平面向量(A卷 基础过关检测)1——新高考数学复习专题测试附答案解析

合集下载

高考数学压轴专题秦皇岛备战高考《平面向量》基础测试题及答案

高考数学压轴专题秦皇岛备战高考《平面向量》基础测试题及答案

【高中数学】数学《平面向量》复习知识要点一、选择题1.在ABC V 中,D 为边AC 上的点,若2133BD BA BC =+u u u r u u u r u u u r ,AD DC λ=u u u v u u u v,则λ=( )A .13B .12C .3D .2【答案】B 【解析】 【分析】根据2133BD BA BC =+u u u v u u u v u u u v ,将,AD DC u u u r u u u r 都用基底()BABC u u u r u u u r ,表示,再根据AD DC λ=u u u v u u u v 求解. 【详解】因为2133BD BA BC =+u u u v u u u v u u u v ,所以1122,+3333AD BD BA BA BC DC BC BD BA BC =-=-+=-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u uu r u u u r ,因为AD DC λ=u u u v u u u v ,所以λ= 12, 故选:B 【点睛】本题主要考查平面向量的基本定理和共线向量定理,还考查运算求解的能力,属于中档题.2.下列说法中说法正确的有( )①零向量与任一向量平行;②若//a b rr,则()a b R λλ=∈rr;③()()a b c a b c ⋅⋅=⋅⋅rr r r rr④||||||a b a b +≥+rrrr;⑤若0AB BC CA ++=u u u r u u u r u u u r r,则A ,B ,C 为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底; A .①④ B .①②④C .①②⑤D .③⑥【答案】A 【解析】 【分析】直接利用向量的基础知识的应用求出结果. 【详解】对于①:零向量与任一向量平行,故①正确;对于②:若//a b r r ,则()a b R λλ=∈r r ,必须有0b ≠r r,故②错误;对于③:()()a b c a b c ⋅⋅=⋅⋅r r r r r r ,a r 与c r不共线,故③错误;对于④:a b a b +≥+r r r r,根据三角不等式的应用,故④正确;对于⑤:若0AB BC CA ++=u u u r u u r r ,则,,A B C 为一个三角形的三个顶点,也可为0r,故⑤错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误. 综上:①④正确. 故选:A. 【点睛】本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题.3.在ABC ∆中,已知8AB =,4BC =,6CA =,则AB BC ⋅u u u v u u u v的值为( )A .22B .19C .-19D .-22【答案】D 【解析】由余弦定理可得22211cos 216AB BC AC B AB BC +-==⋅,又()11cos 482216AB BC AB BC B π⎛⎫⋅=⋅⋅-=⨯⨯-=- ⎪⎝⎭u u u v u u u v u u u v u u u v ,故选D.【思路点睛】本题主要考查平面向量数量积公式以、余弦定理解三角形,属于简单题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60ooo等特殊角的三角函数值,以便在解题中直接应用.4.已知O 是平面上一定点,满足()||cos ||cos AB ACOP OA AB B AC Cλ=++u u u r u u u ru u u r u u u r u u ur u u u r ,[0λ∈,)+∞,则P 的轨迹一定通过ABC ∆的( ) A .外心 B .垂心C .重心D .内心【答案】B 【解析】 【分析】可先根据数量积为零得出BC uuu r 与()||cos ||cos ABAC AB B AC Cλ+u u u ru u u ru u ur u u u r 垂直,可得点P 在BC 的高线上,从而得到结论.【详解】Q ()||cos ||cos AB ACOP OA AB B AC Cλ=++u u u r u u u ru u u r u u u r u u ur u u u r , ∴()||cos ||cos AB ACOP OA AB B AC C λ-=+u u u r u u u ru u u r u u u r u u ur u u u r , 即()||cos ||cos AB ACAP AB B AC Cλ=+u u u r u u u ru u u r u u ur u u u r , Qcos BA BCB BA BC ⋅=u u u r u u u r u u u r u u u r ,cos CA CB C CA CB⋅=u u u r u u u r u u u r u u u r , ∴()0||cos ||cos AB ACBC BC BC AB B AC C⋅+=-+=u u u r u u u ru u u r u u u r u u u r u u ur u u u r , ∴BC uuu r 与()||cos ||cos AB ACAB B AC Cλ+u u u r u u u ru u ur u u u r 垂直, 即AP BC ⊥uu u r uu u r ,∴点P 在BC 的高线上,即P 的轨迹过ABC ∆的垂心.故选:B . 【点睛】本题重点考查平面向量在几何图形中的应用,熟练掌握平面向量的加减运算法则及其几何意义是解题的关键,考查逻辑思维能力和转化能力,属于常考题.5.在平行四边形OABC 中,2OA =,OC =6AOC π∠=,动点P 在以点B 为圆心且与AC 相切的圆上,若OP OA OC λμ=+u u u r u u u r u u u r,则43λμ+的最大值为( )A .2+B .3+C .5+D .7+【答案】D 【解析】 【分析】先通过计算证明圆B 与AC 相切于点A ,再求出43OB OA BP OA λμ+=⋅+⋅u u u r u u u r u u u r u u u r,再求出7OB OA ⋅=u u u r u u u r ,BP OA ⋅u u u r u u u r的最大值为.【详解】如图所示,由2OA =,6AOC π∠=,由余弦定理得24+3221,1AC AC =-⨯=∴=, ∴90OCA BAC ∠=∠=o , ∴圆B 与AC 相切于点A ,又OP OA OC λμ=+u u u r u u u r u u u r,∴243OP OA OA OC OA λμλμ⋅=+⋅=+u u u r u u u r u u u r u u u r u u u r;∴()43OP OA OB BP OA OB OA BP OA λμ+=⋅=+⋅=⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r;如图,过点B 作,BD OA ⊥连接,OB 由题得6BAD π∠=,所以22333333,,(2)()1322222AD DB OB =⨯==∴=++=, 所以72cos 13213BOA ∠==, 所以1327213OB OA ⋅=⨯⨯=u u u r u u u r , 因为BP OA ⋅u u u r u u u r的最大值为32cos023⨯⨯=o ,∴43λμ+的最大值是723+. 故选:D.【点睛】本题主要考查三角函数和余弦定理解三角形,考查平面向量的数量积运算和范围的求解,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若(,)CA CE DB R λμλμ=+∈u u u r u u u r u u u r,则λ+μ的值为( )A .65B .85C .2D .83【答案】B【解析】 【分析】建立平面直角坐标系,用坐标表示,,CA CE DB u u u r u u u r u u u r ,利用(,)CA CE DB R λμλμ=+∈u u u r u u u r u u u r,列出方程组求解即可. 【详解】建立如图所示的平面直角坐标系,则D (0,0).不妨设AB =1,则CD =AD =2,所以C (2,0),A (0,2),B (1,2),E (0,1),(2,2),(2,1),(1,2)CA CE DB ∴=-=-=u u u r u u u r u u u rCA CE DB λμ=+u u u r u u u r u u u r Q∴(-2,2)=λ(-2,1)+μ(1,2),2222λμλμ-+=-⎧∴⎨+=⎩解得6525λμ⎧=⎪⎪⎨⎪=⎪⎩则85λμ+=.故选:B 【点睛】本题主要考查了由平面向量线性运算的结果求参数,属于中档题.7.在ABC ∆中,若点D 满足3CD DB =u u u r u u u r ,点M 为线段AC 中点,则MD =u u u u r( )A .3144AB AC -u u ur u u u r B .1136AB AC -u u u r u u u rC .2133AB AC -u u u r u u u rD .3144AB AC +u u ur u u u r【答案】A 【解析】 【分析】根据MD MA AB BD =++u u u r u u u u u u r u r u u u r,化简得到答案. 【详解】()11312444MD MA AB BD AC AB AC AB AB AC =++=-++-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u uu u u u r r u u u r .故选:A . 【点睛】本题考查了向量的运算,意在考查学生的计算能力.8.在ABC ∆中,0OA OB OC ++=u u u r u u u r u u u r r ,2AE EB =u u u r u u u r,AB AC λ=u u u r u u u r ,若9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r,则实数λ=( )A B C D 【答案】D 【解析】 【分析】将AO u u u r 、EC uuu r 用AB u u u r 、AC u u u r 表示,再代入9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r中计算即可. 【详解】由0OA OB OC ++=u u u r u u u r u u u r r,知O 为ABC ∆的重心,所以211()323AO AB AC =⨯+=u u u r u u u r u u u r ()AB AC +u u u r u u u r ,又2AE EB =u u u r u u u r ,所以23EC AC AE AC AB =-=-u u u r u u u r u u u r u u u r u u u r ,93()AO EC AB AC ⋅=+⋅u u u r u u u r u u u r u u u r 2()3AC AB -u u ur u u u r2223AB AC AB AC AB AC =⋅-+=⋅u u u r u u u r u u u r u u u r u u u r u u u r ,所以2223AB AC =u u u r u u u r ,||2||AB AC λ===u u u ru u ur . 故选:D 【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.9.已知a =r 2b =r ,且()(2)b a a b -⊥+r rr r ,则向量a r 在向量b r 方向上的投影为( ) A .-4 B .-2C .2D .4【答案】D 【解析】 【分析】根据向量垂直,数量积为0,求出a b r r g ,即求向量a r 在向量b r方向上的投影a b b ⋅r r r .【详解】()(2),()(2)0b a a b b a a b -⊥+∴-+=r r r r r r r r Q g , 即2220b a a b -+=r r r r g .2,8a b a b ==∴=r r r r Q g ,所以a r 在b r方向上的投影为4a b b⋅=r r r .故选:D .【点睛】本题考查向量的投影,属于基础题.10.在ABC V 中,E 是AC 的中点,3BC BF =u u u r u u u r ,若AB a =u u u r r ,AC b =u u u r r ,则EF =u u u r( )A .2136a b -r rB .1133a b +r rC .1124a b +r rD .1133a b -r r【答案】A 【解析】 【分析】根据向量的运算法则计算得到答案.【详解】1223EF EC CF AC CB =+=+u u u r u u u r u u u r u u u r u u u r ()12212336AC AB AC AB AC =+-=-u u u r u u u r u u u r u u ur u u u r 2136a b =-r r .故选:A . 【点睛】本题考查了向量的基本定理,意在考查学生的计算能力和转化能力.11.已知ABC V 为直角三角形,,6,82C BC AC π===,点P 为ABC V 所在平面内一点,则()PC PA PB ⋅+u u u r u u u r u u u r的最小值为( )A .252-B .8-C .172-D .1758-【答案】A 【解析】 【分析】根据,2C π=以C 点建系, 设(,)P x y ,则22325()=2(2)222PC PA PB x y ⎛⎫⋅+-+-- ⎪⎝⎭u u u r u u u r u u u r ,即当3=2=2x y ,时,取得最小值.【详解】如图建系,(0,0), (8,0), (0,6)C A B ,设(,)P x y ,(8,)PA x y =--u u u r ,(,6)PB x y =--u u u r, 则22()(,)(82,62)2826PC PA PB x y x y x x y y ⋅+=--⋅--=-+-u u u r u u u r u u u r22325252(2)2222x y ⎛⎫=-+--≥- ⎪⎝⎭.故选:A. 【点睛】本题考查平面向量数量积的坐标表示及其应用,根据所求关系式运用几何意义是解题的关键,属于中档题.12.在平行四边形ABCD 中,4AB =,2AD =,3BAD π∠=,M 为DC 的中点,N为平面ABCD 内一点,若AB NB AM AN -=-u u u v u u u v u u u u v u u u v ,则AM AN ⋅=u u u u v u u u v( )A .16B .12C .8D .6【答案】D 【解析】 【分析】根据条件及向量加减法的几何意义即可得出|AN u u u r |=|MN u u u u r|,再根据向量的数量积公式计算即可 【详解】由|AB NB -u u u r u u u r |=|AM AN -u u u u r u u u r |,可得|AN u u u r|=|NM u u u u r |, 取AM 的中点为O ,连接ON ,则ON ⊥AM , 又12AM AD AB =+u u u u r u u u r u u u r ,所以AM u u u u r •21122AN AM ==u u u r u u u u r (12AD AB +u u u r u u u r )212=(2214AD AB AD ++u u u r u u u r u u u r •AB u u u r )12=(414+⨯16+2×412⨯)=6,故选:D .本题主要考查了平面向量的几何表示,数量积的几何意义,运算求解能力,属于中档题13.在ABC V 中,若2AB BC BC CA CA AB ⋅=⋅=⋅u u u v u u u v u u u v u u u v u u u v u u u v,则AB BC=u u u v u u u v ( )A .1B .22C .32D .62【答案】C 【解析】 【分析】根据题意,由AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v可以推得AB AC =,再利用向量运算的加法法则,即可求得结果. 【详解】由题意得,AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v ,即A A =0+BC B C ⋅uu u v uu u v uuu v(),设BC 的中点为D ,则AD BC ⊥,即ABC V 为等腰三角形,B=C AB AC =∠∠,又因为2BC CA CA AB ⋅=⋅uu u v uu v uu v uu u v 即2222222C C cos 2C 2C cos 112C +22232C 2AB BC CA A B AB BC B A CA B CBC A BC A BC⋅=⋅-=-+-=-+⨯=uu u v uu u v uu v uu u v uuv uu u v uu u v uu u v uu v uuvuu u v uu u v uu u v uu u v uu u v ()所以3AB BC=uu u v uu u v . 【点睛】本题主要考查平面向量的线性运算.14.如图,在圆O 中,若弦AB =3,弦AC =5,则AO uuu v ·BC uuu v的值是A .-8B .-1C .1D .8【解析】 【分析】 【详解】因为AO AC CO AB BO =+=+u u u v u u u v u u u v u u u v u u u v,所以1()2AO AC BO AB CO =+++u u u v u u u v u u u v u u u v u u u v ,而BC AC AB BO CO =-=-u u u v u u u v u u u v u u u v u u u v,所以1()2BC AC AB BO CO =-+-u u u v u u u v u u u v u u u v u u u v ,则1()()4AO BC AC AB CO BO AC AB BO CO ⋅=+++-+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v1()()()()()()4AC AB AC AB AC AB BO CO CO BO AC AB =+-++-++-u u uv u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ()()CO BO BO CO ++-u u u v u u u v u u u v u u u v221(||4AC AB AC BO AC CO AB BO AB CO =-+⋅-⋅+⋅-⋅u u uv u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 22||)CO AC CO AB BO AC BO AB BO CO +⋅-⋅+⋅-⋅+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)()42AC AB AC BO AB CO =-+⋅-⋅u u uv u u u v u u u v u u u v u u u v u u u v 2211(||)[()]42AC AB AB BC BO AB CO =-++⋅-⋅u u u v u u u v u u uv u u u v u u u v u u u v u u u v 2211(||)()42AC AB AB BC BC BO =-+⋅+⋅u u uv u u u v u u u v u u u v u u u v u u u v 2211(||)42AC AB AO BC =-+⋅u u uv u u u v u u u v u u u v 所以221(||)82AO BC AC AB ⋅=-=u u u v u u u v u u u v u u u v ,故选D15.已知AB 是圆22:(1)1C x y -+=的直径,点P 为直线10x y -+=上任意一点,则PA PB ⋅u u u v u u u v的最小值是( )A .21-B .2C .0D .1【答案】D 【解析】试题分析:由题意得,设,,,又因为,所以,所以PA PB ⋅u u u r u u u r的最小值为1,故答案选D.考点:1.圆的性质;2.平面向量的数量积的运算.16.已知向量m →,n →的夹角为60︒,且1m →=,m n →→-=n →=( )A .1B .2C .3D .4【答案】B 【解析】 【分析】设||n x →=,利用数量积的运算法则、性质计算即可. 【详解】 设||n x →=,因为1m →=,向量m →,n →的夹角为60︒, 所以2213m n x x →→-=-+=, 即220x x --=,解得2x =,或1x =-(舍去), 所以2n →=. 故选:B 【点睛】本题主要考查了向量的模的性质,向量数量积的运算,属于中档题.17.已知平面向量,,a b c r r r满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( )A B C .2-D 【答案】A 【解析】 【分析】根据题意,易知a r 与b r的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r,可得221202x y x +-+=,所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果. 【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r 的夹角为60︒,设()=13a ,r ,()20b =,r ,(),c x y =r,因为()()21a c b c -⋅-=r r r r ,所以2212302x y x y +--+=,又()222b c x y -=-+r r ,所以原问题等价于,圆2212302x y x y +--+=上一动点与点()20,之间距离的最小值,又圆2212302x y x y +--+=的圆心坐标为312⎛⎫ ⎪ ⎪⎝⎭,,半径为5,所以点()20,与圆2212302x y x y +--+=上一动点距离的最小值为()22357521222⎛⎫--+-= ⎪ ⎪⎝⎭. 故选:A. 【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.18.如图,向量a b -r r等于A .1224e e --u r u u rB .1242e e --u r u u rC .123e e -r u u rD .123e e -+r u u r【答案】D 【解析】 【分析】 【详解】由向量减法的运算法则可得123a e b e -=-+r r r u u r,19.已知向量(sin ,cos )a αα=r ,(1,2)b =r,则以下说法不正确的是( ) A .若//a b r r,则1tan 2α=B .若a b ⊥r r ,则1tan 2α=C .若()f a b α=⋅r r取得最大值,则1tan 2α= D .||a b -r r 1 【答案】B 【解析】 【分析】A 选项利用向量平行的坐标表示来判断正确性.B 选项利用向量垂直的坐标表示来判断正确性.C 选项求得()fα的表达式,结合三角函数最值的求法,判断C 选项的正确性.D 选项利用向量模的运算来判断正确性. 【详解】A 选项,若//a b r r,则2sin cos αα=,即1tan 2α=,A 正确. B 选项,若a b ⊥r r,则sin 2cos 0αα+=,则tan 2α=-,B 不正确.C 选项,si (n )2cos in()f a b ααααϕ+==⋅=+r r,其中tan 2ϕ=.取得最大值时,22k παϕπ+=+,22k πϕπα=+-,tan 2tan 2k πϕπα=+-⎛⎫ ⎪⎝⎭1tan 22tan παα⎛⎫=== ⎪⎝⎭-,则1tan 2α=,则C 正确.D 选项,由向量减法、模的几何意义可知||a b -r r 1,此时5a =-rr ,,a b r r反向.故选项D 正确.故选:B 【点睛】本小题主要考查向量平行、垂直的坐标表示,考查向量数量积的运算,考查向量减法的模的几何意义,属于中档题.20.在OAB ∆中,已知OB =u u u v 1AB u u u v =,45AOB ∠=︒,点P 满足(),OP OA OB λμλμ=+∈R u u u v u u u v u u u v ,其中λ,μ满足23λμ+=,则OP u u u v的最小值为( )A B C D 【答案】A 【解析】【分析】根据2OB =u u u r,1AB =uu u r ,45AOB ∠=︒,由正弦定理可得OAB ∆为等腰直角三角形,进而求得点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP u u u r.再由23λμ+=,将OP u u u r 化为关于λ的二次表达式,由二次函数性质即可求得OP u u u r的最小值.【详解】在OAB ∆中,已知2OB =u u u r,1AB =uu u r ,45AOB ∠=︒由正弦定理可得sin sin AB OBAOB OAB=∠∠u u u r u u u r 代入2sin 22OAB =∠,解得sin 1OAB ∠=即2OAB π∠=所以OAB ∆为等腰直角三角形以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:则点A 坐标为22,22⎛⎝⎭所以2222OA ⎛= ⎝⎭u u u r ,)2,0OB =u u u r因为(),OP OA OB λμλμ=+∈R u u u r u u u r u u u r则)222,022OP λμ⎛ =+ ⎝⎭u u u r 222,22λμλ⎛⎫⎪ ⎪⎝⎭= 则2222222OP λμλ⎛⎫=++⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r2222λλμμ=++因为23λμ+=,则32μλ=-代入上式可得==所以当95λ=时, min OP ==u u u r 故选:A 【点睛】本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题.。

