要看是否在
自变量取值范围内,若在此范围内,则当x=时,;
若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当x=x2时,,当x=x1时
;如果在此范围内,y随x的增大而减小,则当x=x1时,
,当x=x2时。

二次函数的最大值与最小值

二次函数的最大值与最小值
当 x=1时,ymin 2
y x=1
1
0
x
-2
例2、求下列函数的最大值与最小值
(1) y x2 3x 2 (3 x 1)
解: y ( x 3)2 2 9
2
4
x3 2
y
( x 3)2 4 1
2
4
-3
1
3 3 ,1
0x
2
设每个涨价x元, 那么 (1)销售价可以表示为 (50+x)元(x≥ 0,且
为整数)
(2)一个商品所获利润可以表示为 (50+x-40)元
(3)销售量可以表示为 (500-10x) 个
(4)共获利润可以表示为 (50+x-40)(500-1 y=(50+x-40)(500-10x) =-10 x2 +400x+5000 =-10[ (x-20)2 -900] =- 10(x-20)2 +9000 (0 ≤ x≤50 ,且为整数 )
答:定价为70元/个,利润最高为9000元.
例1、求下列二次函数的最大值或最小值
(1) y x 2 2x 3
解: y ( x 1)2 4
xR
y x=1 4
01
x
当 x=1时,ymax 4
(2) y 2x 2 4x
解:y 2( x1)2 2
xR
二次函数: y ax2 bx c ( a0 )

a( x

b 2a
)
2

4ac 4a
b2
a>0
a<0
y x b
2a
y
b 2a

九下数学课件利用二次函数解决实际问题中的最值问题(课件)

九下数学课件利用二次函数解决实际问题中的最值问题(课件)

【归纳总结】
最大值问题的一般步骤:
(1)利用应用题中已知条件和学过有关数学公式列出关系数;
(2)把关系式转化为二次函数的关系式;
(3)求二次函数的最大值或最小值.
知识点一 根据文字语言解决问题
【变式1】某工厂2019年产品的产量为100吨,该产品产量的年平均增长
率为x(x>0),设2021年该产品的产量为y吨,则y关于x的函数表达式为
解:设药店每天获得的利润为W元,由题意得
W=(x-50)(-2x+220)=-2(x-80)2+1 800.
∵-2<0,
∴当x=80时,W有最大值,最大值是1 800.
答:每桶消毒液的销售价定为80元时,药店每天获得的利润最大,最
大利润是1 800元.
知识点二 根据函数的图像解决问题
【变式2】一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场
k=-500,

解得
5k+b=9 500,
b=12 000.
∴y=-500x+12 000.
知识点二 根据函数的图像解决问题
(2)在销售过程中要求售价不低于进价,且不高于15元/件.若某一周该商品的销
售量不少于6 000件,求这一周该商场销售这种商品获得的最大利润和售价
分别为多少?
解:根据“在销售过程中要求售价不低于进价,且不高于 15 元/
随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售
策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销
售量y(件)与售价x(元/件)满足如图所示的函数关系(其中40≤x≤70,且x为整
数).
(1)写出y与x的函数表达式;
知识点二 根据函数的图像解决问题

二次函数的图像和性质PPT课件(共21张PPT)

二次函数的图像和性质PPT课件(共21张PPT)

相同点
相同点:开口都向下,顶点是
原点而且是抛物线的最高点,
对称轴是 y 轴.
不同点
不同点:|a|越大,抛物线的
开口越小.
x
O
y
-4 -2
2
4
-2
-4
-6
y 1 x2 2
-8
y x2
y 2x2
尝试应用
1、函数y=2x2的图象的开向口上 ,对称轴y轴 ,顶点是(0,0;)
2、函数y=-3x2的图象的开口向下 ,对称轴y轴 ,顶点是(0,0;) 3、已知抛物线y=ax2经过点A(-2,-8).
不在此抛物线上。
小结
1. 二次函数的图像都是什么图形?
2. 抛物线y=ax2的图像性质: (1) 抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物 线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物 线的最高点;
(3)抛物线的增减性
(4)|a|越大,抛物线的开口越小;
得到y=-x2的图像.
y 1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
-2
-3 -4
-5
-6
y=-x2
-7
-8 -9
-10
二次函数的图像
从图像可以看出,二次函数y=x2和y=-x2的图像都是一条
曲线,它的形状类似于投篮球或投掷ห้องสมุดไป่ตู้球时球在空中所经过
的路线.
这样的曲线叫做抛物线.
y=x2的图像叫做抛物线y=x2.
解:分别填表,再画出它们的图象,如图 当a<0时,抛物线的开口向下,顶点是抛物线的最高点;
在同一直角坐标系中画出函数y=-x2、y=-2x2、y=- x2的图象,有什么共同点和不同点? -8=a(-2)2,解出a= -2,所求函数解析式为y= -2x2.

