线性代数作业第四章(2)

合集下载

(完整版)线性代数第四章线性方程组试题及答案

(完整版)线性代数第四章线性方程组试题及答案

第四章 线性方程组1.线性方程组的基本概念(1)线性方程组的一般形式为:其中未知数的个数n 和方程式的个数m 不必相等. 线性方程组的解是一个n 维向量(k 1,k 2, …,k n )(称为解向量),它满足当每个方程中的未知数x 用k i 替代时都成为等式. 线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解. b 1=b 2=…=b m =0的线性方程组称为齐次线性方程组. n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只有零解)和无穷多解(即有非零解). 把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组. (2) 线性方程组的其他形式 线性方程组除了通常的写法外,还常用两种简化形式: 向量式 x 1α1+x 2α2+…+n x n α= β, (齐次方程组x 1α1+x 2α2+…+n x n α=0).即[]n a a ,,a 21 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n x x x 21=β 全部按列分块,其中β,,21n a a a 如下⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=121111m a a a α ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=222122m a a a α,………,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn n n n a a a 21α, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m b b b 21β 显然方程组有解的充要条件是向量β可由向量组n ααα,,21 线性表示。

矩阵式 AX =β,(齐次方程组AX =0).⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A 212222111211 ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x X 21 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m b b b 21β其中A 为m n ⨯矩阵,则:① m 与方程的个数相同,即方程组AX =β有m 个方程; ② n 与方程组的未知数个数相同,方程组AX =β为n 元方程。

【最新试题库含答案】线性代数练习册第四章习题及答案

【最新试题库含答案】线性代数练习册第四章习题及答案

线性代数练习册第四章习题及答案:篇一:线代第四章习题解答第四章空间与向量运算习题4.14-1-1、已知空间中三个点A,B,C坐标如下:A?2,?1,1?,B?3,2,1?,C??2,2,1? (1)求向量,,的坐标,并在直角坐标系中作出它们的图形;(2)求点A与B之间的距离.解:(1) (1,3,0), (?5,0,0), (4,?3,0)(2)AB??4-1-2.利用坐标面上和坐标轴上点的坐标的特征,指出下列各点的特殊位置: A?3,4,0?; B?0,4,3? ; C?3,0,0? ;D?0,?1,0? 解: A (3,4,0) 在xoy面上 B(0,4,3)点在yoz面上C(3,0,0)在x轴上 D(0,-1,0)在y轴上 4-1-6. 设u?a?b?2c,v??3b?c,试用a、b、c表示3u?3v.解:3u-2v=3(a-b+2c)-2(-3b-c)=3a+3b+8c4-1-7. 试用向量证明:如果平面上的一个四边形的对角线互为平分,那么这个四边形是平行四边形.解:设四边形ABCD中AC与DB交于O,由已知AO=OC,DO=OB 因为AB =AO+OB=OC+DO=DC,AD=AO+OD=OC+BO=BC 所以ABCD为平行四边形。

4-1-8. 已知向量a的模是4,它与轴u的夹角60,求向量a在轴u上的投影.?解:.prju?u)?4*cos60=4?r?rcos(r。

3=23 24-1-9. 已知一向量的终点在点B?2,?1,7?,它在x轴、y轴、z轴上的投影依次为4、-4、7,求这向量起点A的坐标解:设起点A为(x,y,z)prjxAB?(2?x0)?4prjyAB?(?1?y)??4 prjzAB?(7?z0)?7解得:x??2y?3z0?04-1-12. 求下列向量的模与方向余弦,并求与这些向量同方向的单位。

线性代数 第四章 第2节

线性代数 第四章 第2节
§2 向量组的线性相关性
★矩阵、线性方程组的向量表示 ★向量组的线性相关与线性无关 ★向量组的等价性
本节中向量组的线性相关性与第三节中向量组的秩 的概念是本章的重点和难点。同学们必须熟练且准确地 掌握。通过理清“矩阵”,“向量组”和“线性方程组”的密 切关系可以更好地理解概念和解决问题。
下页 关闭
矩阵的向量表示
定义3 设有两个 n 维向量组