2023-2024学年高考数学平面向量及其应用专项练习题(含答案)

2023-2024学年高考数学平面向量及其应用专项练习题(含答案)

的大小是(A.3B.4二、多选题9.在△ABC中,角A,B,C因为在中,满足ABC BC所以,即222AB BC AC += ()AC BC BC BA BC ⋅=-⋅4.C【分析】利用平面向量的数量积运算律计算即可.【详解】由题意可知,()22200BC CB BA BC BC BC BA BC BC BA ⋅++=-+⋅+=⇒⋅= 所以,即的形状是直角三角形.BC BA ⊥ABC 故选:C 5.A【分析】由,且,得到,利用余弦定理求解.2b ac =223a bc c ac +=+2223b c a bc +-=【详解】因为,且,2b ac =223a bc c ac +=+所以,2223b c a bc +-=所以,2223cos 22b c a A bc +-==因为,所以,()0,πA ∈π6A =故选:A 6.C【分析】求出,对两边平方可得答案.ar 25a b -=【详解】,,5a =5a b ⋅=因为,所以,25a b -=222220-=-⋅+= a b a a b b 即,解得.251020-+= b 5b =故选:C.7.C【分析】由零向量与任意向量共线判断A ,根据判断B ,设,建立方程,根据3a b =r r a b λ=方程解的情况判断C ,根据判断D.12a b=【详解】对于A :零向量与任意向量均共线,所以此两个向量不可以作为基底;对于B :因为,,所以,所以此两个向量不可以作为基底;1233a e e =+ 12b e e =+ 3a b =r r对于C :设,即,则,所以无解,所以此两个向量不共线,a b λ= ()12122e e e e λ-=+ 12λλ=⎧⎨-=⎩可以作为一组基底;对于D :设,,所以,所以此两个向量不可以作为基底;122a e e =-r u r u r 1224b e e =- 12a b =故选:C.8.A【分析】利用平面向量基本定理计算即可.【详解】设,则MG MN λ= ()AG AM MG AM MN AM AN AMλλ=+=+=+-,()()11AM AN x AB y ACλλλλ=-+=-+又因为G 是的重心,故,ABC 1331AG AB AC=+ 所以有.()()11113313313x x y y λλλλ⎧-=⎪⎪⇒+=-+=⎨⎪=⎪⎩故选:A 9.BC【分析】利用同角三角函数的基本关系和判断的符号,即可判断A 选()sin sin B A C =+cos A 项;由,求的值,即可判断B 选项;由正弦定理,求的()cos cos B A C =-+B sin sin a bA B =b 值,即可判断C 选项;利用求面积,即可判断D 选项.1sin 2ab C 【详解】解:由,得,4sin 5A =3cos 5A =±由,得为锐角且,,tan 7C =C 72sin 10C =2cos 10C =若,则,3cos 5A =-()172sin sin sin cos cos sin 050=+=+=-<B A C A C A C 与矛盾,故,故A 错误;sin 0B >3cos 5A =时,,3cos 5A =()()324722cos cos πcos 5105102B A C A C ⎡⎤=-+=-+=-⨯+⨯=⎣⎦因为,所以,故B 正确;(0,π)B ∈π4B =由正弦定理,即,得,即,故C 正确;sin sin a bA B =sin sin a B b A =24425b ⨯=522b =所以的面积为,D 错误.ABC 115272sin 4722210ab C =⨯⨯⨯=故选:BC .10.AB【分析】由余弦定理、三角形面积公式及基本不等式计算判断A ;由正弦定理,向量数量积的定义,三角恒等变换结合正弦函数的性质求解判断B ;利用三角恒等变换结合正切函数的性质计算判断C ;利用余弦定理计算判断D .【详解】对于A ,由,,得,当且仅当π3C ∠=2c =2242a b ab ab ab ab =+-≥-=时取等号,即的最大值为4,2a b ==ab 则面积,即面积的最大值为, A 正确;ABC 113sin 43222S ab C =≤⨯⨯=ABC 3对于B ,由正弦定理得,则,,43sin sin 3b c B C ==43sin 3b B=2π3B A =-83832πcos sin cos cos sin()333AC AB bc A B A A A ⋅===- 2833143cos (cos sin )4cos sin cos 3223A A A A A A =+=+,23431343π2(1cos 2)sin 2(sin 2cos 2)2sin(2)2332233A A A A A =++=++=++显然,有,,则当,2π03A <<4π023A <<ππ5π2333A <+<ππ232A +=即时,取得最大值为,B 正确;π12A =AC AB ⋅ 4323+对于C ,,由,2π2π2πcos()cos cos sin sin cos 13333tan cos cos cos 22A A A B A AA A -+===-+2π(0,)3A ∈得,因此的取值范围为,C 错误;tan (,3)(0,)A ∈-∞-⋃+∞cos cos B A 1(,2)(,)2-∞-⋃-+∞对于D ,由余弦定理得,D 错误.22222222c s 2os co b b c a a c b b a B A c bc ac a +-+-⋅=⋅=++=故选:AB 11.CD【分析】求出可判断A ;求出的坐标,利用向量共线的坐标运算可判断B ;由向量a b,a b -垂直的坐标运算可判断C ;利用向量夹角公式计算可判断D.【详解】对于A ,,故A 错误;2112a b ==+= ,对于B ,因为,所以,故B 错误;()()()201111a b -=-=-,,,()11112⨯--⨯=对于C ,因为,所以,所以,故()()()201111a b -=-=-,,,()11110a b b -⋅=⨯-⨯= ()a b b -⊥ C 正确;对于D ,,因为,22cos ,222a b a b a b ⋅===⨯0,πa b ≤≤所以与的夹角为,故D 正确.a bπ4故选:CD.12.BD【分析】用与点A 到边BC 的距离及的长比较大小可判断A ,B ,C ;求三角形各边及角b c 可判断D.【详解】选项A ,点A 到边BC 的距离是1,∵,∴三角形有两解;122<<选项B ,点A 到边BC 的距离是2与b 相等,∴三角形是直角三角形,有唯一解;选项C ,点A 到边BC 的距离是,三角形无解;2.5b >选项D ,根据已知可解出,,π75C A B =--=︒62a c ==+∴三角形有唯一解.故选:BD.13.3-【分析】根据,利用数量积的坐标运算求解.()b a kb⊥+ 【详解】解:因为向量,,()4,2a =-()1,1b =-所以,()4,2a kb k k +=--+又因为,()b a kb⊥+ 所以 ,()420b a kb k k ⋅+=+++=解得 ,3k =-故-314.35【分析】由向量平行的充要条件求出参数,进而由模长的坐标公式即可得解.【详解】由题意,且,()()2,,1,2a t b ==-//a b 所以,解得,()2210t ⨯--⨯=4t =-所以.()()223,6,3635a b a b -=--=+-= 故答案为.3515.2【分析】由向量模、数量积公式先求出,再由公式即221,4,1a b a b ==⋅= ()222a b a b-=- 可得解.【详解】由题意,,22222211,24a ab b ====== πcos ,12cos 13a b a b a b ⋅=⋅⋅=⨯⨯= 所以.()2222244144142a b a b a a b b -=-=-⋅+=⨯-⨯+= 故2.16.32【分析】根据题意,利用方位角分别求得三角形中各个角的大小,在和中,应BCE ADC △用正弦定理求得的长,再在中,利用余弦定理,即可求解.,AC BC ABC 【详解】如图所示设为向北方向,由题意得,,CF 45ACF ∠=26CD =由题可得,67.5,60,26,2ADC DAC ACB DC CE ∠=∠=∠===,75,45,60BCE CBE CEB ∠=∠=∠= 在中,由正弦定理得,可得,BCE sin sin CB CECEB CBE =∠∠sin 6sin CE CEB BC CBE ⋅∠==∠再在中,,所以,ADC △67.5ADC DAC ∠=∠=26DC AC ==在中,ABC 由余弦定理得,22212cos 602462266182AB AC BC AC BC =+-⋅=+-⨯⨯⨯= 所以,即两座岛之间的距离为百海里.32AB =,A B 32。

