《分式方程》教学设计-03
分式方程(3)人教版八年级(初二)上册数学教案

一、自学:列分式方程解应用题的一般步骤是什么?二、筑路工程问题:两个工程队共同参与一项筑路工程,甲队单独施工完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成。
求乙队单独完成需要的时间?哪个队的施工速度快?归纳:解工程问题的基本思路是:三、行程问题:某列列车平均提速v km/h,用相同的时间,列车提速前能行驶s km,提速后比提速前多行驶50km,提速前列车的平均速度为多少?路程、速度、时间三者的关系是:四、拓展提升:已知静水速度为x,水流速度为y,则顺水速度为逆水速度为一艘轮船顺水航行40千米所用的时间与逆水航行30千米所用的时间相同,若水流速度为3千米/时,求轮船在静水中的速度。
某中学组织学生去福利院慰问,在准备礼品时发现,购买 1 个甲礼品比购买 1 个乙礼品多花40 元,并且花费600 元购买甲礼品和花费360 元购买乙礼品的数量相等.( 1 )求甲、乙两种礼品的单价各为多少元?( 2 )学校准备购买甲、乙两种礼品共30 个送给福利院的老人,要求购买礼品的总费用不超过2000 元,那么最多可购买多少个甲礼品?师生反思:当堂检测:1、甲、已两地相距360千米,新修的高速公路开通后,在甲、已两地间行驶的长途客车平均车速提高了50%,而从甲地到已地的时间缩短了2小时,试确定原来的平均车速。
2、小李做90个零件与小王做120个零件所用的时间相同,他俩每小时一共做35个零件,小李、小王每小时各做多少个零件?3、已知轮船在静水中的速度为20千米/时,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水的水流速度是多少千米/时?两人合作1.2h清点完另一半图书,如果李强单独清点这批图书需要几小时?。
最新分式方程教案(优秀3篇)

最新分式方程教案(优秀3篇)分式方程教案篇一教师准备多媒体课件1.谈话导入。
我们学过了关于方程的哪些知识?(结合学生的回答板书)预设生1:方程的意义。
生2:方程与等式的关系。
生3:解方程的方法。
生4:用方程知识解决实际问题。
……2.揭示课题。
同学们说得很全面,这节课我们就来系统地复习有关方程的知识。
(板书课题:方程) 1.方程。
(1)什么是方程?它与算术式有什么不同?明确:①含有未知数的等式叫作方程。
②算术式是一个式子,由运算符号和已知数组成。
方程是一个等式,在方程里的未知数可以参与运算,并且只有当未知数为特定的数值时,方程才成立。
(2)什么是方程的解?使方程左右两边相等的未知数的值,叫作方程的解。
(3)什么是解方程?求方程的解的过程叫作解方程。
(4)解方程的依据是什么?①等式的性质。
②加减法和乘除法各部分之间的互逆关系。
(5)课件出示教材80页“回顾与交流”3题。
①组织学生分组讨论解方程的步骤和方法,以及哪些地方需要注意。
②指名到黑板前进行板演。
③全班交流并说一说自己是怎么解的。
2.列方程解决实际问题。
(1)列方程解应用题的步骤。
学生小组交流并集体汇报,然后教师明确:①弄清题意,确定未知数并用x表示;②找出题中数量间的相等关系;③列方程,解方程;④检验并写出答语。
(2)列方程解应用题的关键及找等量关系的方法。
①列方程解应用题的关键是什么?列方程解应用题的关键是找出题中的等量关系,根据等量关系列方程解答。
②你知道哪些找等量关系的方法?预设生1:根据关键性词语找等量关系。
生2:根据常见的四则混合运算的意义及各部分之间的关系找等量关系。
生3:根据常见的数量关系找等量关系。
生4:根据计算公式找等量关系。
(3)课件出示教材80页“回顾与交流”4题。
教师引导学生先找出各题的等量关系,再列方程自主解决问题。
分式方程教案篇二教科书第12~一三页,“回顾与整理”、“练习与应用”第1~4题。
1、通过回顾与整理,使学生进一步加深等式与方程的意义,等式的性质的理解。