A : a1, a2 , , am; B : b1, b2 , , bs .
如果向量组 A 中每一个向量都能由 B 组中的向量
线性表示,则称向量组 A 能由向量组 B 线性表示。
如果向量组 A 与 B 能相互线性表示,则称向量组 A 与 B 等价。
由上章定理2,可得

定理2 向量组 a1 , a2 , 条件是它所构成的矩阵A
, am (a1 ,
线性相关的充分必要
a2 , , am ) 的秩小于
向量的个数 m ;向量组线性无关的充分必要条件是 R(A)= m。
上页 下页 返回
1 0
0


例4
n 维向量
4,
试讨论向量组
a1
,
a2
,a13及向量 组5
a1
,
a2的 7线 性相关性。
解法一 (同例4解法一的方法)
上页 下页 返回
5
1
a1
,
a2
,
a3



1
0 2
2 r2 r1 1 4 ~ 0
0 2
2 r3 2 r2 1 2 ~ 0
.
上页 下页 返回
线性方程组的向量表示

线性代数第四章第二节

线性代数第四章第二节
相关, 相关, 则向量组 B: a1 , a2 , , am , am+1 也线性相 关. 反言之, 若向量组 B 线性无关, 则向量组 A 也 反言之, 线性无关, 线性无关. 线性无关. (2) m 个 n 维向量组, 当维数 n 小于向量个 维向量组, 数 m 时一定线性相关. 时一定线性相关.
第 二 节 向量组的线性相关性
主要内容
线性相关与线性无关的定义 向量组线性相关的充要条件 向量组的线性相关性的判定定理
一 ,线性相关与线性无关的定义
1. 定义 定义 4 给定向量组 A: a1 , a2 , , am , 如果存
在不全为零的实数 k1 , k2 , , km , 使 k1a1 + k2a2 + + kmam = 0, 则称向量组 A 是线性相关的, 否则称它线性无
关.
2. 两个特殊向量组线性相关的充要条件
1) 由一个向量构成的向量组 A: a 线性相关 的充要条件是 a = 0. 2) 由两个向量构成的向量组 A : a1 , a2 线性 相关的充要条件是 a1 , a2 的分量对应成比例. 如 的分量对应成比例.
向量组 A:
1 3 a1 = 1 , a 2 = 3 , 2 6
图 4.3
从几何上讲, 从几何上讲 若 4 维向量组所对应的平面组 中至少有三个平面共线, 中至少有三个平面共线 即至少有三个平面交于 同一直线则该向量组一定线性相关. 同一直线则该向量组一定线性相关
二 ,向量组线性相关的充要条件
定理 向量组线性相关的充要条件是该向量
组中至少有一个向量可由其余向量线性表示. 组中至少有一个向量可由其余向量线性表示
图 4.1
(2) 由三个 3 维向量构成的向量组线性相关的 几何意义是这三个向量共面. 几何意义是这三个向量共面. 如给定平面 π : x+y+z 上取三点: =3. 在 π 上取三点 M1(1,1,1) , M2(2,0,1) , M3(0,2,1) , 作三个向量: 作三个向量 z R3 M3 O M1 M2 x 3 3

