大学物理知识点(热学)
大学物理(第三版)热学 第二章

一、 理想气体的微观图象
1. 质点 P nkT P 0
在 T 一定的情况下 n 值小 意味着分子间距大 2 .完全弹性碰撞
3. 除碰撞外 分子间无相互作用 f=0
范德瓦耳斯力(简称:范氏力)
f
斥力
合力
r0
O
s
10 -9m r
d
引力
分子力
气体之间的距离
r 8r0 引力可认为是零 可看做理想气体
第3步:dt时间内所有分子对dA的冲量
dI dIi ix 0
1 2
i
dIi
nimi2xdtdA
i
dIi
2ni mi2xdtdA
第4步:由压强的定义得出结果
P
dF dA
dI dtdA
i
ni
m
2 ix
i dA
ixdt
P
dF dA
dI dtdA
2. 气体分子的自由度
单原子分子 双原子分子 多原子分子
i3 i5 i6
二、 能量按自由度均分原理 条件:在温度为T 的平衡态下 1.每一平动自由度具有相同的平均动能
1 2
kT
1 3
3 2
kT
1 2
m
1
3
2
1 2
m
2 x
1 2
m
2 y
1 2
m
2 z
每一平动自由度的平均动能为 1 kT
2
2.平衡态 各自由度地位相等
每一转动自由度 每一振动自由度也具有 与平动自由度相同的平均动能 其值也为 1 kT
大学热学知识点总结图

大学热学知识点总结图一、热力学基础知识1. 温度、热量和热平衡温度是物质内部微观运动的表现,热量是能量的一种形式,热平衡是指两个系统之间不再有能量的净传递。
2. 热力学第一定律能量守恒定律,在自然界中能量不会自行减少或增加。
3. 热力学第二定律热量不会自发地由低温物体传递给高温物体,熵增加原理。
4. 热力学第三定律当温度趋近于绝对零度时,任何实体的熵均趋于零,即系统的熵在温度趋近绝对零度时趋于一个常数。
5. 理想气体理想气体状态方程和理想气体内能的表达式。
6. 凝固和融化物质由固态转变为液态称为融化,由液态转变为固态称为凝固。
凝固和融化温度是由物质特性决定的。
二、热力学循环1. 卡诺循环卡诺循环是热机的理想循环,包括等温膨胀、绝热膨胀、等温压缩和绝热压缩四个过程。
2. 斯特林循环斯特林循环是一种热机的实际循环,包括等温膨胀、绝热膨胀、等温压缩和绝热压缩四个过程。
3. 高尔辛循环高尔辛循环是一种蒸汽轮机工作的热力循环过程,包括等压加热、等容膨胀、等压冷凝和等容压缩四个过程。
三、热力学系统1. 开放系统与闭合系统开放系统和闭合系统能够与外界进行物质、能量交换。
2. 热力学过程等容过程、等压过程、等温过程、绝热过程。
3. 热力学函数内能、焓、吉布斯自由能、哈密顿函数等热力学函数的定义和性质。
四、热传导1. 热传导的基本定律傅里叶热传导定律、傅里叶热传导方程、热导率概念。
2. 热传导的应用导热系数、传热表面积、传热温度差、传热距离等参数。
3. 热传导的热阻和导热系数热阻的概念和计算、导热系数的概念和计算。
五、热辐射1. 热辐射的基本定律斯特藩—玻尔兹曼定律、维恩位移定律、铂居—史恩定律。
2. 黑体辐射和表面发射系数黑体的定义、黑体的吸收、发射和反射的关系。
3. 热辐射的热平衡和热不平衡热辐射的观测和应用。
六、热功学1. 热功学的基本定律各态函数、热力学基本关系和亥姆霍兹自由能、君体—吉布斯函数的性质。
2. 熵增加原理和热功学过程热功学过程的熵增加原理,等熵过程、绝热过程等。
大学物理-热力学基础必考知识点

第九章 热力学基础主要内容一.准静态过程(理想过程,在P-V 图中代表一条线) 系统从一个平衡态到另一个平衡态,中间经历的每一状态都可以近似看成平衡态(平衡态在P-V 图中代表一个点)过程。
二.理想气体状态方程:112212PV PV PV C T T T =→=; m PV RT M'=; P nkT = 8.31J R k mol =;231.3810J k k -=⨯;2316.02210A N mol -=⨯;A R N k =三.热力学第一定律Q E W =∆+;dQ dE dW =+…1.气体做功 21V V W Pdv =⎰ (规定气体对外做功>0 )2.Q (规定气体从外界吸收热量>0,过程量,只有在某个过程中才有意义)3.2121()V m V m m m dE C dT E E C T T M M ''=-=- 或 (状态量,理想气体内能只取决于温度,内能变化公式适用于任意的过程。