沪科版数学七年级下册9.3《分式方程》教学设计

沪科版数学七年级下册9.3《分式方程》教学设计一. 教材分析《分式方程》是沪科版数学七年级下册第9.3节的内容,主要介绍了分式方程的定义、解法及其应用。
本节内容是在学生已经掌握了分式的基本性质和分式运算的基础上进行学习的,是进一步培养学生解决实际问题能力的关键环节。
二. 学情分析学生在学习本节内容前,已经掌握了分式的基本性质和分式运算,但对于分式方程的理解和应用可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生理解分式方程的实质,并通过具体的例子让学生掌握解分式方程的方法。
三. 教学目标1.知识与技能:使学生理解分式方程的定义,掌握解分式方程的基本方法,并能应用分式方程解决实际问题。
2.过程与方法:通过自主学习、合作交流的方式,培养学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和自信心。
四. 教学重难点1.重点:分式方程的定义、解法及其应用。
2.难点:理解分式方程的实质,掌握解分式方程的方法。
五. 教学方法采用“问题驱动”的教学方法,引导学生主动探究分式方程的定义、解法及其应用,通过小组合作、讨论交流,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.教学素材:准备相关的例题和练习题,以及多媒体教学设备。
2.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)通过一个实际问题引入分式方程的概念,激发学生的学习兴趣。
2.呈现(10分钟)介绍分式方程的定义,引导学生理解分式方程的实质。
3.操练(10分钟)让学生分组讨论,探索解分式方程的方法,并给出具体的例子。
4.巩固(10分钟)让学生独立解决一些简单的分式方程,巩固所学知识。
5.拓展(10分钟)引导学生思考如何应用分式方程解决实际问题,并提供一些相关的练习题。
6.小结(5分钟)对本节课的主要内容进行总结,强调分式方程的定义和解法。
7.家庭作业(5分钟)布置一些相关的练习题,让学生巩固所学知识。
八年级数学上册 15.3 分式方程(3)教案 (新版)新人教版

基本公式:工作量=工时×工效.
(4)顺水逆水问题
v顺水=v静水+v水.
v逆水=v静水-v水.
(二)新课
例3.两个工程队共同参加一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成。哪个队的施工速度快?
分析:甲队一个月完成总工程的 ,设乙队如果单独施工1个月能完成 总工程的 ,那么甲队半个月完成总工程的 ,乙队半个月完成总工程的 ,两队半个月完成总工程的 + 。
教学重点难点
教学
重点
审明题意,寻找等量关系,将实际问题转化成分式方 程的数学模型。
教学
难点
根据实际意义检验解的合理性。
教学过程设计
师生活动
设计意图
(一)复习提问
1.解分式方程的步骤(1)能化简的先化简;(2)方程两边同乘以最简公分母,化分式方程为整式方程;(3)解整式方程;( 4)验根 .
2.列方程应用题的步骤是什么?
等量关系:提速前行驶50千米所用的时间=提速后行驶(s+50)千米所用的时间
列方程得: =
(教师板书解答、检验过程)
(三)、课堂练习:课本P154 1.2
(四)、小结
对于列方程解应用题,一定要善于把生活语言转化为数学语言,从中找出等量关系.对于我们常见的几种类型题,我们要熟悉它们的基本关系式。
(四)、作业:习题15.3 3、4、5
等量关系为:甲、乙两个工程总量=总工程量,则有 =1
(教师板书解答、检验过程)
例4:从2004年5月起某列列车平均提速v千米/时,用相同的时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度是多少?