二次函数的最大值和最小值

二次函数的最大值和最小值
二次函数的最大值和最小值
二次函数: yax2 bxc ( a0 )
a(x
b 2a
)2
4ac 4a
b2
a>0
a<0
y x b
2a
y
b 2a
0
x
4ac b 2
4a
0
x
二次函数的最大值和最小值
函数的最大值和最小值的概念
设函数f(x)在x0处的函数值是f(x0),如果不等式f(x) f(x0 )
对于定义域内任意x都成立,那么f(x0 )叫做函数y=f(x0 )的最小值。 记作ymin=f(x0 )
当x1时 ymax132 2
二次函数的最大值和最小值
(2 ) y1x22x1x [ 3,1 ]
5
x5
解:y1(x5)2 6
y
5
5 [ 3 ,1 ]
1
-3 0
x
函数 y = f(x) 在[-3,1]上为减函数
26 当x3时 ymax 5
当x1时
6
ymin
5
二次函数的最大值和最小值
(3) y1x22x1x [ 1,2]
ymin=t2-2t+3
当x=t+1 时 ymaxt2 2
y
1
x
0 t t+1
二次函数的最大值和最小值
小结
1、定义域为R的二次函数的最大值和最小值 2、定义域为某一闭区间上的最大值和最小值 3、关于带有字母参数的二次函数最值的讨论
二次函数的最大值和最小值
此课件下载可自行编辑修改,供参考! 感谢你的支持,我们会努力做得更好!
解: y2(x1)22
xR
当 x=1时,ym i n2

二次函数的极值问题. ppt课件

二次函数的极值问题.  ppt课件

26
做一做
何时窗户通过的光线最多
某建筑物的窗户如图所示,它的上半部是半圆,下 半部是矩形,制造窗框的材料总长(图中所有的黑线 的长度和)为15m.当x等于多少时,窗户通过的光线最 多(结果精确到0.01m)?此时,窗户的面积是多少?
解: 1.由4y 7x x 15. 得, y 15 7x x .
由(1)知6 x<15
当垂直于墙的边长为7.5米是,花圃
的面积最大为112.5平方米。
(3)由图象知:当6≤X ≤11时,面积 不小于88平方米.
PPT课件
25
如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道 篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。
(1)求S与x的函数关系式及自变量的取值范围; (2)当x取何值时所围成的花圃面积最大,最大值是多少? (3)若墙的最大可用长度为8米,则求围成花圃的最大面积。
y(件) 70 50 35
若销售量y是销售价格x的一次函数. (2)若要获得最大的销售利润,每件产品的销售价 格定为多少元?此时每日的销售利润是多少?
设销售利润为W,则 当x 320 160时,
W=(x-120)·y
2
=(x-120)·(-x+200) W=1600
=-x2+320x-2400 PPT课件 则:……
=-2x2+440x+158400
…… =-2(x-110)2+182600
所以,当x…=1…10时,yP有PT课件最大值182600
15
3.某旅社有客房120间,每间房间的日租金为50元, 每天都客满,旅社装修后要提高租金,经市场调查, 如果一间客房的日租金每增加5元,则客房每天出 租会减少6间,不考虑其它因素,旅社将每间客房的 日租金提高到多少元时,客房日租金总收入最高? 比装修前的日租金的总收入增加多少元?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2 ) y1x22x1x [ 3,1 ]
5
x5
解:y1(x5)2 6
y
5
5[3,1]
1
-3 0
x
函数 y = f(x) 在[-3,1]上为减函数
当x3时
ymax

26 5
当x1时
ymin

6 5
(3) y1x22x1x [ 1,2]
2
y x2
∴ y=x(6-x)=-x2+6x (0< x<6) =-(x-3) 2+9
∵ a=-1<0, ∴ y有最大值 当x=3cm时,y最大值=9 cm2,此时矩形的另一边也为3cm 答:矩形的两边都是3cm,即为正方形时,矩形的面积最大。
next
当a>0时,二次函数有最小值 当a<0时,二次函数有最大值
解:(1) ∵ AB为x米、篱笆长为24米 ∴ 花圃宽为(24-4x)米
A
D
∴ S=x(24-4x)
=-4x2+24 x (0<x<6) B
C
(2)当x=
b 2a