2021高考数学学业水平合格考试总复习学业达标集训平面向量含解析

2021高考数学学业水平合格考试总复习学业达标集训平面向量含解析

高考数学学业水平合格考试总复习学业达标集训:平面向量一、选择题1.已知向量AB →=a +3b ,BC →=5a +3b ,CD →=-3a +3b ,则( ) A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线D .B ,C ,D 三点共线B [因为BD →=BC →+CD →=2a +6b =2(a +3b )=2AB →,所以BD →,AB →共线,又有公共点B ,所以A ,B ,D 三点共线.故选B .]2.已知向量a =(2,1),b =(3,λ)且a ⊥b ,则λ的值为( ) A .-6 B .6 C .32D .-32A [由向量垂直的充要条件可得:2×3+1×λ=0,解得λ=-6,即λ的值为-6.] 3.设向量a =(2,0),b =(1,1),则下列结论中正确的是( ) A .|a|=|b|B .a·b =0C .a ∥bD .(a -b )⊥bD [a -b =(1,-1),所以(a -b )·b =1-1=0,所以(a -b )⊥b.]4.已知向量a =(0,-23),b =(1,3),则向量a 在b 方向上的投影为( ) A . 3 B .3 C .- 3D .-3D [向量a 在b 方向上的投影为a·b |b |=-62=-3.]5.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A .1 B . 2 C .2D .4C [∵(2a -b )·b =2a·b -|b|2=2(-1+n 2)-(1+n 2)=n 2-3=0,∴n 2=3,∴|a |=12+n 2=2.]6.在△ABC 中,C =90°,且CA =CB =3,点M 满足BM →=2MA →,则CM →·CB →等于( ) A .2 B .3 C .4D .6B [由题意得AB =32,△ABC 是等腰直角三角形,CM →·CB →=⎝⎛⎭⎫CA →+13AB →·CB →=CA →·CB →+13AB →·CB →=0+13|AB →|·|CB →|cos 45°=13×32×3×22=3,故选B .]7.如图,在△ABC 中,已知BD →=2DC →,则AD →=( )A .-12AB →+32AC →B .12AB →+32AC →C .13AB →+23AC →D .13AB →-23AC →C [AD →=AB →+BD →=AB →+23BC →=AB →+23·(BA →+AC →)=13AB →+23AC →.]8.已知向量a ,b 的夹角为60°,且|a |=1,|b |=2,则|2a -b |等于( ) A .1 B . 2 C . 3D .2D [∵向量a ,b 的夹角为60°,且|a |=1,|b |=2, ∴a ·b =1×2×cos 60°=1, ∴|2a -b |=4|a |2+(b )2-4a ·b =4+4-4=2,故选D .]9.已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( ) A .⎝⎛⎭⎫79,73 B .⎝⎛⎭⎫-73,-79 C .⎝⎛⎭⎫73,79D .⎝⎛⎭⎫-79,-73 D [设c =(x ,y ),则c +a =(x +1,y +2).又(c +a )∥b , ∴2(y +2)+3(x +1)=0.① 又c ⊥(a +b ),∴(x ,y )·(3,-1)=3x -y =0.② 由①②解得x =-79,y =-73,故选D .]10.已知a =(1,1),b =(0,-2),且k a -b 与a +b 的夹角为120°,则k 等于( ) A .-1+ 3 B .-2 C .-1±3 D .1C [∵|k a -b |=k 2+(k +2)2,|a +b |=12+(-1)2=2,∴(k a -b )·(a +b )=(k ,k +2)·(1,-1)=k -k -2=-2, 又k a -b 与a +b 的夹角为120°,∴cos 120°= (k a -b ) ·( a +b )|k a -b||a +b |,即-12=-22×k 2+(k +2)2,化简并整理,得k 2+2k -2=0,解得k =-1±3.]11.在四边形ABCD 中,AB →=DC →,且AC →·BD →=0,则四边形ABCD 是( ) A .矩形 B .菱形 C .直角梯形D .等腰梯形B [由AB →=DC →知四边形ABCD 是平行四边形,由AC →·BD →=0知AC ⊥BD ,即对角线垂直,所以四边形ABCD 是菱形.]12.如图,已知AD ,BE 分别为△ABC 的边BC ,AC 上的中线,设AD →=a ,BE →=b ,则BC →等于( )A .43a +23bB .23a +43bC .23a -43bD .-23a +43bB [BC →=2BD →=2⎝⎛⎭⎫23BE →+13AD →=43BE →+23AD →=23a +43b .] 13.若非零向量a ,b 满足|a|=|b|,(2a +b )·b =0,则a 与b 的夹角为( ) A .30° B .60° C .120°D .150°C [由题知,(2a +b )·b =2a·b +b 2=2|a |2cos 〈a ,b 〉+a 2=0,∴cos 〈a ,b 〉=-12,又∵〈a ,b 〉∈[0°,180°],∴a ,b 的夹角为120°.]14.已知OA →=(-2,1),OB →=(0,2)且AC →∥OB →,BC →⊥AB →,则点C 的坐标是( ) A .(2,6) B .(-2,-6) C .(2,-6)D .(-2,6)D [设C (x ,y ),则AC →=(x +2,y -1),BC →=(x ,y -2),AB →=(2,1),∵AC →∥OB →,∴2(x +2)=0,①∵BC →⊥AB →,∴2x +y -2=0,②由①②可得⎩⎪⎨⎪⎧x =-2,y =6,∴C (-2,6).]15.若|AB →|=5,|AC →|=8,则|BC →|的取值范围是( ) A .[3,8] B .(3,8) C .[3,13]D .(3,13)C [∵|BC →|=|AC →-AB →|,且||AC →|-|AB →||≤|AC →-AB →|≤|AC →|+|AB →|.∴3≤|AC →-AB →|≤13. ∴3≤|BC →|≤13.] 二、填空题16.已知向量a =(3,1),b =(0,-1),c =(k ,3).若a -2b 与c 共线,则k = . 1 [a -2b =(3,3).∵a -2b 与c 共线,∴3×3=3k ,解得k =1.]17.等边三角形ABC 的边长为1,BC →=a ,CA →=b ,AB →=c ,那么ab +bc +ca 等于 . -32 [∵等边三角形ABC 的边长为1, ∴a ·b =1×1×cos 120°=-12,b ·c =1×1×cos 120°=-12,c ·a =1×1×cos 120°=-12,∴ab +bc +ca =-32.]18.已知平面向量a =(2,4),b =(1,-2),若c =a -(a·b )b ,则|c|= . 82 [由题意可得a·b =2×1+4×(-2)=-6,∴c =a -(a·b )b =a +6b =(2,4)+6(1,-2)=(8,-8), ∴|c|=82+(-8)2=8 2.]19.已知向量a ,b 满足(a +2b )·(5a -4b )=0,且|a|=|b|=1,则a 与b 的夹角θ为 . π3 [因为(a +2b )·(5a -4b )=0,|a|=|b|=1,所以6a·b -8+5=0,即a·b =12. 又a·b =|a||b|cos θ=cos θ,所以cos θ=12,因为θ∈[0,π],所以θ=π3.]三、解答题20.已知a ,b 的夹角为120°,且|a |=4,|b |=2.求: (1)(a -2b )(a +b ); (2)|3a -4b |.[解] a ,b 的夹角为120°,且|a |=4,|b |=2, ∴ab =|a ||b |cos 120°=4×2×⎝⎛⎭⎫-12=-4, (1)(a -2b )(a +b )=|a |2-2ab +ab -2|b |2=16+4-2×4=12. (2)|3a -4b |2=9|a |2-24ab +16|b |2=9×42-24× (-4)+16×22=16×19,∴|3a -4b |=419.21.已知a ,b ,c 是同一平面内的三个向量,其中a =(1,2). (1)若|c|=25,且c 与a 方向相反,求c 的坐标; (2)若|b|=52,且a +2b 与2a -b 垂直,求a 与b 的夹角θ. [解] (1)设c =(x ,y ),由c ∥a 及|c|=25,可得⎩⎪⎨⎪⎧ 1·y -2·x =0,x 2+y 2=20,所以⎩⎪⎨⎪⎧ x =2,y =4或⎩⎪⎨⎪⎧x =-2,y =-4,因为c 与a 方向相反,所以c =(-2,-4). (2)因为(a +2b )⊥(2a -b ),所以(a +2b )·(2a -b )=0,即2a 2+3a·b -2b 2=0,所以2|a|2+3a·b-2|b|2=0,所以2×5+3a·b-2×54=0,所以a·b=-52.所以cos θ=a·b|a||b|=-1.又因为θ∈[0,π],所以θ=π.。