线性代数第四章齐次线性方程组

线性代数第四章齐次线性方程组
j 1 n r
有k1 0, k 2 0, , k n r 0, 故X 1 , X 2 , , X n r 线性无关。
上页
下页
返回
(3)设X (c1 , c 2 , , c r , k1 , k 2 , , k n r )T 是方程组 的任意解,则 k1 X 1 k 2 X 2 k n r X n r X (d 1 , d 2 , , d r ,0,0, ,0)T 是齐次方程组的解,代 入BX = 0,得 b11 b12 b1r d 1 0 0 b22 b2 r d 2 0 , 0 0 brr d r 0 系数行列式不为零, 1 , d 2 , , d r 全为零。于是 d X k1 X 1 k 2 X 2 k n r X n r 0或 X k1 X 1 k 2 X 2 k n r X n r 综上,X 1 , X 2 , , X n r 是AX = 0的一个基础解系, 含n - r个解向量。
证明 由矩阵、向量的运算、 线性相关定义,得(1)推(2), (2)--3)-(4)-(3)-(2)-(1) 于是, 以上4个命题相互等价.
推论:齐次线性方程组 (4.2) 只有零解 r
A n
2. 齐次线性方程组解的性质
(解向量的和,数乘仍是 解)
性质1 若X 1 , X 2 是AX 0 (4.2)的解,
上页
下页
返回
由Gramer法则, (4.6)有唯一解, 得(4.2) 的一个解X 1 (c11 , c 21 , , c r1 ,1,0, ,0) 。
T
同理,分别将 r 1 , x r 2 , , x n的值(0,1, ,0), , x (0,0, ,1)代入BX = 0,求出(4.2)的 解 X 2 (c12 , c 22 , , c r 2 ,0,1, ,0) ;