3
时,S最大值=
4
ac 4a
b
2
=36(平方米)
(3) ∵墙的可用长度为8米
∴ 0<24-4x ≤8 4≤x<6
∴当x=4m时,S最大值=32 平方米
例1、如图,一边靠学校院墙,其他三边用12 m长 的篱笆围成一个矩形花圃,设矩形ABCD的边 AB=x m,面积为S㎡。 (1)写出S与x之间的函数关系式; (2)当x取何值时,面积S最大,最大值是多少?
(1) S=x(12-2x)即S=-2x²+12x
(2) S=-2x²+12x
A
D
=-2(x-3)²+18
利用公式:y最大或最小=
• 4.已知二次函数y=2(x-h)2+k,经过 • 点(3,5)(7,5),则对称轴为—X=—5 , • 最小值为—-3—;
利用对称轴和对称点坐标
1.利用公式:y最大或最小=
在顶点处
2.利用配方配成顶点式:y最大或最小=k 直接取得
3.利用对称轴和对称点坐标
例2:某商场将进价40元一个的某种商品按50元一个 售出时,能卖出500个,已知这种商品每个涨价一元, 销量减少10个,为赚得最大利润,售价定为多少?最 大利润是多少? 分析:利润=(每件商品所获利润)× (销售件数)
设每个涨价x元, 那么 (1)销售价可以表示为 (50+x)元(x≥ 0,且
为整数)
(2)一个商品所获利润可以表示为 (50+x-40)元
(3)销售量可以表示为 (500-10x) 个
(4)共获利润可以表示为 (50+x-40)(500-10x)元
解: 设每个商品涨价x元, 那么 y=(50+x-40)(500-10x) =-10 x2 +400x+5000 =-10[ (x-20)2 -900] =- 10(x-20)2 +9000 (0 ≤ x≤50 ,且为整数 )
B
C
利用配方法配成顶点式:y最大或最小=k
如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道
篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。
(1)求S与x的函数关系式及自变量的取值范围;
(2)当x取何值时所围成的花圃面积最大,最大值是多少?
(3)若墙的最大可用长度为8米,则求围成花圃的最大面积。
答:定价为70元/个,利润最高为9000元.
例1、求下列二次函数 y(x 1 ) 2 4
y x=1 4
xR
01
x
当 x=1时,ymax 4
(2)y2x2 4x
解: y2(x1)22
xR
当 x=1时,ym i n2
二次函数: yax2 bxc ( a0 )
a(x
b 2a
)
2

4ac 4a
b2
a>0
a<0
y x b
2a
y
b 2a
0
x
4ac b 2
4a
0
x
• 1.抛物线y=2x2-5x+6有最—小—值;


y=-3x2-5x+8有最—大—值;
当a>0时,二次函数有最小值
当a<0时,二次函数有最大值
1、如图,在△ABC中∠B=90º,AB=12cm,BC=24cm,
动点P从A开始沿AB边以2cm/s的速度向B运动,动
点Q从B开始沿BC边以4cm/s的速度向C运动,如果P、
Q分别从A、B同时出发。
(1)写出△PBQ的面积S与运动时间t之间的函数
关系式,并写出自变量t的取值范围;
(2)当t为何值时,△PBQ的面积S最大,最大值
解: y1(x2)2 3 2
-1
02 x
2[1,2]
函数 y = f(x)在[-1,2]上为增函数
当x1时
ymin

5 2
当x2时 ymax 5
1、 配方,求二次函数的顶点坐标。 2、判断取得最值时的自变量是否在闭区间内。 3、计算闭区间端点的函数值,并比较大小。
课时训练
y x=1
1
0
x
-2
例2、求下列函数的最大值与最小值
(1 )y x 2 3 x 2( 3 x 1 )
解: y(x3)229
2
4
x3 2
y
(x3)2 41 24
33,1
2
当x 3时 2
1
ymin
4 4
-3
1
0x
当x1时 ymax132 2
在顶点处直接取得 不能在顶点处取得
1.利用公式:y最大或最小= 2.利用配方法配成顶点式:y最大或最小=k 3.利用对称轴和对称点坐标
畅想网络
Imagination Network
感谢观看!
文章内容来源于网络,如有侵权请联系我们删除。
是多少?
A
BP=12-2t,BQ=4t
P
△PBQ的面积:
S=1/2(12-2t) •4t
即S=- 4t²+24t=- 4(t-3)²+36 B
Q
C
练习1、已知:用长为12cm的铁丝围成一个矩形,一边长为xcm.,面 积为ycm2,问何时矩形的面积最大? 解: ∵周长为12cm, 一边长为xcm , ∴ 另一边为(6-x)cm
相关文档
最新文档