分析:这里的字 母 v,s表示已知数据,设提速前的平均速度为x千米/时,则提速前列车行驶s千米所用的时间为 小时,提速后列车的平均速度为(x+v)千米/时,提速后列车行驶(s+50)千米所用的时间为 小时。
苏科版数学八年级下册10.5《分式方程》教学设计3

苏科版数学八年级下册10.5《分式方程》教学设计3一. 教材分析苏科版数学八年级下册10.5《分式方程》是学生在学习了分式、方程的基础上,进一步深化对分式方程的理解和应用。
本节课通过具体的例子引导学生理解分式方程的定义、特点及解法,培养学生解决实际问题的能力。
教材内容由浅入深,循序渐进,既注重了基础知识的巩固,又提高了学生的思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了分式和方程的基础知识,对于分式方程有一定的认识。
但部分学生对分式方程的理解仍停留在表面,难以把握其本质特征。
此外,学生在解决实际问题时,往往不能灵活运用所学知识,对于分式方程的解法技巧有待提高。
三. 教学目标1.理解分式方程的定义、特点及解法。
2.培养学生解决实际问题的能力。
3.提高学生的数学思维能力和创新意识。
四. 教学重难点1.分式方程的定义和特点。
2.分式方程的解法及应用。
五. 教学方法1.情境教学法:通过生活实例引入分式方程,让学生感受到数学与实际的联系。
2.案例教学法:分析典型例题,引导学生总结解题方法。
3.小组合作学习:鼓励学生相互讨论、交流,提高解决问题的能力。
4.启发式教学法:教师提问,引导学生思考,激发学生的求知欲。
六. 教学准备1.教学课件:制作课件,展示分式方程的相关概念、例题及解法。
2.练习题:准备分式方程的相关练习题,用于巩固所学知识。
3.教学素材:收集与分式方程相关的实际问题,用于引入和拓展。
七. 教学过程1.导入(5分钟)利用生活实例引入分式方程,激发学生的学习兴趣。
例如,讲解一个实际问题:某商品打8折后售价为120元,求原价。
2.呈现(10分钟)展示分式方程的定义、特点及解法。
通过PPT课件,让学生清晰地了解分式方程的基本概念和解题步骤。
3.操练(10分钟)让学生独立解决一些简单的分式方程问题。
教师巡视课堂,解答学生的疑问,指导学生掌握解题方法。
4.巩固(10分钟)分析典型例题,引导学生总结解题方法。
分式方程教学设计

分式方程教学设计第1篇:分式方程教学设计分式方程(1)一、教学目标1.使学生理解分式方程的意义.2.使学生掌握可化为一元一次方程的分式方程的一般解法.3.了解解分式方程解的检验方法.4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.二、教学重点和难点1.教学重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想.2.教学难点:检验分式方程解的原因3.疑点及分析和解决办法:解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.三、教学方法启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.四、教学过程(一)复习及引入新课1.提问:什么叫方程?什么叫方程的解?答:含有未知数的等式叫做方程.使方程两边相等的未知数的值,叫做方程的解.这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要讨论的分式方程.(二)新课板书课题:板书:分式方程的定义.分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.练习:判断下列各式哪个是分式方程.在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.先由同学讨论如何解这个方程.在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母.解:两边同乘以最简公分母2(x+5)得2(x+1)=5+x 2x+2=5+x x=3.如果我们想检验一下这种方法,就需要检验一下所求出的数是不是方程的解.检验:把x=3代入原方程左边=右边∴x=3是原方程的解.例2.一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,则轮船顺流航行的速度为(20+v)千米/时,逆流航行的速度为(20-v)千米/时,顺流航行100千米所用的时间为时。
人教版八年级上册数学《 分式方程》(优质教学设计)

人教版八年级上册数学《分式方程》(优质教学设计)一. 教材分析人教版八年级上册数学《分式方程》这一节内容,是在学生已经掌握了方程和等式的基本性质的基础上进行教学的。
本节课主要让学生了解分式方程的概念,学会解分式方程的方法,并能够应用分式方程解决实际问题。