全国卷高考—平面向量试题带答案资料讲解

全国卷高考—平面向量试题带答案资料讲解

5.平面向量(含解析)一、选择题【2015,2】2.已知点A (0,1),B (3,2),向量(4,3)AC =--u u u r ,则向量BC =u u u r ( )A .(-7,-4)B .(7,4)C .(-1,4)D .(1,4)【2014,6】设D ,E ,F 分别为ΔABC 的三边BC ,CA ,AB 的中点,则=+( )A .B .21 C .21 D . 二、填空题 【2017,13】已知向量()1,2a =-r ,(),1b m =r ,若向量a b +r r 与a r 垂直,则m = .【2016,13】设向量()1x x +,a =,()12,b =,且⊥a b ,则x = .【2013,13】已知两个单位向量a ,b 的夹角为60°,c =ta +(1-t )b .若b ·c =0,则t =______.【2012,15】15.已知向量a r ,b r 夹角为45°,且||1a =r ,|2|a b -=r r ,则||b =r _________.【2011,13】 已知a 与b 为两个不共线的单位向量,k 为实数,若向量+a b 与向量k -a b 垂直,则k = . 2011—2017年新课标全国卷2文科数学试题分类汇编4.平面向量一、选择题(2017·4)设非零向量,a b ,满足+=-a b a b 则( )A .a ⊥b B. =a b C. a ∥b D. >a b(2015·4)向量a = (1,-1),b = (-1,2),则(2a +b )·a =( )A. -1B. 0C. 1D. 2(2014·4)设向量b a ρρ,满足10||=+b a ρρ,6||=-b a ρρ,则=⋅b a ρρ( )A .1B .2C .3D .5二、填空题(2016·13)已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________.(2013·14)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=uu u r uu u r _______.(2012·15)已知向量a ,b 夹角为45º,且|a |=1,|2-a b |b |= .(2011·13)已知a 与b 为两个不共线的单位向量,k 为实数,若向量a +b 与向量k a -b 垂直,则k = .5.平面向量(解析版)一、选择题【2015,2】解:(3,1),u u u r u u u r u u u r u u u r Q AB BC AC AB =∴=-=(-7,-4),故选A【2014,6】解:+EB FC EC CB FB BC +=++u u u r u u u r u u u r u u u r u u u r u u u r =111()222AC AB AB AC AD +=+=u u u r u u u r u u u r u u u r u u u r ,故选A 二、填空题【2017,13】已知向量()1,2a =-r ,(),1b m =r ,若向量a b +r r 与a r 垂直,则m = .【解析】由题得(1,3)a b m +=-r r ,因为()0a b a +⋅=r r r ,所以(1)230m --+⨯=,解得7m =;【2016,13】设向量()1x x +,a =,()12,b =,且⊥a b ,则x = . 解析:23-.由题意()210x x ⋅=++=a b ,解得23x =-.故填23-. 【2013,13】已知两个单位向量a ,b 的夹角为60°,c =ta +(1-t )b .若b ·c =0,则t =______. 解析:2. ∵b ·c =0,|a |=|b |=1,〈a ,b 〉=60°,∴a ·b =111122⨯⨯=. ∴b ·c =[ta +(1-t )b ]·b =0,即ta ·b +(1-t )b 2=0.∴12t +1-t =0. ∴t =2.【2012,15】15.已知向量a r ,b r 夹角为45°,且||1a =r ,|2|a b -=r r ,则||b =r _________. 【解析】23. 由已知||2245cos ||||=︒⋅⋅=⋅.因为|2|a b -=r r 10||4||422=+⋅-,即06||22||2=--, 解得23||=. 【2011,13】 已知a 与b 为两个不共线的单位向量,k 为实数,若向量+a b 与向量k -a b 垂直,则k = . 【解析】因为a 与b 为两个不共线的单位向量,所以1==a b .又k -a b 与+a b 垂直,所以()()0k +⋅-=a b a b ,即220k k +⋅-⋅-=a a b a b b ,所以10k k -+⋅-⋅=a b a b ,即1cos cos 0k k θθ-+-=.(θ为a 与b 的夹角)所以()()11cos 0k θ-+=,又a 与b 不共线,所以cos 1θ≠-,所以1k =.故答案为1.2011—2017年新课标全国卷2文科数学试题分类汇编4.平面向量(解析版)一、选择题此文档仅供收集于网络,如有侵权请联系网站删除 (2017·4)A 解析:由||||+=-a b a b r r r r 平方得2222()2()()2()++=-+a ab b a ab b r r r r r r r r ,即0=ab r r ,则⊥a b r r ,故选A.(2015·4)C 解析:由题意可得a 2=2,a ·b =-3,所以(2a +b )·a =2a 2+a ·b =4-3=1.(2014·4)A 解析:2222||210.||2 6.a b a b ab a b a b ab +=++=-=∴+-=r r r r r r r r r r r r Q Q Q 两式相减,则 1.ab =r r二、填空题(2016·13)-6解析:因为a ∥b ,所以2430m --⨯=,解得6m =-.(2013·14)2解析:在正方形中,12AE AD DC =+uu u r uuu r uuu r ,BD BA AD AD DC =+=-uu u r uu r uuu r uuu r uuu r ,所以2222111()()222222AE BD AD DC AD DC AD DC ⋅=+⋅-=-=-⨯=uu u r uu u r uuu r uuu r uuu r uuu r uuu r uuu r .(2012·15)∵|2-a b |=224410-⋅=a a b +b ,即260--=|b |b |,解得|b |=(舍)(2011·13)k = 1解析: (a +b )·(k a -b )=0展开易得k =1.。

专题09 平面向量(解析版)-三年(2022–2024)高考数学真题分类汇编(全国通用)

专题09 平面向量(解析版)-三年(2022–2024)高考数学真题分类汇编(全国通用)

专题09平面向量考点三年考情(2022-2024)命题趋势考点1:平面向量线性运算2022年新高考全国I 卷数学真题平面向量数量积的运算、化简、证明及数量积的应用问题,如证明垂直、距离等是每年必考的内容,单独命题时,一般以选择、填空形式出现.交汇命题时,向量一般与解析几何、三角函数、平面几何等相结合考查,而此时向量作为工具出现.向量的应用是跨学科知识的一个交汇点,务必引起重视.预测命题时考查平面向量数量积的几何意义及坐标运算,同时与三角函数及解析几何相结合的解答题也是热点.考点2:数量积运算2022年高考全国甲卷数学(理)真题2023年高考全国乙卷数学(文)真题2022年高考全国乙卷数学(理)真题2024年北京高考数学真题考点3:求模问题2023年新课标全国Ⅱ卷数学真题2024年新课标全国Ⅱ卷数学真题2023年北京高考数学真题2022年高考全国乙卷数学(文)真题考点4:求夹角问题2023年高考全国甲卷数学(文)真题2023年高考全国甲卷数学(理)真题2022年新高考全国II 卷数学真题考点5:平行垂直问题2024年上海夏季高考数学真题2024年新课标全国Ⅰ卷数学真题2022年高考全国甲卷数学(文)真题2023年新课标全国Ⅰ卷数学真题2024年高考全国甲卷数学(理)真题考点6:平面向量取值与范围问题2024年天津高考数学真题2023年高考全国乙卷数学(理)真题2022年新高考北京数学高考真题2022年新高考天津数学高考真题2022年新高考浙江数学高考真题2023年天津高考数学真题考点1:平面向量线性运算1.(2022年新高考全国I 卷数学真题)在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n == ,,则CB=()A .32m n- B .23m n-+C .32m n+ D .23m n+ 【答案】B【解析】因为点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=- ,所以CB =3232CD CA n m -=- 23m n =-+ .故选:B .考点2:数量积运算2.(2022年高考全国甲卷数学(理)真题)设向量a ,b 的夹角的余弦值为13,且1a = ,3b =r ,则()2a b b +⋅= .【答案】11【解析】设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a = ,3b =r ,所以1cos 1313a b a b θ⋅=⋅=⨯⨯= ,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+= .故答案为:11.3.(2023年高考全国乙卷数学(文)真题)正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=()A 5B .3C .25D .5【答案】B【解析】方法一:以{},AB AD为基底向量,可知2,0AB AD AB AD ==⋅=uu u r uuu r uu u r uuu r ,则11,22EC EB BC AB AD ED EA AD AB AD =+=+=+=-+uu u r uu r uu u r uu u r uuu r uu u r uu r uuu r uuu r uuu r ,所以22111143224EC ED AB AD AD AB AD ⎛⎫⎛⎫⋅=+⋅-+=-+=-+= ⎪ ⎪⎝⎭⎝⎭uu u r uu u r uu u r uuu r uu u r uuu r uu ur uuu r ;方法二:如图,以A 为坐标原点建立平面直角坐标系,则()()()1,0,2,2,0,2E C D ,可得()()1,2,1,2EC ED ==-uu u r uu u r,所以143EC ED ⋅=-+=uu u r uu u r;方法三:由题意可得:5,2ED EC CD ===,在CDE 中,由余弦定理可得2223cos 25255DE CE DC DEC DE CE +-∠==⋅⨯⨯,所以3cos 5535EC ED EC ED DEC ⋅=∠==uu u r uu u r uu u r uu u r .故选:B.4.(2022年高考全国乙卷数学(理)真题)已知向量,a b 满足||1,||3,|2|3a b a b ==-= ,则a b ⋅=()A .2-B .1-C .1D .2【答案】C【解析】∵222|2|||44-=-⋅+a b a a b b ,又∵||1,||3,|2|3,==-=a b a b ∴91443134=-⋅+⨯=-⋅a b a b ,∴1a b ⋅= 故选:C.5.(2024年北京高考数学真题)设a ,b 是向量,则“()()·0a b a b +-=”是“a b =- 或a b = ”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】因为()()220a b a b a b +⋅-=-= ,可得22a b = ,即a b = ,可知()()0a b a b +⋅-= 等价于a b = ,若a b = 或a b =- ,可得a b = ,即()()0a b a b +⋅-=,可知必要性成立;若()()0a b a b +⋅-= ,即a b =,无法得出a b = 或a b =- ,例如()()1,0,0,1a b ==,满足a b = ,但a b ≠ 且a b ≠- ,可知充分性不成立;综上所述,“()()0a b a b +⋅-=”是“a b ≠ 且a b ≠- ”的必要不充分条件.故选:B.考点3:求模问题6.(2023年新课标全国Ⅱ卷数学真题)已知向量a ,b满足3a b -= ,2a b a b +=- ,则b = .3【解析】法一:因为2a b a b +=- ,即()()222a ba b +=-,则2222244a a b b a a b b +⋅+=-⋅+r r r r r r r r ,整理得220a a b -⋅= ,又因为3a b -= ()23a b -= ,则22223a a b b b -⋅+==r r r r r ,所以3b = 法二:设c a b =-r rr ,则3,2,22c a b c b a b c b =+=+-=+r r r r r r r r r ,由题意可得:()()2222c b c b +=+r r r r ,则22224444c c b b c c b b +⋅+=+⋅+r r r r r r r r ,整理得:22c b =r r ,即3b c ==r r 37.(2024年新课标全国Ⅱ卷数学真题)已知向量,a b满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ()A .12B .22C .32D .1【答案】B【解析】因为()2b a b -⊥ ,所以()20b a b -⋅= ,即22b a b =⋅,又因为1,22a a b =+=,所以22144164a b b b +⋅+=+= ,从而22=b .故选:B.8.(2023年北京高考数学真题)已知向量a b,满足(2,3),(2,1)a b a b +=-=- ,则22||||a b -= ()A .2-B .1-C .0D .1【答案】B【解析】向量,a b 满足(2,3),(2,1)a b a b +=-=-,所以22||||()()2(2)311a b a b a b -=+⋅-=⨯-+⨯=-.故选:B9.(2022年高考全国乙卷数学(文)真题)已知向量(2,1)(2,4)a b ==-,,则a b -r r ()A .2B .3C .4D .5【答案】D【解析】因为()()()2,12,44,3a b -=--=- ,所以()22435-=+-a b .故选:D考点4:求夹角问题10.(2023年高考全国甲卷数学(文)真题)已知向量()()3,1,2,2a b ==,则cos ,a b a b +-= ()A .117B .1717C 55D 255【答案】B【解析】因为(3,1),(2,2)a b ==,所以()()5,3,1,1a b a b +=-=- ,则225334,112a b a b +=+-=+= ()()()51312a b a b +⋅-=⨯+⨯-= ,所以()()17cos ,342a b a b a b a b a b a b+⋅-+-==⨯+-.故选:B.11.(2023年高考全国甲卷数学(理)真题)已知向量,,a b c 满足1,2a b c === 0a b c ++=,则cos ,a c b c 〈--〉=()A .45-B .25-C .25D .45【答案】D【解析】因为0a b c ++=,所以a b c +=-r r r ,即2222a b a b c ++⋅= ,即1122a b ++⋅=r r ,所以0a b ⋅= .如图,设,,OA a OB b OC c ===,由题知,1,2,OA OB OC OAB === 是等腰直角三角形,AB 边上的高2222OD AD =所以22222CD CO OD =+=,1tan ,cos 310AD ACD ACD CD ∠==∠=,2cos ,cos cos 22cos 1a c b c ACB ACD ACD 〈--〉=∠=∠=∠-2421510=⨯-=.故选:D.12.(2022年新高考全国II 卷数学真题)已知向量(3,4),(1,0),t ===+ a b c a b ,若,,<>=<>a cbc ,则t =()A .6-B .5-C .5D .6【答案】C【解析】()3,4c t =+ ,cos ,cos ,a c b c =,即931635t t c c+++= ,解得5t =,故选:C考点5:平行垂直问题13.(2024年上海夏季高考数学真题))已知()(),2,5,6,k a b k ∈==R ,且//a b ,则k 的值为.【答案】15【解析】//a b,256k ∴=⨯,解得15k =.故答案为:15.14.(2024年新课标全国Ⅰ卷数学真题)已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A .2-B .1-C .1D .2【答案】D【解析】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.15.(2022年高考全国甲卷数学(文)真题)已知向量(,3),(1,1)a m b m ==+.若a b ⊥ ,则m =.【答案】34-/0.75-【解析】由题意知:3(1)0a b m m ⋅=++=,解得34m =-.故答案为:34-.16.(2023年新课标全国Ⅰ卷数学真题)已知向量()()1,1,1,1a b ==-,若()()a b a b λμ+⊥+ ,则()A .1λμ+=B .1λμ+=-C .1λμ=D .1λμ=-【答案】D【解析】因为()()1,1,1,1a b ==- ,所以()1,1a b λλλ+=+- ,()1,1a b μμμ+=+-,由()()a b a b λμ+⊥+可得,()()0a b a b λμ+⋅+= ,即()()()()11110λμλμ+++--=,整理得:1λμ=-.故选:D .17.(2024年高考全国甲卷数学(理)真题)设向量()()1,,,2a x x b x =+=,则()A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ⊥”的充分条件D .“13x =-”是“//a b ”的充分条件【答案】C【解析】对A ,当a b ⊥时,则0a b ⋅= ,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅= ,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得13x =,即必要性不成立,故B 错误;对D ,当13x =-时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误.故选:C.考点6:平面向量取值与范围问题18.(2024年天津高考数学真题)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC ==+uur uu r uu u r λμ,则λμ+=;F 为线段BE 上的动点,G 为AF 中点,则AF DG ⋅的最小值为.【答案】43518-【解析】解法一:因为12CE DE =,即23CE BA =uur uu r ,则13BE BC CE BA BC =+=+uu u r uur u uu ur r uu u r ,可得1,13λμ==,所以43λμ+=;由题意可知:1,0BC BA BA BC ==⋅=,因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+∈,则113AF AB BF AB k BE k BA k BC ⎛⎫=+=+=-+ ⎪⎝⎭,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC ⎛⎫⎛⎫=+=-+=-+- ⎪ ⎪⎝⎭⎝⎭,可得11111113232AF DG k BA k BC k BA k BC ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⋅=-+⋅-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 22111563112329510k k k k ⎛⎫⎛⎫⎛⎫=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为[]0,1k ∈,可知:当1k =时,AF DG ⋅ 取到最小值518-;解法二:以B为坐标原点建立平面直角坐标系,如图所示,则()()()()11,0,0,0,0,1,1,1,,13A B C D E ⎛⎫--- ⎪⎝⎭,可得()()11,0,0,1,,13BA BC BE ⎛⎫=-==- ⎪⎝⎭,因为(),BE BA BC λμλμ=+=- ,则131λμ⎧-=-⎪⎨⎪=⎩,所以43λμ+=;因为点F 在线段1:3,,03BE y x x ⎡⎤=-∈-⎢⎥⎣⎦上,设()1,3,,03F a a a ⎡⎤-∈-⎢⎥⎣⎦,且G 为AF 中点,则13,22a G a -⎛⎫-⎪⎝⎭,可得()131,3,,122a AF a a DG a +⎛⎫=+-=--⎪⎝⎭,则()()22132331522510a AF DG a a a +⎛⎫⎛⎫⋅=+---=+- ⎪ ⎪⎝⎭⎝⎭ ,且1,03a ⎡⎤∈-⎢⎥⎣⎦,所以当13a =-时,AF DG ⋅ 取到最小值为518-;故答案为:43;518-.19.(2023年高考全国乙卷数学(理)真题)已知O 的半径为1,直线PA 与O 相切于点A ,直线PB 与O 交于B ,C 两点,D 为BC 的中点,若2PO =,则PA PD ⋅的最大值为()A .122+B .1222+C .12+D .22+【答案】A【解析】如图所示,1,2OA OP ==,则由题意可知:π4APO ∠=,由勾股定理可得221PA OP OA =-=当点,A D 位于直线PO 异侧时或PB 为直径时,设=,04OPC παα∠≤<,则:PA PD⋅ =||||cos 4PA PD πα⎛⎫⋅+ ⎪⎝⎭ 12cos 4παα⎛⎫=+ ⎪⎝⎭222sin 22ααα⎛⎫=- ⎪ ⎪⎝⎭2cos sin cos ααα=-1cos 21sin 222αα+=-122224πα⎛⎫=-- ⎪⎝⎭04πα≤<,则2444πππα-≤-<∴当ππ244α-=-时,PA PD ⋅ 有最大值1.当点,A D 位于直线PO 同侧时,设,04OPC παα∠<<,则:PA PD ⋅ =||||cos 4PA PD πα⎛⎫⋅- ⎪⎝⎭ 12cos 4παα⎛⎫=- ⎪⎝⎭22222ααα⎛⎫=+ ⎪ ⎪⎝⎭2cos sin cos ααα=+1cos 21sin 222αα+=+122224πα⎛⎫=++ ⎪⎝⎭,04πα≤<,则32444πππα≤+<∴当242ππα+=时,PA PD ⋅有最大值122.综上可得,PA PD ⋅的最大值为122.故选:A.20.(2022年新高考北京数学高考真题)在ABC 中,3,4,90AC BC C ==∠=︒.P 为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-【答案】D【解析】依题意如图建立平面直角坐标系,则()0,0C ,()3,0A ,()0,4B ,因为1PC =,所以P 在以C 为圆心,1为半径的圆上运动,设()cos ,sin P θθ,[]0,2θπ∈,所以()3cos ,sin PA θθ=-- ,()cos ,4sin PB θθ=-- ,所以()()()()cos 3cos 4sin sin PA PB θθθθ⋅=-⨯-+-⨯- 22cos 3cos 4sin sin θθθθ=--+13cos 4sin θθ=--()15sin θϕ=-+,其中3sin 5ϕ=,4cos 5ϕ=,因为()1sin 1θϕ-≤+≤,所以()415sin 6θϕ-≤-+≤,即[]4,6PA PB ⋅∈- ;故选:D21.(2022年新高考天津数学高考真题)在ABC 中,,CA a CB b == ,D 是AC 中点,2CB BE = ,试用,a b表示DE 为,若AB DE ⊥ ,则ACB ∠的最大值为【答案】3122b a - 6π【解析】方法一:31=22DE CE CD b a -=- ,,(3)()0AB CB CA b a AB DE b a b a =-=-⊥⇒-⋅-= ,2234b a a b +=⋅ 222333cos 244a b a b b a ACB a b a b a b⋅+⇒∠==≥= 3a b = 时取等号,而0πACB <∠<,所以(0,]6ACB π∠∈.故答案为:3122b a - ;6π.方法二:如图所示,建立坐标系:(0,0),(1,0),(3,0),(,)E B C A x y ,3(,),(1,)22x y DE AB x y +=--=-- ,23()(1)022x y DE AB x +⊥⇒-+ 22(1)4x y ⇒++=,所以点A 的轨迹是以(1,0)M -为圆心,以2r =为半径的圆,当且仅当CA 与M 相切时,C ∠最大,此时21sin ,426r C C CM π===∠=.故答案为:3122b a - ;6π.22.(2022年新高考浙江数学高考真题)设点P 在单位圆的内接正八边形128A A A 的边12A A 上,则222182PA PA PA +++ 的取值范围是.【答案】[122,16]+【解析】以圆心为原点,37A A 所在直线为x 轴,51A A 所在直线为y轴建立平面直角坐标系,如图所示:则1345726222222(0,1),,,(1,0),,,(0,1),,,(1,0)222222A A A A A A A ⎛⎫⎛⎫⎛⎫---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,82222A ⎛⎫ ⎪ ⎪⎝⎭,设(,)P x y ,于是()2222212888PA PA PA x y +++=++ ,因为cos 22.5||1OP ≤≤ ,所以221cos 4512x y +≤+≤ ,故222128PA PA PA +++ 的取值范围是[1222,16]+.故答案为:[1222,16]+.23.(2023年天津高考数学真题)在ABC 中,160BC A =∠= ,,11,22AD AB CE CD == ,记,AB a AC b == ,用,a b 表示AE = ;若13BF BC = ,则AE AF ⋅ 的最大值为.【答案】1142a b + 1324【解析】空1:因为E 为CD 的中点,则0ED EC += ,可得AE ED AD AE EC AC⎧+=⎪⎨+=⎪⎩ ,两式相加,可得到2AE AD AC =+ ,即122AE a b =+ ,则1142AE a b =+ ;空2:因为13BF BC = ,则20FB FC += ,可得AF FC AC AF FB AB ⎧+=⎪⎨+=⎪⎩,得到()22AF FC AF FB AC AB +++=+ ,即32AF a b =+ ,即2133AF a b =+ .于是()2211211252423312a b a F b a AE A a b b ⎛⎫⎛⎫+⋅+=+⋅+ ⎪ ⎪⎝⋅=⎭⎝⎭ .记,AB x AC y ==,则()()222222111525225cos 602221212122A x xy a a b b xy y x y E AF ⎛⎫+⋅+=++=++ ⎪⋅⎝⎭= ,在ABC 中,根据余弦定理:222222cos601BC x y xy x y xy =+-=+-= ,于是1519222122122AE xy x xy AF y ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭=⎝⎭⋅ ,由221+-=x y xy 和基本不等式,2212x y xy xy xy xy +-=≥-=,故1xy ≤,当且仅当1x y ==取得等号,则1x y ==时,AE AF ⋅ 有最大值1324.故答案为:1142a b + ;1324.。