),2V m i C R =,=,P +22m i C R (i 为自由度,单原子分子自由度为3,双原子分子为5,多原子分子为6), =+,P ,m V m C C R ,气体比热容比:γ=>,,1P m V m C C四.热力学第一定律在理想气体的等值过程和绝热过程中的应用1. 等体过程-2(V m T 2. 等压过程⎧=⋅-=-⎪⎪⎪=∆+=-=⋅∆⎨⎪⎪∆=-∆⎪⎩21212121()()+2()2()=2p m V m m W P V V R TT M m i Q E W C T T P VM mi E C T T P V M;3.等温过程212211T T E E m V m p Q W RTln RTlnM V M p -=⎧⎪''⎨===⎪⎩1. 绝热过程210()V m Q W E C T T ν=⎧⎪⎨=-∆=--⎪⎩绝热方程1PV C γ=, -12V T C γ= ,13P T C γγ--= 。
大学热学知识点总结

等温压缩系数 K T M-1 f VV dP压强系数:v J (虫)Vp dT线膨胀系数:=1(dL )p 通常:V =3:-l dT热力学第零定律:在不受外界影响的情况下,只要A 和B 同时与C 处于热平衡,即使B 没有接触,它们仍然处于热平衡状态,这种规律被称为热力学第零定律。
1)「 选择某种测温物质,确定它的测温属性; 经验温标二要素:J 2选定固定点;3)进行分度,即对测温属性随温度的变化关系作出规定。
经验温标:理想气体温标、 华氏温标、兰氏温标、摄氏温标(热力学温标是国际实用温标不是经验温标 )理想气体物态方程N A =6.02 1023 个 /mol理想气体微观模型1分子本身线度比起分子间距小得多而可忽略不计23洛喜密脱常数 :n o 6.02― m ° = 2.7 1025 m22.4X10距离:11 3_9 =(25)3m =3.3 10 m2.7 10251 13 3 3M m 3-10r =( )3 =( —)3 =2.4 10 m'4 兀 n'4 兀 PN A2、 除碰撞一瞬间外,分子间互作用力可忽略不计。
分子在两次碰撞之间作自由的匀速直线 运动;3、 处于平衡态的理想气体,分子之间及分子与器壁间的碰撞是完全弹性碰撞;热学复习大纲二丄(巴) V dT PV =;RT二恒量 RTp = nkT P 0V 0R= —=8.31 J/mol K To »M = Nm, M m = N A m R _23k=1.38X10 J / KN An 为单位体积内的数密度标准状态下分子间平均11 3L =( )3氢分子半径体膨胀系数4、分子的运动遵从经典力学的规律 :在常温下,压强在数个大气压以下的气体,一般都能很好地满足理想气体方程。
处于平衡态的气体均具有分子混沌性单位时间内碰在单位面积器壁上的平均分子数名师整理 精华知识点6P P i =RTV m -b人P i =[单位时间内碰撞在单位 面积上平均分子数nAt 时间内碰在 AA 面积器壁上的平均分子数N = Avt 丄6单位时间碰在单位面积器壁上的平均分子数 N Atnv以后可用较严密的方法 得到]二巴42 - 统计关系式n rp = — n 名 k1 ~2分子平均平动动能 ;=理想气体物态方程的另 一种形式p = nkTRk 二兀十8 10‘J K 」,k 为玻尔兹曼常数 温度的微观意义JmV 2 亠绝对温度是分子热运动剧烈程度的度量是分子杂乱无章热运动的平均平动动能,它不包括整体定向运动动能。
大学物理热学

ΔU=Q+W,其中ΔU表示系统内能的增量,Q表示外界对系统传递的热量,W表示外界对系统做的功。
热力学第二定律
内容
不可能把热从低温物体传到高温物体而不产生其他影响,或不可能从单一热源 取热使之完全转换为有用的功而不产生其他影响,或不可逆热力过程中熵的微 增量总是大于零。