教材通过具体的例子,引导学生探究分式方程的解法,并总结解分式方程的一般步骤。
二. 学情分析八年级的学生已经具备了一定的数学基础,对方程和等式有一定的了解。
但是,学生对分式方程的理解和应用还比较薄弱。
因此,在教学过程中,需要通过具体的例子,引导学生理解分式方程的概念,掌握解分式方程的方法,并能够应用分式方程解决实际问题。
三. 教学目标1.让学生了解分式方程的概念,理解分式方程的意义。
2.引导学生掌握解分式方程的方法,并能够熟练运用。
3.通过解决实际问题,培养学生的应用能力。
四. 教学重难点1.重点:分式方程的概念,解分式方程的方法。
2.难点:解分式方程的步骤和技巧。
五. 教学方法采用问题驱动法,通过具体的例子,引导学生探究分式方程的解法,并总结解分式方程的一般步骤。
同时,运用小组合作学习法,让学生在小组内讨论和分享解题经验,提高学生的合作能力和沟通能力。
六. 教学准备1.准备相关的例题和练习题。
2.准备课件,用于展示和解题过程。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入分式方程的概念。
例如,某商店举行打折活动,原价为100元的商品打八折后,顾客实际支付了72元,求打折的力度。
让学生尝试用方程来解决这个问题,从而引出分式方程的概念。
2.呈现(10分钟)展示几个分式方程的例子,让学生观察和分析。
例如:(1)(=2)(2)(=3)引导学生总结解分式方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1。
3.操练(10分钟)让学生独立完成一些分式方程的练习题,检验学生对分式方程的理解和掌握程度。
教师可适时给予提示和指导。
4.巩固(10分钟)学生进行小组讨论,分享解题经验,总结解分式方程的技巧。
《分式方程教学》教学设计

《分式方程教学》教学设计《分式方程教学》是在学生掌握了一元一次方程的解法及分式四则混合运算的基础上展开的,既是前一节的深化,同时解决了解方程的问题,又为以后的教学——“应用”打下了良好的基础,因而在教材中具有不可忽略的地位与作用。
为了更好的将教与学有机结合,提高课堂教学效率,数学网小编与大家分享《分式方程教学》教学设计,希望大家在学习中得到提高。
一、教学内容分析:本节“分式方程”是人教版八年级下册第16章第3节的内容,是继一元一次方程,二元一次方程组之后,初中阶段所讲授的又能一种方程的解法。
本节课是在继分式的内容及分式的四则混合运算之后所讲述的一个内容,其实际上就是分式与方程的综合。
因此本节课可以看作是一个综合课,同时分式方程的解法也是初中阶段的一个重点内容,要求学生必须掌握。
二、学情分析:在学习本章之前,学生已经分两次学习过整式方程(一元一次方程、二元一次方程组),他们对于整式方程特别是一元一次方程的解法及其基本思路(使方程逐步化为x=a 的形式)已经比较熟悉,而分式方程的未知数在分母中,它的解法比以前学过的方程复杂,需通过转化思想,化分式方程为整式方程。
三、教学目标:1、明确什么是分式方程?会区分整式方程与分式方程。
2、会解可化为一元一次方程的分式方程。
3、知道分式方程产生增根的原因,并学会如何验根。
四、教学重点:分式方程的解法。
教学难点:理解分式方程可能产生增根的原因。
五、教学流程1、忆一忆(1)什么叫方程?什么叫方程的解?(2)什么叫分式?(3)结合具体例子说出解一元一次方程的步骤。
设计意图:让学生由旧知识的回忆自然引出新知识便于学生理解接受。
2x-(x-1)/3=6 3x/4+(2x+1)/3=02、猜一猜板书课题“分式方程”,让学生猜一猜其概念,结合分式和方程的特点学生易得出:分母中含有未知数的方程叫分式方程。
设计意图:采用这种形式引入今天的话题,让学生觉得不是在上数学,而象是在拉家常,让学生没有负担,另外,学生在前面的回忆的基础上很容易猜出来分式方程的概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《分式方程》教学设计
教学目标:
(一)教学知识点
1.解分式方程的一般步骤.
2.了解解分式方程验根的必要性.
(二)能力训练要求
1.通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤.
2.使学生进一步了解数学思想中的“转化”思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径.
(三)情感与价值观要求
1.培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度.
2.运用“转化”的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信.
教学重点:
1.解分式方程的一般步骤,熟练掌握分式方程的解决.
2.明确解分式方程验根的必要性.
教学难点:
明确分式方程验根的必要性.