高考数学平面向量专项考试题及答案解析

高考数学平面向量专项考试题及答案解析

装--------------------订--------------------线-------------------------------------------------------------试题共页第页试题共页第页试题共页第页试题共页第页式作差整理后得到(1+λ)c=(1+μ)a,∵向量a,c不共线,∴1+λ=0,1+μ=0,即λ=-1,μ=-1,∴a+b=-c,即a+b+c=0.故选D.10.解析:由题意,不妨设a=(1,0),b=⎝⎛⎭⎪⎫-12,32,p=(x,y),∵p·a=p·b=12,∴⎩⎪⎨⎪⎧x=12,-12x+32y=12,解得⎩⎪⎨⎪⎧x=12,y=32,∴|p|=x2+y2=1,故选B. 11.解析:由|AB→+AC→|=|AB→-AC→|,化简得AB→·AC→=0,又因为AB和AC为三角形的两条边,它们的长不可能为0,所以AB→与AC→垂直,所以△ABC为直角三角形.以AC所在直线为x轴,以AB所在直线为y轴建立平面直角坐标系,如图所示,则A(0,0),B(0,2),C(1,0).不妨令E为BC的靠近C的三等分点,则E⎝⎛⎭⎪⎫23,23,F⎝⎛⎭⎪⎫13,43,所以AE→=⎝⎛⎭⎪⎫23,23,AF→=⎝⎛⎭⎪⎫13,43,所以AE→·AF→=23×13+23×43=109.答案:B12.解析:由⎩⎨⎧a⊥c,b∥c⇒⎩⎨⎧2x-4=0,2y+4=0⇒⎩⎨⎧x=2,y=-2,∴a=(2,1),b=(1,-2),a+b=(3,-1),∴|a+b|=10,故选B.二、填空题13.解析:∵λa+b=0,即λa=-b,∴|λ||a|=|b|.∵|a|=1,|b|=5,∴|λ|= 5.---------------------------------------------------------------装--------------------订--------------------线------------------------------------------------------------- 答案: 514.解析:∵OA→⊥AB→,∴OA→·AB→=0,即OA→·(OB→-OA→)=0,∴OA→·OB→=OA2→=9.答案:915.解析:∵a⊥b,∴a·b=2m-6=0,m=3,∴a-b=(1,7),∴|a-b|=1+49=5 2.答案:5 216.解析:如图所示,BD→·AE→=(AD→-AB→)·(AB→+BE→)=⎝⎛⎭⎪⎫12AC→-AB→·⎝⎛⎭⎪⎫AB→+13AC→-13AB→=⎝⎛⎭⎪⎫12AC→-AB→·⎝⎛⎭⎪⎫13AC→+23AB→=16AC2→-23AB2→=16×4-23×4=-2. 答案:-2试题共页第页B卷答案解析一、选择题1.解析:∵A(1,3),B(4,-1),∴AB→=(3,-4),又∵|AB→|=5,∴与AB→同向的单位向量为AB→|AB→|=⎝⎛⎭⎪⎫35,-45.故选A.答案:A2.解析:由|a+b|=|a-b|可知a⊥b,设AB→=b,AD→=a,作矩形ABCD,可知AC→=a+b,BD→=a-b,设AC与BD的交点为O,结合题意可知OA=OD=AD,∴∠AOD=π3,∴∠DOC=2π3,又向量a+b与a-b的夹角为AC→与BD→的夹角,故所求夹角为2π3,选D.答案:D3.解析:由题意可得OD→=kOC→=kλOA→+kμOB→(0<k<1),又A,D,B三点共线,所以kλ+kμ=1,则λ+μ=1k>1,即λ+μ的取值范围是(1,+∞),选项B 正确.答案:B4.解析:∵a=(1,3),b=(3,m),∴|a|=2,|b|=9+m2,a·b=3+3m,又a,b的夹角为π6,试题共页第页可化为x2+y2-2x≤0,即(x-1)2+y2≤1,故选C.答案:C10.解析:由题知AD→=12(AB→+AC→),∵AB→·AC→=-16,∴|AB→|·|AC→|cos∠BAC=-16.在△ABC中,|BC→|2=|AB→|2+|AC→|2-2|AB→||AC→|·cos∠BAC,∴102=|A B→|2+|AC→|2+32,|AB→|2+|AC→|2=68,∴|AD→|2=14(AB→2+AC→2+2AB→·AC→)=14(68-32)=9,∴|AD→|=3.答案:D11.解析:如图,设A(m,0),B(0,n),∴mn=2,则a=(1,0),b=(0,1),OP→=a+2b=(1,2),P A→=(m-1,-2),PB→=(-1,n-2),P A→·PB→=5-(m+2n)≤5-22nm=1,当且仅当m=2n,即m=2,n=1时,等号成立.答案:A12.解析:由a,b为单位向量且a·b=0,可设a=(1,0),b=(0,1),又设c=(x,y),代入|c-a-b|=1得(x-1)2+(y-1)2=1,又|c|=x2+y2,故由几何性质得12+12-1≤|c|≤12+12+1,即2-1≤|c|≤2+1.答案:A二、填空题13.解析:AB→=OB→-OA→=(3,2-t),由题意知OB→·AB→=0,所以2×3+2(2-t)=0,解得t=5.答案:514.解析:由|2a-b|≤3可知,4a2+b2-4a·b≤9,所以4a2+b2≤9+4a·b,而---------------------------------------------------------------装--------------------订--------------------线------------------------------------------------------------- 4a2+b2=|2a|2+|b|2≥2|2a|·|b|≥-4a·b,所以a·b≥-98,当且仅当2a=-b时取等号.答案:-9815.解析:作CO⊥AB于O,建立如图所示的平面直角坐标系,则A⎝⎛⎭⎪⎫-32,0,B⎝⎛⎭⎪⎫12,0,C⎝⎛⎭⎪⎫0,32,D⎝⎛⎭⎪⎫-1,32,所以E⎝⎛⎭⎪⎫16,33,F⎝⎛⎭⎪⎫-56,32,所以AE→·AF→=⎝⎛⎭⎪⎫53,33·⎝⎛⎭⎪⎫23,32=109+12=2918.答案:291816.解析:如图,AE→=AB→+BE→=AB→+13BC→,AF→=AD→+DF→=AD→+1λDC→=BC→+1λAB→,所以AE→·AF→=⎝⎛⎭⎪⎫AB→+13BC→·⎝⎛⎭⎪⎫BC→+1λAB→=⎝⎛⎭⎪⎫1+13λAB→·BC→+1λAB→2+13BC→2=⎝⎛⎭⎪⎫1+13λ×2×2×cos 120°+4λ+43=1,解得λ=2.答案:2。