表达式
对于可逆过程,有dS=(dQ/T);对于不可逆过程,有dS>(dQ/T),其中S表示熵, T表示热力学温度。
02
辐射传热特点
不需要介质,可在真空中传播;伴 随能量形式的转换;辐射强度与物
体温度的四次方成正比。
04
应用
太阳能利用、红外遥感测温、激光 器等。
复合传热过程分析
复合传热 分析方法 影响因素
应用
实际传热过程中往往同时存在热传导、对流和辐射三种传热方式。 根据具体传热条件,建立物理模型,综合运用热传导、对流和辐 射的传热规律进行分析计算。
02
理想气体性质及应用
理想气体状态方程
01
理想气体状态方程
pV = nRT,其中p为压强,V为 体积,n为物质的量,R为气体常 数,T为热力学温度。
02
理想气体状态方程 的适用条件
适用于稀薄气体,即气体分子间 距离较大,相互作用力可忽略不 计。
03
理想气体状态方程 的应用
可用于计算气体的压强、体积、 温度等物理量,以及进行气体状 态变化的分析。
热力学在其他领域应用
化学工业
制冷与空调
新能源领域
在化学工业中,热力学原理被广泛应用 于化学反应过程的分析和优化。通过热 力学计算和分析,可以确定化学反应的 条件、反应热、反应平衡常数等关键参 数,为化学工业的生产提供理论指导。
大学物理热学知识点整理

大学物理热学知识点整理热运动:物质世界的一种基本运动形式,是构成宏观物体的大量微观粒子的永不停息的无规则运动。
热现象:构成宏观物质的大量微观粒子热运动的集体表现。
宏观量:表征系统状态的物理量。
微观量:描写单个分子特征的物理量。
热力学系统,简称系统:一些包含有大量微观粒子(如分子、原子)的物体或物体系。
外界或环境:系统以外的物体。
孤立系统:与外界没有任何相互作用的热力学系统。
封闭系统:与外界没有物质交换但有能量交换的系统。
开放系统:与外界既有物质交换又有能量交换的系统。
平衡态:对于一个孤立系,经过足够长的时间后,系统必将达到一个宏观性质不随时间变化的状态,这种状态称为平衡态。
热动平衡:在平衡态下,组成系统的微观粒子仍处在不停的无规则热运动之中,只是它们的统计平均效果不变,这是一种动态的平衡,又称为热动平衡。
状态参量:在平衡态下,热力学系统的宏观性质可以用一些确定的宏观参量来描述,这种描述系统状态的宏观参量称为状态参量。
态函数:由平衡态确定的其他宏观物理量可以表达为一组独立状态参量的函数,这些物理量称为“态函数”。
体积V :气体分子所能到达的空间,即气体容器的容积。
单位立方米( m^{3} ),也用升( L )为单位。
压强p :气体作用与容器壁单位面积上的压力,是大量分子对器壁碰撞的宏观表现。
SI单位制中单位是帕斯卡,简称帕( Pa ), 1\;Pa=1\;N/m^{2} 。
有时压强的单位还用大气压( atm )和毫米汞柱( mmHg )表示。
换算关系为1\;atm=1.013\times10^{5}\;Pa1\;mm\Hg=\frac{1}{760}\;atm=1.33\times10^{2}\;Pa温度:表征物体的冷热程度的物理量。
热平衡:在与外界影响隔绝的条件下,使两个热力学系统相互接触,让它们之间能发生传热,热的系统会慢慢变冷,冷的系统会慢慢变热,经过一段时间后,它们会达到一个共同的平衡状态,称这两个系统达到了热平衡。
大学物理热学知识点整理

大学物理热学知识点整理系统吸收的热量,一部分转化成系统的内能;另一部分转化为系统对外所作的功。
Q=\Delta E+A上式的各量均为代数量,其正负号规定为:系统从外界吸热时, Q 为正,向外界放热时, Q 为负;系统对外作功时,A 为正。
外界对系统作功时, A 为负;系统内能增加时,\Delta E 为正,系统的内能减少时, \Delta E 为负。
对于状态的微小变化过程,热力学第一定律的数学表达式dQ=dE+dA第一类永动机:一种不需要外界提供能量而连续不断对外作功,系统又能复原的机器。