教学方法:
探索发现法
学生在教师的引导下,探索分式方程是如何转化为整式方程,并发现解分式方程验根的必要性.
教具准备:
投影片四张
第一张:例1、例2,(记作§3.4.2 A)
第二张:议一议,(记作§3.4.2 B)
第三张:想一想,(记作§3.4.2 C )
第四张:补充练习,(记作§3.4.2 D ).
教学过程:
Ⅰ.提出问题,引入新课
[师]在上节课的几个问题,我们根据题意将具体实际的情境,转化成了数学模型——分式方程.但要使问题得到真正的解决,则必须设法解出所列的分式方程.
这节课,我们就来学习分式方程的解法.我们不妨先来回忆一下我们曾学过的一元一次方程的解法,也许你会从中得到启示,寻找到解分式方程的方法. 解方程2
13-x +325+x =2-624-x [师生共解](1)去分母,方程两边同乘以分母的最小公倍数6,得
3(3x -1)+2(5x +2)=6×2-(4x -2).
(2)去括号,得9x -3+10x +4=12-4x +2,
(3)移项,得9x +10x +4x =12+2+3-4,
(4)合并同类项,得23x =13,
(5)使x 的系数化为1,两边同除以23,x =
2313. Ⅱ.讲解新课,探索分式方程的解法
[师]刚才我们一同回忆了一元一次方程的解法步骤.下面我们来看一个分式方程.(出示投影片§
[生]解这个方程,能不能也像解含有分母的一元一次方程一样去分母呢?
[师]同学们说他的想法可取吗?
[生]可取.
[师]同学们可以接着讨论,方程两边同乘以什么样的整式(或数),可以去掉分母呢?
[生]乘以分式方程中所有分母的公分母.
[生]解一元一次方程,去分母时,方程两边同乘以分母的最小公倍数,比较简单.解分式方程时,我认为方程两边同乘以分母的最简公分母,去分母也比较简单.
[师]我觉得这两位同学的想法都非常好.那么这个分式方程的最简公分母是什么呢?
[生]x (x -2).
[师生共析]方程两边同乘以x (x -2),得x (x -2)·
21-x =x (x -2)·x 3, 化简,得x =3(x -2). (2)
我们可以发现,采用去分母的方法把分式方程转化为整式方程,而且是我们曾学过的一元一次方程. [生]再往下解,我们就可以像解一元一次方程一样,解出x .即x =3x -6(去括号)
2x =6(移项,合并同类项).
x =3(x 的系数化为1).
[师]x =3是方程(2)的解吗?是方程(1)的解吗?为什么?同学们可以在小组内讨论. (教师可参与到学生的讨论中,倾听学生的说法)
[生]x =3是由一元一次方程x =3(x -2) (2)解出来的,x =3一定是方程(2)的解.但是不是原分式方程(1)的解,需要检验.把x =3代入方程(1)的左边=
231-=1,右边=33=1,左边=右边,所以x =3是方程(1)的解.
[师]同学们表现得都很棒!相信同学们也能用同样的方法解出例2.
[例2]解方程:x 300-x
2480=4 (由学生在练习本上试着完成,然后再共同解答)
解:方程两边同乘以2x ,得
600-480=8x
解这个方程,得x =15
检验:将x =15代入原方程,得
左边=4,右边=4,左边=右边,所以x =15是原方程的根.
[师]很好!同学们现在不仅解出了分式方程的解,还有了检验结果的好习惯.
(可让学生在练习本上完成,发现有和小亮同样解法的同学,可用实物投影仪显示他的解法,并一块分析)
[师]我们来看小亮同学的解法:32--x x =x
-31-2 解:方程两边同乘以x -3,得2-x =-1-2(x -3)
解这个方程,得x =3.
[生]小亮解完没检验x =3是不是原方程的解.
[师]检验的结果如何呢?
[生]把x =3代入原方程中,使方程的分母x -3和3-x 都为零,即x =3时,方程中的分式无意义,因此x =3不是原方程的根.
[师]它是去分母后得到的整式方程的根吗?