(完整版)《平面向量》测试题及答案

(完整版)《平面向量》测试题及答案

(完整版)《平面向量》测试题及答案《平面向量》测试题一、选择题1.若三点P (1,1),A (2,-4),B (x,-9)共线,则()A.x=-1B.x=3C.x=29D.x=512.与向量a=(-5,4)平行的向量是()A.(-5k,4k )B.(-k 5,-k 4)C.(-10,2)D.(5k,4k) 3.若点P 分所成的比为43,则A 分所成的比是()A.73B. 37C.- 37D.-73 4.已知向量a 、b ,a ·b=-40,|a|=10,|b|=8,则向量a 与b 的夹角为() A.60° B.-60° C.120° D.-120° 5.若|a-b|=32041-,|a|=4,|b|=5,则向量a ·b=() A.103B.-103C.102D.106.(浙江)已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( )A.? ????79,73B.? ????-73,-79C.? ????73,79D.? ????-79,-737.已知向量a=(3,4),b=(2,-1),如果向量(a+x )·b 与b 垂直,则x 的值为() A.323B.233C.2D.-52 8.设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是() A.(-∞,-1) B.(-1,0) C.(-∞,0) D.(-∞,-21) 9.设四边形ABCD 中,有DC =21,且||=|BC |,则这个四边形是() A.平行四边形 B.矩形 C.等腰梯形 D.菱形10.将y=x+2的图像C 按a=(6,-2)平移后得C ′的解析式为()A.y=x+10B.y=x-6C.y=x+6D.y=x-1011.将函数y=x 2+4x+5的图像按向量a 经过一次平移后,得到y=x 2的图像,则a 等于() A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1)12.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标是() A.(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a) 二、填空题13.设向量a=(2,-1),向量b 与a 共线且b 与a 同向,b 的模为25,则b= 。

2023年高考数学一轮复习(新高考地区专用)5-3 平面向量的应用(精讲)(解析版)

2023年高考数学一轮复习(新高考地区专用)5-3 平面向量的应用(精讲)(解析版)