等体过程:dV=0 ,系统作功dA=pdV=0dQ_v=dE=\frac{M}{M_{mol}}\frac{i}{2}RdT所以 Q_v=\Delta E=E_2-E_1=\frac{M}{M_{mol}}\frac{i}{2}R(T_2-T_1)在等体过程,外界传给气体的热量全部用来增加气体的内能,系统对外不作功。
等压过程: p =恒量,当气体体积从 V_1 膨胀到 V_2 时,系统对外作功为A_p=\int_{V_1}^{V_2}pdv=p(V_2-V_1)=\frac{M}{M_{mol}}R(T_2-T_1)系统吸收的热量为Q_p=\Delta E+p(V_2-V_1)=\frac{M}{M_{mol}}(\frac{i}{2}+1)R(T_2-T_1)等温过程: \Delta E=0Q_T=A_T=\int_{V_1}^{V_2}pdv=\frac{M}{M_{mol}}RT\ln\fra c{V_2}{V_1}因为 pV=常量,即 p_1V_1=p_2V_2所以 Q_T=A_T=\frac{M}{M_{mol}}RT\ln\frac{p_1}{p_2}摩尔热容 C_m: 1mol 物质温度升高(或降低) 1K 时所吸收(或放出)的热量,单位为 J/mol\cdot K 。
C_m=\frac{(dQ)_m}{dT}理想气体等体摩尔热容:C_V=\frac{dQ_V}{dT}=\frac{dE}{dT}=\frac{\frac{i}{2}RdT }{dT}=\frac{i}{2}Ri 为分子自由度; R 为普适气体常量。
大学物理热力学第二定律知识点总结

大学物理热力学第二定律知识点总结热力学第二定律是大学物理热学部分的重要内容,它揭示了热现象过程中的方向性和不可逆性。
理解和掌握热力学第二定律对于深入研究热学以及相关领域具有重要意义。
以下是对热力学第二定律相关知识点的详细总结。
一、热力学第二定律的表述1、克劳修斯表述热量不能自发地从低温物体传向高温物体。
这意味着热传递的过程具有方向性,如果没有外界的干预,热量只会从高温物体流向低温物体,而不会反向流动。
2、开尔文表述不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响。
也就是说,第二类永动机是不可能制成的。
第二类永动机是指一种能够从单一热源吸热,并将其全部转化为功,而不产生其他变化的热机。
二、热力学第二定律的微观解释从微观角度来看,热力学第二定律反映了大量分子热运动的无序性。
在一个孤立系统中,分子的热运动总是从有序趋向无序,这是一个自发的过程。
比如,将不同温度的气体混合在一起,它们会自发地达到温度均匀分布的状态,而不会自动地分离成原来的不同温度区域。
这是因为分子的无规则运动使得它们更容易趋向无序的分布。
三、熵熵是描述系统无序程度的热力学概念。
熵的增加表示系统的无序程度增加。
对于一个绝热过程,系统的熵永不减少。
如果是可逆绝热过程,熵不变;如果是不可逆绝热过程,熵增加。
熵的计算公式为:$dS =\frac{dQ}{T}$,其中$dQ$ 是微元过程中的吸热量,$T$ 是热力学温度。
四、卡诺循环与卡诺定理1、卡诺循环卡诺循环由两个等温过程和两个绝热过程组成,是一种理想的热机循环。
通过卡诺循环,可以计算出热机的效率。
卡诺热机的效率为:$\eta = 1 \frac{T_2}{T_1}$,其中$T_1$ 是高温热源的温度,$T_2$ 是低温热源的温度。
2、卡诺定理(1)在相同的高温热源和低温热源之间工作的一切可逆热机,其效率都相等,与工作物质无关。
(2)在相同的高温热源和低温热源之间工作的一切不可逆热机,其效率都小于可逆热机的效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C p ,m R C V
2 i
i
C P ,m 1 R CV CV , m
2) 利用热力学第一定律计算
Q E W
小结:理想气体的四个准静态过程
过程 特点
过程方程
W
Q
CV (T2 T1
)
等容 dV 0
等压
p 0 C 1 T
V C 2 T
dp 0
熵增加原理成立的条件: 孤立系统或绝热过程.