[生]x =3是去分母后的整式方程的根. [师]为什么x =3是整式方程的根,它使得最简公分母为零,而不是原分式方程的根呢?同学们可在小组内讨论.
(教师可参与到学生的讨论中,倾听同学们的想法)
[生]在解分式方程时,我们在分式方程两边都乘以最简公分母才得到整式方程.如果整式方程的根使得最简公分母的值为零,那么它就相当于分式方程两边都乘以零,不符合等式变形时的两个基本性质,得到的整式方程的解必将使分式方程中有的分式分母为零,也就不适合原方程了.
[师]很好!分析得很透彻,我们把这样的不适合原方程的整式方程的根,叫原方程的增根. 在把分式方程转化为整式方程的过程中会产生增根.那么,是不是就不要这样解?或采用什么方法补救?
[生]还是要把分式方程转化成整式方程来解.解出整式方程的解后可用检验的方法看是不是原方程的解.
[师]怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗?
[生]不用,产生增根的原因是这个根使去分母时的最简公分母为零造成的.因此最简单的检验方法是:把整式方程的根代入最简公分母.若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根.是增根,必舍去.
[师]在解一元一次方程时每一步的变形都符合等式的性质,解出的根都应是原方程的根.但在解分式方程时,解出的整式方程的根一定要代入最简公分母检验.小亮就犯了没有检验的错误.
Ⅲ.应用,升华 1.解方程:
(1)13-x =x 4;(2)1210-x +x
215-=2. [分析]先总结解分式方程的几个步骤,然后解题. 解:(1)
13-x =x 4 去分母,方程两边同乘以x (x -1),得
3x =4(x -1)
解这个方程,得x =4
检验:把x =4代入x (x -1)=4×3=12≠0,
所以原方程的根为x =4.
(2)1210-x +x
215-=2 去分母,方程两边同乘以(2x -1),得
10-5=2(2x -1)
解这个方程,得x =
4
7 检验:把x =47代入原方程分母2x -1=2×47-1=25≠0. 所以原方程的根为x =4
7. 2.回顾,总结
[师]同学们可根据例题和练习题的步骤,讨论总结.
[生]解分式方程分三大步骤:(1)方程两边都乘以最简公分母,约去分母,化分式方程为整式方程;
(2)解这个整式方程;
(3)把整式方程的根代入最简公分母,看结果是否为零,使最简公分母为零的根是原方程的增根,应舍去.使最简公分母不为零的根才是原方程的根.
3.补充练习
出示投影片(§3.4.2 D )
[分析]强调解分式方程的三个步骤:一去分母;二解整式方程;三验根.
解:(1)去分母,方程两边同时乘以x (x +3000),得9000(x +3000)=15000x
解这个整式方程,得x =4500
检验:把x =4500代入x (x +3000)≠0.
所以原方程的根为4500
(2)x h 2=x
a a -(a ,h 是常数且都大于零) 去分母,方程两边同乘以2x (a -x ),得
h (a -x )=2ax
解整式方程,得x =
h
a ah +2(2a +h ≠0) 检验:把x =
h a ah +2代入原方程中,最简公分母2x (a -x )≠0,所以原方程的根为 x =h a ah +2. Ⅳ.课时小结
[师]同学们这节课的表现很活跃,一定收获不小.
[生]我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可. [生]我明白了分式方程转化为整式方程为什么会产生增根.
[生]我又一次体验到了“转化”在学习数学中的重要作用,但又进一步认识到每一步转化并不一定都那么“完美”,必须经过检验,反思“转化”过程. ……
Ⅴ.课后作业
习题3.7
Ⅵ.活动与探究
若关于x 的方程31--x x =9
32-x m 有增根,则m 的值是____________. [过程]首先增根是分式方程转化为整式方程时整式方程的根,但却使最简公分母为零.
[结果]关于x 的方程31--x x =9
32-x m 有增根,则此增根必使3x -9=3(x -3)=0,所以增根为x =3.去分母,方程两边同乘以3(x -3),得3(x -1)=m 2.
根据题意,得x =3是上面整式方程的根,
所以3(3-1)=m 2,则m =±6.。