5.3 平面向量的应用(精讲)(基础版)考点一 证线段垂直【例1-1】(2022·山西运城)在平面四边形ABCD 中,()2,3AC =-,()6,4BD =,则该四边形的面积为( )A .52B .252C .13D .26【答案】C【解析】∵12120AC BD ⋅=-+=,∵AC ∵BD ,所以四边形ABCD 面积为:114936161322AC BD ⋅=⨯+⨯+=.故选:C. 【例1-2】(2022·广东)如图,在正方形ABCD 中,P 为对角线AC 上任意一点(异于A 、C 两点),PE AB ⊥,PF BC ⊥,垂足分别为E 、F ,连接DP 、EF ,求证:DP EF ⊥.【答案】见解析【解析】设正方形ABCD 的边长为1,()01AE a a =<<,则EP AE a ==,1PF EB a ==-,2AP a =.,()()DP EF DA AP EP PF DA EP DA PF AP EP AP PF∴⋅=+⋅+=⋅+⋅+⋅+⋅考点呈现例题剖析()()1cos18011cos902cos4521cos45a a a a a a =⨯⨯+⨯-⨯+⨯⨯+⨯-⨯()210a a a a =-++-=,DP EF ∴⊥,即DP EF ⊥.【一隅三反】1.(2022·四川省峨眉)若平面四边形ABCD 满足:0AB CD +=,()0AB AD AC -⋅=,则该四边形一定是( ) A .平行四边形 B .菱形 C .矩形 D .正方形【答案】B 【解析】0AB CD +=,AB DC ∴=,所以四边形ABCD 为平行四边形,()0AB AD AC -⋅=, 0DB AC ∴⋅=,所以BD 垂直AC ,所以四边形ABCD 为菱形.故选:B2.(2022·福建·漳州三中)若O 为ABC 所在平面内一点,且满足|||2|OB OC OB OC OA -=+-,则ABC 的形状为( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形【答案】B【解析】ABC 中,|||2||||()()|OB OC OB OC OA CB OB OA OC OA -=+-⇔=-+- 22||||()()AB AC AB AC AB AC AB AC ⇔-=+⇔-=+22222240AB AB AC AC AB AB AC AC AB AC ⇔-⋅+=+⋅+⇔⋅=因AB 与AC 均为非零向量,则AB AC ⊥,即90BAC ∠=,ABC 是直角三角形.故选:B3.(2022·上海)在Rt ABC 中,90,BAC AB AC ︒∠==,,E F 分别为边,AB BC 上的点,且,2AE EB BF FC ==.求证:CE AF ⊥.【答案】证明见解析.【解析】因为12CE CA AE AC AB =+=-+,()1133AF AB BF AB BC AB AC AB =+=+=+-=2133AB AC +.由0AB AC ⋅=且AB AC =,得121233CE AF AC AB AB AC ⎛⎫⎛⎫⋅=-+⋅+= ⎪ ⎪⎝⎭⎝⎭221110332AB AC AB AC --⋅=,所以CE AF ⊥.考点二 夹角问题【例2】(2022·全国·模拟预测)已知H 为ABC 的垂心,若1235AH AB AC =+,则sin BAC ∠=( )A BC D 【答案】C【解析】依题意,2235BH BA AH AB AC =+=-+,同理1335CH CA AH AB AC =+=-.由H 为△ABC 的垂心,得0BH AC ⋅=,即22035AB AC AC ⎛⎫-+⋅= ⎪⎝⎭,可知222cos 53AC AC AB BAC =∠,即3cos 5AC BAC AB∠=.同理有0CH AB ⋅=, 即13035AB AC AB ⎛⎫-⋅= ⎪⎝⎭,可知213cos 35AB AC AB BAC =∠,即5cos 9AB BAC AC ∠=,解得21cos 3BAC ∠=,2231cos 2sin 113∠∠=-=-=BAC BAC ,又()0,πBAC ∠∈,所以sin BAC ∠=.故选:C .【一隅三反】1.(2022·四川南充·三模(理))在Rt ABC △中,90A ∠=︒,2AB =,3AC =,2AM MC =,12AN AB =,CN 与BM 交于点P ,则cos BPN ∠的值为( )A B .C .D 【答案】D【解析】建立如图直角坐标系,则(0,2),(0,1),(3,0),(2,0)B N C M ,得(3,1),(2,2)CN MB =-=-,所以co 10s CN MB CN P BB N M ⋅===⋅∠ D.2.(2022·河南·南阳中学)直角三角形ABC 中,斜边BC 长为a ,A 是线段PE 的中点,PE 长为2a ,当⋅B C P E 最大时,PE 与BC 的夹角是( )A .0B .30C .60D .90【答案】A【解析】如图所示,设PE 与BC 的夹角为[]()0,θθπ∈,AB AC ⊥,所以0AB AC ⋅=, 因为A 是线段PE 的中点,PE 长为2a ,所以=AP AE ,==AP AE a , 又因为,==--BP AP AB CE AE AC ,所以()()⋅-⋅-=⋅-⋅-⋅+=⋅BP CE AP AB AE AC AP AE AP AC AB AE AB AC22a AP AC AB AE a AE AC AB AE =--⋅-⋅=-+⋅-⋅()22=-+⋅-=-+⋅a AE AC AB a AE BC222211cos cos 22a PE BC a PE BC a a θθ=-+⋅=-+⋅=-+, 因为0,θπ⎡⎤∈⎣⎦,所以[]cos 1,1θ∈-,所以当cos 1θ=时⋅B C P E 最大,此时0θ=,⋅B C P E 最大的值为0.故选:A.3.(2022·福建省同安第一中学)在OAB 中,2OA OB ==,AB =P 位于直线OA 上,当PA PB →→⋅取得最小值时,PBA ∠的正弦值为( )A B C D 【答案】C【解析】建立如图所示平面直角坐标系:则(3,0),(3,0),(0,1)A B O-,设(,)P x y,因为动点P位于直线OA上,直线OA的方程为:1y=+,所以22(,),)3PA PB x y x y x y→→⋅=-⋅-=-+222244931)2(334x x x x x=-++=-=-,当x=PA PB→→⋅取得最小值94-,此时3()4P,3(),(4BP BA→→==-,所以15cosBP BAPBABP BA→→→→⋅∠====⋅又因为(0,)PBAπ∠∈,所以sin14PBA∠=,故选:C.考点三线段长度【例3-1】(2022·福建·福州三中)在平行四边形ABCD中,(2,1,2,AB AD AC===,则BD=()A.1B C.2D.3【答案】B【解析】由题意得|7AC=∣,由平行四边形的两条对角线的平方和等于四边的平方和,得:()()222222222,22110,BD AC AB AD BD BD+=+∴+=+=∴=B【例3-2】(2022·云南)已知ABC120C∠=︒,2cosc b B=,则AC边的中线的长为()A B.3C D.4【答案】C【解析】根据正弦定理由2cos sin2sin cos sin sin2c b B C B B C B=⇒=⇒=,因为,(0,180)B C∈︒,所以2C B=,或2180C B+=︒,当2C B=时,60B∠=︒,不符合三角形内角和定理,当2180C B+=︒时,30B∠=︒,因此30A∠=︒,因此a b=,因为ABC所以有122a a a⋅==,负值舍去,即2a b==,由余弦定理可知:AB ==设AC 边的中点为D ,所以有1()2BD BC BA =+,因此222111()24222BD BC BA BC BA BC BA =+=++⋅=故选:C 【一隅三反】1.(2022·云南师大附中)ABC 中,60A ∠=︒,∠A 的平分线AD 交边BC 于D ,已知3AB =,且1233AD AC AB =+,则AD 的长为( )AB .3C .D .【答案】C【解析】如图,过D 作//DE AC 交AB 于E ,作//DF AB 交AC 于F ,则AD AE AF =+,又1233AD AC AB =+, 所以23AE AB =,13AF AC =,所以13BD AF BC AC ==,即12BD DC =, 又AD 是BAC ∠的平分线,所以12AB BD AC CD ==,而3AB =,所以6AC =, cos 36cos609AB AC AB AC BAC ⋅=∠=⨯⨯︒=,222212144()33999AD AC AB AC AC AB AB=+=+⋅+2214469312999=⨯+⨯+⨯=,所以23AD =C . 2.(2022·全国·高三专题练习)在ABC 中,2AB AC ==,点M 满足20BM CM +=,若23BC AM ⋅=,则BC 的值为( ) A .1 B .32C .2D .3【答案】C【解析】取BC 中点O ,连接AO ,20BM CM +=,即2BM MC =,∴M 为BC 边上靠近C 的三等分点,()BC AM BC AO OM BC AO BC OM ⋅=⋅+=⋅+⋅,AB AC =,AO BC ∴⊥,0BC AO ∴⋅=,又16OM BC =,21263BC AM BC OM BC ∴⋅=⋅==,2BC ∴=.故选:C .3.(2022·重庆南开中学)如图所示在四边形ABCD 中,ABD △是边长为4的等边三角形,213AC =,(2)CA tCB t CD =+-,(1)t >,则OD =( )A .52B .C .3D 【答案】C【解析】取AC 的中点为M ,因为(2)CA tCB t CD =+-,故2CA CD tDB -=即22CM CD tDB -=,故2DM tDB =,所以,,D M B 三点共线,故M 与O 重合,所以AO =故21316+24cos3OD OD π=-⨯⨯,解得1OD =或3OD =,因为1t >且2DO tDB =,故OD OB >,故3OD =,故选:C.4.(2023·全国·高三专题练习)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且60C =︒,3a =,1534ABC S =△,则AB 边上的中线长为( ) A .49 B .7C .494 D .72【答案】D【解析】因为ABCS11sin 322ab C b ==⨯⨯=5b =,根据余弦定理可得2222cos 19c a b ab C =+-=,故c =AB 中点为M ,故()12CM CA CB =+,故22172cos 22CM CA CB CA CB C =++==. 即AB 边上的中线长为72.故选:D .考点四 几何中的最值【例4】(2022·海南·模拟预测)在直角梯形ABCD 中,AB CD ,AD AB ⊥,且6AB =,3AD =.若线段CD 上存在唯一的点E 满足4AE BE ⋅=,则线段CD 的长的取值范围是( ) A .[1,2) B .[1,5)C .[1,)+∞D .[5,)+∞【答案】B【解析】 如图所示,以A 为坐标原点,AB 和AD 分别为x 轴和y 轴正方向建立直角坐标系.则(0,0),(6,0)A B , 设DE 的长为x ,则(,3)E x ,则(,3)AE x =,(6,3)BE x =-,所以(6)94AE BE x x ⋅=-+=,解得1x =或5x =,由题意知:DC x ≥ ,且点E 存在于CD 上且唯一,知CD 的长的取值范围是[1,5),故选:B. 【一隅三反】1.(2022·安徽安庆)设点P 是ABC 的中线AM 上一个动点,()PA PB PC ⋅+的最小值是92-,则中线AM 的长是___________. 【答案】3【解析】设PM x =,,AM m =则.PA m x =-因为M 为BC 边中点,所以1()2PM PB PC =+,即2PB PC PM +=.于是222()22()222()22m m PA PB PC PA PM x m x x mx x ⋅+=⋅=--=-=--. 当2m x =,即点P 是中线AM 的中点时,()PA PB PC ⋅+取得最小值2,2m -即29,22m -=-因此 3.m =故答案为:32.(2022·江苏·无锡市教育科学研究院)点P 是边长为2的正三角形ABC 的三条边上任意一点,则||PA PB PC ++的最小值为___________.【解析】不妨假设P 在AB 上且(1,0),(1,0)A B C -,如下图示,所以,P 在3(1)y x =+且10x -≤≤,设(,3(1))P x x +,则(,)PA x =-,(1,1))PB x x =--+,(1,1))PC x x =-+,所以(3,PA PB PC x ++=---,故||9PA PB PC x ++=,当12x =-时,||PA PB PC ++3.(2022·上海市晋元高级中学)“燕山雪花大如席”,北京冬奥会开幕式将传统诗歌文化和现代奥林匹克运动联系在一起,天衣无缝,让人们再次领略了中国悠久的历史积淀和优秀传统文化恒久不息的魅力.顺次连接图中各顶点可近似得到正六边ABCDEF .若正六边形的边长为1,点P 是其内部一点(包含边界),则AP AC ⋅的取值范围为___________.【答案】[0,3]【解析】过点C 作CM AB ⊥于,M 所以,AC AM MC =+且33==,=22AM MC AP AQ QP AM MC λμ=++,,其中1123λμ-≤≤≤≤,0,()()()()22=3=34=A A AM MCAM MC MAM M M P AC C C λμλλμμλμ++++++⋅当P 点与C 点重合时,AP 在AC 方向上的投影最大,此时1,1λμ==,·AP AC 取得最大值为3;当P 点与F 点重合时,此时1,13λμ=-=,即AP AC ⊥,故0AP AC =,取得的最小值为∴·AP AC 的取值范围是[0,3].故答案为:[0,3].4.(2022·四川省内江市第六中学)如图,在等腰ABC 中,已知1AB AC ==,120A ∠=︒,E 、F 分别是边AB 、AC 的点,且AE AB λ=,AF AC μ=,其中(),0,1λμ∈且21λμ+=,若线段EF 、BC 的中点分别为M 、N ,则MN 的最小值是________.【解析】在等腰ABC 中,∵||||1AB AC ==,120o A ∠=, ∴1||||cos 2AB AC AB AC A ⋅==-; ∵E 、F 分别是边AB 、AC 的点,∴11()()22AM AE AF AC AB μλ=+=+,1()2AN AB AC =+,∵1[(1)(1)]2MN AN AM AB AC λμ=-=-+-,∴222222211[(1)2(1)(1)(1)]44MN AB AB AC AC λμλμλμλλμμ+---+=-+--⋅+-=,∵21λμ+=,∴12λμ=-, ∴()()()22222237()121212174177444MN μμμμμμμμμ-+-+-----+-+===, 其中λ,(0,1)μ∈,即1(0,)2μ∈,∴当27μ=时,2MN 取得最小值328,∴||MN . 考点五 三角形的四心【例5】(2022·甘肃·兰州一中)(多选)点O 在ABC 所在的平面内,则以下说法正确的有( ) A .若0OA OB OC ++=,则点O 为ABC 的重心 B .若222OA OB OC ==,则点O 为ABC 的垂心C .若()()()0OA OB AB OB OC BC OC OA CA +⋅=+⋅=+⋅=,则点O 为ABC 的外心 D .若OA OB OB OC OC OA ⋅=⋅=⋅,则点O 为ABC 的内心 【答案】AC【解析】对于A ,设边BC 、AC 、AB 的中点分别为D 、E 、F 2OB OC OD +=,则20OA OD +=,所以2OA OD =-所以A 、O 、D 三点共线,即点O 在中线AD 上,同理点O 在中线,BE CF 上,则O 是ABC 的重心.故A 正确对于B ,若222OA OB OC ==,则222OA OB OC ==,所以OA OB OC == 所以O 为ABC 的外心,故B 错误对于C ,设边AB 、BC 、CA 的中点分别为点D 、E 、F , 则()20OA OB AB OD AB +⋅=⋅=,所以OD 为线段AB 的中垂线,同理OE 、OF 分别为线段BC 、CA 的中垂线,所以O 是ABC 的外心,故C 正确 对于D ,由已知,()0OA OB OB OC OB OA OC OB CA ⋅-⋅=⋅-=⋅=,即OB 垂直CA ,也即点O 在边AC 的高上;同理,点O 也在边AB BC 、的高上, 所以则O 是ABC 的垂心,故D 错误.故选:AC 【一隅三反】1.(2022·全国·)瑞士数学家欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:“三角形的外心、垂心和重心都在同一直线上,而且外心和重心的距离是垂心和重心距离之半,”这就是著名的欧拉线定理.设ABC 中,点O 、H 、G 分别是外心、垂心和重心,下列四个选项中结论正确的是( )A .2GH OG =B .0GA GB GC ++= C .OH OA OB OC =++D .OA OB OC ==【答案】ABC 【解析】如图:根据欧拉线定理可知,点O 、H 、G 共线,且2GH OG =.对于A ,∵2GH OG =,∵2GH OG =,故A 正确;对于B ,G 是重心,则延长AG 与BC 的交点D 为BC 中点,且AG =2GD ,则2GA GB GC GA GD ++=+0=,故B 正确;对于C ,33()OH OG AG AO ==-23()3AD AO =-23AD AO =-2()3AO OD AO =+-2OD AO=-OB OC OA =++,故C 正确;对于D ,OA OB OC ==显然不正确.故选:ABC.2.(2022·广东·广州市第二中学)(多选)著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理被称为欧拉线定理.已知∵ABC 的外心为O ,重心为G ,垂心为H ,M 为BC 中点,且AB =4,AC =2,则下列各式正确的有( ) A .4AG BC ⋅= B .6AO BC ⋅=-C .OH OA OB OC =++D .42AB AC OM HM +=+【答案】BCD【解析】由G 是三角形ABC 的重心可得23AG AM =211()322AB AC =+1133AB AC =+,所以1()()3AG BC AB AC AC AB ⋅=+⋅-221(||)3AC AB =-=4-,故A 项错误;过三角形ABC 的外心O 分别作AB 、AC 的垂线,垂足为D 、E ,如图(1),易知D 、E 分别是AB 、AC 的中点,则()AO BC AO AC AB ⋅=⋅-AO AC AO AB =⋅-⋅cos cos AO AC OAE AO AB OAD =∠-∠AE AC AD AB =-2211||622AC AB =-=-,故B 项正确;因为G 是三角形ABC 的重心,所以有0GA GB GC ++=,故OA OB OC ++()()()OG GA OG GB OG GC =+++++3OG GA GB GC =+++3OG =,由欧拉线定理可得3OH OG =,故C 项正确; 如图(2),由3OH OG =可得2133MG MO MH =+,即2133GM OM HM =+,则有26AB AC AM GM +==216()33OM HM =+42OM HM =+,D 项正确,故选:BCD.3.(2022·全国·课时练习)(多选题)已知O 是四边形ABCD 内一点,若0OA OB OC OD +++=,则下列结论错误的是( )A .四边形ABCD 为正方形,点O 是正方形ABCD 的中心 B .四边形ABCD 为一般四边形,点O 是四边形ABCD 的对角线交点 C .四边形ABCD 为一般四边形,点O 是四边形ABCD 的外接圆的圆心 D .四边形ABCD 为一般四边形,点O 是四边形ABCD 对边中点连线的交点 【答案】ABC【解析】对于A ,若四边形ABCD 为正方形,点O 是正方形ABCD 的中心,则必有0OA OB OC OD +++=, 但反过来,由0OA OB OC OD +++=推不出四边形ABCD 为正方形,故A 错误; 对于BCD ,如图所示,O 是四边形ABCD 内一点,且0OA OB OC OD +++=设AB ,CD 的中点分别为E ,F ,由向量加法的平行四边形法则知2OA OB OE =+,2OC OD OF +=,0OE OF ∴=+,即O 是EF 的中点;同理,设AD ,BC 的中点分别为M ,N ,由向量加法的平行四边形法则知2OA OD OM +=,2OC OB ON =+,即O 是MN 的中点;所以O 是EF ,MN 的交点,故BC 错误,D 正确; 故选:ABC4.(2022·山东省平邑县第一中学)(多选)在ABC 所在平面内有三点O ,N ,P ,则下列说法正确的是( )A .满足||||||OA OB OC ==,则点O 是ABC 的外心 B .满足0NA NB NC ++=,则点N 是ABC 的重心 C .满足PA PB PB PC PC PA ⋅=⋅=⋅,则点P 是ABC 的垂心D .满足()0||||AB AC BC AB AC +⋅=,且12||||AB AC AB AC ⋅=,则ABC 为等边三角形 【答案】ABCD 【解析】对于A ,因为||||||OA OB OC ==,所以点O 到ABC 的三个顶点的距离相等,所以O 为ABC 的外心,故A 正确;对于B ,如图所示,D 为BC 的中点,由0NA NB NC ++=得:2ND NA =-,所以||:||2:1AN ND =,所以N 是ABC 的重心,故B 正确;对于C ,由PA PB PB PC ⋅=⋅得:()0PA PC PB -⋅=,即0AC PB ⋅=,所以AC PB ⊥;同理可得:AB PC ⊥,所以点P 是ABC 的垂心,故C 正确; 对于D ,由()0||||AB ACBC AB AC +⋅=得:角A 的平分线垂直于BC ,所以AB AC =; 由12||||AB AC AB AC ⋅=得:1cos 2A =,所以3A π=,所以ABC 为等边三角形,故D 正确.故选:ABCD .考点六 三角的面积【例6-1】(2022·全国·高三)点P 菱形ABCD 内部一点,若230PA PB PC ++=,则菱形ABCD 的面积与PBC 的面积的比为( ) A .4 B .6 C .8 D .12【答案】B【解析】如图,设AB 中点为E ,BC 中点为F ,因为230PA PB PC ++=,即220PA PB PB PC +=++,则420PE PF +=,即2PF PE =-, 则24111122334326PBCPBFBEFABCABCD ABCD SSSS S S ==⨯=⨯=⨯=, 所以ABCD 的面积与PBC 的面积的比值是6.故选:B.【例6-2】(2022·全国·高三专题练习)已知点O 为正ABC 所在平面上一点,且满足(1)0OA OB OC λλ+++=,若OAC 的面积与OAB 的面积比值为1:4,则λ的值为( )A .12 B .13C .2D .3【答案】B【解析】(1)0OA OB OC λλ+++=, ()0OA OC OB OC λ→∴+++=.如图,D ,E 分别是对应边的中点,由平行四边形法则知2OA OC OE +=,()2OB OC OD λλ+=,故OE OD λ=-,在正三角形ABC 中,11114428COAAOBABCABCSS S S ==⨯=,113828COB ACBABCABCABCS SS S S =--=,且三角形AOC 与三角形COB 的底边相等,面积之比为13,所以13OE OD =,得13λ=.故选:B 【一隅三反】1.(2022·上海交大附中)设O 为OAB 所在平面内一点,满足2730OA OB OC ++=,则ABC 的面积与OAB 的面积的比值为( ) A .6 B .83C .127D .4【答案】A【解析】设1112,7,3===OA OA OB OB OC OC ,因为2730OA OB OC ++=,所以1110OA OB OC ++=,所以O 为111A B C △的重心, 设111111===OA B OA C OB C SSSk ,所以111111*********,,21146⋅⋅⋅======⋅⋅⋅OBC OAB OAC OB C OA B OA C S S S OB OC OA OB OA OC S OB OC S OA OB S OA OC ,则111,,21146===OBCOABOACSk S k S k ,所以27=++=ABCOBCOAB OACS SSSk ,所以276121==ABC BOCk S Sk , 故选:A2.(2022·全国·高三)P 是ABC 所在平面内一点,若3CB PA PB =+,则:ABP ABC S S =△△( ) A .1:4 B .1:3C .2:3D .2:1【答案】A【解析】由题设,3PA CB BP CP =+=,故,,C P A 共线且3CP PA =,如下图示:所以:1:4ABPABCSS=.故选:A3.(2022·四川凉山)已知P 为ABC 内任意一点,若满足()0,,0xPA yPB zPC x y z ++=>,则称P 为ABC 的一个“优美点”.则下列结论中正确的有( ) ∵若1x y z ===,则点P 为ABC 的重心; ∵若1x =,2y =,3z =,则16PBCABCSS =;∵若PA PB PB PC PA PC ⋅=⋅=⋅,则点P 为ABC 的垂心; ∵若1x =,3y =,1z =且D 为AC 边中点,则25BP BD =. A .1个 B .2个C .3个D .4个【答案】D【解析】对于∵,当1x y z ===时,0PA PB PC ++=;设BC 中点为M ,则2PB PC PM +=,即22PA PM MP =-=,P ∴为ABC 的重心,∵正确;对于∵,当1x =,2y =,3z =时,230PA PB PC ++=,()2PA PC PB PC ∴+=-+,取AC 中点D ,BC 中点E ,2PA PC PD +=,2PB PC PE +=,24PD PE ∴=-,即2PD EP =,P ∴到直线BC 距离1d 与D 到直线BC 距离2d 之比为:1:3,即12:1:3d d =;又D 为AC 中点,∴点A 到直线BC 距离322d d =,13:1:6d d ∴=, 13::1:6PBCABCSSd d ∴==,即16PBCABCSS =,∵正确;对于∵,由PA PB PB PC ⋅=⋅得:()0PA PB PB PC PB PA PC PB CA ⋅-⋅=⋅-=⋅=,PB AC ∴⊥,同理可得:PA BC ⊥,PC AB ⊥,P ∴为ABC 的垂心,∵正确;对于∵,当1x =,3y =,1z =时,30PA PB PC ++=,3PA PC PB ∴+=-, 又D 为AC 边中点,233PD PB BP ∴=-=,又BP PD BD +=,32BP BP BD ∴+=,25BP BD ∴=,∵正确.故选:D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五单元 平面向量A 卷 基础过关检测一、选择题:本题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2020·安徽马鞍山高三三模(文))在ABC 中,D 为BC 上一点,且2BD DC =,AE ED =,若EB xAB y AC =+,则( )A .13x =,23y =B .56x =,13y = C .56x =,13y =- D .23x =,13y = 2.(2020·衡水中学高三月考(文))已知()()1,2,2,a b t ==,若a b a b +=-,则t 为( ) A . B .1 C .1- D .3.(2020·绥德中学高三其他(文))在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144+AB AC D .1344+AB AC 4.(2020·河北路南唐山一中高三期中(文))已知向量1,tan 3a α⎛⎫= ⎪⎝⎭,()cos ,1b α=,,2παπ⎛⎫∈ ⎪⎝⎭,且//a b ,则sin 2πα⎛⎫-= ⎪⎝⎭( ) A .13- B .13 C 22 D .22 5.(2020·四川省泸县第四中学高三月考(文))已知四边形ABCD 是平行四边形,点E 为边CD 的中点,则BE =A .12AB AD -+ B .12AB AD - C .12AB AD + D .12AB AD - 6.(2020·陕西新城西安中学高三其他(文))设向量,a b 满足10a b +=, 6a b -=,则a b ⋅= ( ) A .1B .2C .3D .57.(2020·安徽黄山高三二模(文))如图,在等腰直角ABC 中,斜边||6BC =,且2DC BD =,点P 是线段AD 上任一点,则AP CP ⋅的取值范围是( )A .[0,4]B .9,410⎡⎤-⎢⎥⎣⎦C .90,10⎡⎤⎢⎥⎣⎦D .9,10⎡⎫-+∞⎪⎢⎣⎭8.(2020·甘肃城关兰州一中高三二模(文))在平面直角坐标系xOy 中,已知点()0,2A -,()1,0N ,若动点M 满足2MA MO =,则·OM ON 的取值范围是( ) A .[]0,2 B .0,22⎡⎣ C .[]22-, D .22,22-⎡⎣9.(2020·黑龙江南岗哈师大附中高三其他(文))已知1F 、2F 是椭圆22143x y +=的左、右焦点,点P 是椭圆上任意一点,以1PF 为直径作圆N ,直线ON 与圆N 交于点Q (点Q 不在椭圆内部),则12QF QF ⋅=( )A .3B .4C .3D .110.(2020·黑龙江南哈师大附中高三其他(文))已知向量()2,a m =-,()1,2b =-,()1,5c m =+,若a b ⊥,则a 与b c +的夹角为( )A .4πB .3πC .23πD .34π 11.(2020·湖北荆门高三期末(文))已知非零向量AB ,AC 满足0||||AB AC BC AB AC ⎛⎫+= ⎪ ⎪⎝⎭,且1||||2AB AC AB AC =,则ABC ∆的形状是( )A .三边均不相等的三角形B .直角三角形C .等腰(非等边)三角形D .等边三角形12.(2020·广东东莞�高三其他(文))已知A ,B ,C 三点不共线,且点O 满足161230--=OA OB OC 则( )A .123OA AB AC =+B .123OA AB AO =-+C .123OA AB AC =-D .123OA AB AO =--二、填空题:本大题共4小题,共20分。