熵增加原理的应用 :自发过程进行方向的判椐 .
三、计算问题:
1、功、热量及内能增量的计算
1) 内能增量、功、等容或等压过程的热量一般可直接计算
i E RT 2
W
V2
V1
pdV
Q x C x (T2 T1 )
迈耶公式:
x V,P
沿可逆过程
玻尔兹曼熵公式
S k ln
二、 热力学定律
第零定-普朗克表述: A-B平衡态
A C
Q E A
B
不可能从单一热源吸收热量,使之完全变为功, 而不产生其他影响。
2:克劳修斯表述:
热量不能 自动地 由低温物体传向高温物体。
工质
W=Q1 - Q2
Q2
c T2
Q2 T2 Q1 T1
T2
恒温(低温)热源
2)逆循环(制冷循环) p 制冷系数
高温热源
Q1 = Q2+W W Q2
V
低温热源
恒温(高温)热源
特例:卡诺制冷循环
a
b
d
T1
T C 2 T1 T2
T1
Q1 W外 Q2
Q2 c
T1 W外 Q2 1 T2 T2
气体动理论内容总结
1、理想气体 状态方程:
P = n kT 3、理想气体的温度: 4、理想气体的内能:
M RT pV vRT M mol
2、理想气体的压强:
2 p n t 3
3 t kT 2
i E RT 2
5、气体分子的速率分布 dN f Nd
0
p ( V
2
C p (T2 T1
)
V 绝热自由膨胀:不传热、不作功、内能不变,温度复原。 1 )
2、循环效率的计算 1)正循环(热机循环) p 热机效率
Q1 高温热源
W=Q1 - Q2
Q2
低温热源
特例:卡诺热机
a b W d
Q2
T1
V
恒温(高温)热源
C 1
T2 T1
T1 Q1
z
1
2d n
2
kT
2d P
2
一、基本概念:
1、 平衡态 2、 准静态过程:过程的每一个中间状态都无限接近平 衡态; 准静态过程可以用参数空间的连续曲线表示。 3、 理想气体微观模型与统计假设 4、 功、内能、热量 体积功:W pdV
V2
——过程量
内能:
V1
i E RT 2
dQ
2
M
CV dT
S M C V ln( 2 ) T1
T
(4〕可逆绝热
S 1
dQ = 0 T
f (v)dv 1
介于v1~v2之间的气体分子的平均速率:
1 ~ 2
1
2
f ( ) d
2
f ( ) d
2 RT
1
6、三种统计速率:
2
3 RT
8 RT
p
6、分子的平均碰撞频率与平均自由程
平均碰撞频率:
z 2d n
2
平均自由程:
微观意义:
自然过程总是向分子热运动 无序性增大的方向进行。
第三定律:绝对零度不能达到。
热力学第二定律的数学表达式--熵增加原理: 微分式: dS 0 积分式: S S S 2 1 即
S 0
可逆过程
dQ 0 1 T
2
平衡态 A
平衡态 B (熵不变)
平衡态(熵增加)
不可逆过程 非平衡态 自发过程 说明:
i M E RT 2
功、热:过程有关量,过程中系统内能改变的度量;
5、 可逆过程与不可逆过程
不可逆因素:通过摩擦功变热;有限温差下的热传导; 绝热自由膨胀;非平衡态向平衡态的过渡; 6. 热力学几率:某宏观态中包含的微观状态数目
7. 熵: 态函数,混乱度
dQ S2 S1 1 T
2
T2
恒温(低温)热源
3、 熵变的计算
dQ S2 S1 1 T
2
(1〕可逆等温
沿可逆过程
V2 V2 S R ln( ) V1 M
dQ PdV
dQ M
V1
(2) 可逆等压 T1T2 (3) 可逆等容 T1T2
C p dT
T S M C p ln( 2 ) T1