13.(2020·云南高三一模(文))设向量()1,1a =,()1,3b =-,()2,1c =,且()λ-⊥a b c ,则λ=____________.14.(2020·湖南怀化高三二模(文))已知单位向量12,e e 的夹角为3π,若向量122e e +与向量122e ke +的夹角为2π,则实数k =________. 15.(2020·天津高考真题)如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.16.(2020·四川青羊石室中学高三月考(文))已知在平面直角坐标系中,()2,0A -,()1,3B ,O 为原点,且OM OA OB αβ=+,(其中1αβ+=,α,β均为实数),若()1,0N ,则MN 的最小值是_____.三、解答题(本大题共6小题,17题10分,其余每题12分共70分)17.(2020·白银市第一中学高三其他(文))在ABC ∆中,设a 、b 、c 分别为角A 、B 、C 的对边,记ABC ∆的面积为S ,且2S AB AC =⋅.(1)求角A 的大小;(2)若7c =,cos 45B =,求a 的值. 18.(2020·江苏广陵扬州中学高三月考)已知O 为坐标原点,()22sin ,1,OA x =(1,cos 1),OB x x =-+1()12f x OA OB =-⋅+. (1)求()y f x =的最小正周期;(2)将()f x 图象上各点的纵坐标不变,横坐标扩大为原来的两倍,再将所得图象向左平移6π个单位后,所得图象对应的函数为()g x ,且2,63ππα⎡⎤∈⎢⎥⎣⎦,5,63ππβ⎛⎫∈-- ⎪⎝⎭,3()5g α=,4()5g β=-,求cos 2()1αβ--的值.19.(2019·盐城市伍佑中学高三月考)在ABC ∆中,设a ,b ,c 分别是角A ,B ,C 的对边,已知向量(,sin sin )m a C B =-,(,sin sin )n b c A B =++,且//m n(1)求角C 的大小(2)若3c =,求ABC ∆的周长的取值范围.20.(2020·河北丛台邯郸一中高三月考)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知(cos ,cos )m B C =,(2,)n a c b =+,且m n ⊥.(1)求角B 的大小;(2)若b =4a c +=,求ABC 的面积.21.(2020·北京西城北师大实验中学高三月考)已知向量(cos ,sin )x x =a ,(3,=b ,[0,]x π∈. (1)若a b ∥,求x 的值;(2)记()f x a b =⋅,求()f x 的最大值和最小值以及对应的x 的值.22.(2019·河南郑州高三期中(文))已知点()2,0A ,()0,2B -,()2,0F -,设AOC α∠=,[)0,2απ∈,其中O 为坐标原点.(1)设点C 在x 轴上方,到线段AF ,且3AFC π∠=,求α和线段AC 的大小;(2)设点D 为线段OA 的中点,若2OC =,且点C 在第二象限内,求)cos y OB BC OA α=⋅+⋅的取值范围.如何学好数学做选择题时注意各种方法的运用,比较简单的自己会的题正常做就可以了,遇到比较复杂的题时,看看能否用做选择题的技巧进行求解(主要有排除法、特殊值代入法、特例求解法、选项一一带入验证法、数形结合法、逻辑推理验证法等等),一般可以综合运用各种方法,达到快速做出选择的效果。

填空题也是,比较简单的会的就正常做,复杂的题如果答案是一个确定的值时,看能否用特殊值代入法以及特例求解法。

选择填空题的答题时间要自己掌握好,遇到不会的先放下往后答,我们的目标是把卷子上所有会的题都答上了、都答对了,审题要仔细(一个字一个字读题),计算要准确(一步一步计算),千万不要有马虎的地方。

大题文科第一题一般是三角函数题,第一步一般都是需要将三角函数化简成标准形式Asin(wx+fai)+c,接下来按题做就行了,注意二倍角的降幂作用以及辅助角(合一)公式,周期公式,对称轴、对称中心、单调区间、最大值、最小值都是用整体法求解。

求最值时通过自变量的范围推到里面整体u=wx+fai的范围,然后可以直接画sinu的图像,避免画平移的图像。

这部分题还有一种就是解三角形的问题,运用正弦定理、余弦定理、面积公式,通常有两个方向,即角化成边和边化成角,得根据具体问题具体分析哪个方便一些,遇到复杂的题就把未知量列成未知数,根据定理列方程组,然后解方程组即可。

理科如果考数列题的话,注意等差、等比数列通项公式、前n项和公式;证明数列是等差或等比直接用定义法(后项减前项为常数/后项比前项为常数),求数列通项公式,如为等差或等比直接代公式即可,其它的一般注意类型采用不同的方法(已知Sn求an、已知Sn与an关系求an(前两种都是利用an=Sn-Sn-1,注意讨论n=1、n>1)、累加法、累乘法、构造法(所求数列本身不是等差或等比,需要将所求数列适当变形构造成新数列lamt,通过构造一个新数列使其为等差或等比,便可求其通项,再间接求出所求数列通项);数列的求和第一步要注意通项公式的形式,然后选择合适的方法(直接法、分组求和法、裂项相消法、错位相减法、倒序相加法等)进行求解。

如有其它问题,注意放缩法证明,还有就是数列可以看成一个以n为自变量的函数。

第二题是立体几何题,证明题注意各种证明类型的方法(判定定理、性质定理),注意引辅助线,一般都是对角线、中点、成比例的点、等腰等边三角形中点等等,理科其实证明不出来直接用向量法也是可以的。

计算题主要是体积,注意将字母换位(等体积法);线面距离用等体积法。

理科还有求二面角、线面角等,用建立空间坐标系的方法(向量法)比较简单,注意各个点的坐标的计算,不要算错。

第三题是概率与统计题,主要有频率分布直方图,注意纵坐标(频率/组距)。

求概率的问题,文科列举,然后数数,别数错、数少了啊,概率=满足条件的个数/所有可能的个数;理科用排列组合算数。

独立性检验根据公式算K方值,别算错数了,会查表,用1减查完的概率。

回归分析,根据数据代入公式(公式中各项的意义)即可求出直线方程,注意(x平均,y平均)点满足直线方程。

理科还有随机变量分布列问题,注意列表时把可能取到的所有值都列出,别少了,然后分别算概率,最后检查所有概率和是否是1,不是1说明要不你概率算错了,要不随机变量数少了。

相关文档
最新文档