线性代数 第4章 向量空间 - 习题详解

线性代数 第4章 向量空间 - 习题详解

第4章 向量空间4.1 向量及其线性组合练习4.11. 设1231031,1,4010ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦求12αα-及12332ααα+-.解 12101011111001011αα-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-=-=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦12332ααα+-10330303121432410100202⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+-=+-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦2. 设 1233()2()5()αααααα-++=+,求α. 其中1232104511,,1513101ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦解 由1233()2()5()αααααα-++=+得12362020611525122111(325)31051836669205244αααα⎛⎫⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+-=+-== ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥- ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ ⎪⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎝⎭3. 将线性方程组12312312310232x x x x x x x x x ++=⎧⎪-+=⎨⎪+-=⎩写成向量形式及矩阵形式.解 向量形式:123111*********x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+-+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦矩阵形式:123111*********x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦4. 设123,,,αααβ是已知列向量,若122ααβ+=,记矩阵123[,,]A ααα=,求线性方程组Ax β=的一个解.解 由12320αααβ++=得方程组Ax β=的一个解为T [1,2,0]x =5. 问β是否可由向量组4321,,,αααα线性表示?其中(1)12341111121111,,,,1111111111βαααα⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦(2)12342111201022,,,,0124231132βαααα-⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦解 (1)令[]123411111111,,,11111111A αααα⎡⎤⎢⎥--⎢⎥==⎢⎥--⎢⎥--⎣⎦由[]111111005/41111201001/41111100101/41111100011/4r A β⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−→⎢⎥⎢⎥---⎢⎥⎢⎥---⎣⎦⎣⎦得Ax β=有唯一解[]T15,1,1,14x =--,从而β可由向量组4321,,,αααα唯一线性表示: 23451114444βαααα=+--(2)令[]123411121022,,,12421132A αααα-⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦由[]111221220102200110012420000011132300000r A β-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦得Ax β=无解,从而β不能由向量组4321,,,αααα线性表示.6. 已知12341111101121,,,,2324335185a b a ααααβ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦(1),a b 取何值时,β不能由4321,,,αααα的线性表示?(2),a b 取何值时,β可由4321,,,αααα唯一线性表示式?并写出表示式. 解 令[]1234,,,A αααα=,考察方程组Ax β=是否有解.[]11111011212224335185A a b a β⎡⎤⎢⎥-⎢⎥=⎢⎥++⎢⎥+⎣⎦1111101121012102252r a b a ⎡⎤⎢⎥-⎢⎥−−→⎢⎥+⎢⎥-+⎣⎦1111101121001000010r a b a ⎡⎤⎢⎥-⎢⎥−−→⎢⎥+⎢⎥+⎣⎦(1)当0,1≠-=b a 时,方程组Ax β=无解,故β不能由4321,,,αααα的线性表示. (2)当1-≠a 时, 继续进行初等行变换[]A β2100011111101121101001001010010101000010rr b a a b a b b a a -⎡⎤⎢⎥⎡⎤+⎢⎥⎢⎥-++⎢⎥⎢⎥⎢⎥−−→−−→+⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥+⎢⎥⎣⎦⎢⎥⎣⎦得方程组Ax β=有唯一解:T21,,,0111b a b b x a a a ++⎡⎤=-⎢⎥+++⎣⎦故β可由4321,,,αααα的唯一线性表示. 表示式为:1234210111b a b ba a a ++=-++++++βαααα 7. 用标准坐标向量证明:如果对任意向量x 有0Ax =,则A 是零矩阵. 证 设12[,,,]n A ααα= 是m n ⨯矩阵. 特别地取(1,2,,)n i x e R i n =∈= ,则0(1,2,,)i i Ae i n α===即A O =.8. 设向量组12,ββ可由向量组123,,ααα线性表示如下:112321232,βαααβααα=+-=-+写出形如(4.5)的矩阵形式.解[][]1212321,,,1111ββααα⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦9. 设123123032204103124,,,,,210111321213αααβββ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥======⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦证明向量组{}123,,βββ可由向量组{}123,,ααα线性表示,但向量组{}123,,ααα不能由向量组{}123,,βββ线性表示. 证 令[]123,,A ααα=,[]123,,B βββ=由[]400111040222004135000000rA B ⎡⎤⎢⎥⎢⎥−−→⎢⎥-⎢⎥⎣⎦知向量组{}123,,βββ可由向量组{}123,,ααα线性表示. 由[]204032022012000210000000rBA ⎡⎤⎢⎥-⎢⎥−−→⎢⎥-⎢⎥⎣⎦知12,αα都不能由向量组{}123,,βββ线性表示,故向量组{}123,,ααα不能由向量组{}123,,βββ线性表示.10. 设12123011131,1,0,2,210111ααβββ-⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦证明向量组{}12,αα与向量组{}123,,βββ等价.方法1 令[][]12123,,,,A B ααβββ==. 由[]101110111300000rA B -⎡⎤⎢⎥−−→-⎢⎥⎢⎥⎣⎦知向量组{}123,,βββ可由向量组{}12,αα线性表示.[]1020.50.50110.50.500000rBA --⎡⎤⎢⎥−−→⎢⎥⎢⎥⎣⎦知向量组{}12,αα可由向量组{}123,,βββ线性表示.所以{}{}12123,,,ααβββ≅.方法2 令T1TT 12T T 23,A B βαβαβ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,则101011rA -⎡⎤−−→⎢⎥⎣⎦,101011000rB -⎡⎤⎢⎥−−→⎢⎥⎢⎥⎣⎦记T T12[1,0,1],[0,1,1]γγ=-=,根据行等价矩阵的行向量组等价,由上知{}{}{}{}121212312,,,,,,ααγγβββγγ≅≅所以{}{}12123,,,ααβββ≅.4.2 向量组的线性相关性练习4.21. 证明:含有零向量的向量组必线性相关. 证 不妨设向量组为{}123,,ααα,其中10α=,则1231000ααα++=根据定义{}123,,ααα线性相关.2. 证明:含两个向量的向量组线性相关的充要条件是它们的分量对应成比例. 问含三个向量的向量组线性相关的充要条件是不是它们对应的分量成比例?证 设112212[,,,],[,,,]T T n n a a a b b b αα== 且{}12,αα线性相关. 于是存在不全为零的数12,k k 使得11220k k αα+=,不妨设10k ≠,从而21221k k k ααα==,即 (1,2,,)i i a kb i n ==即1α与2α的对应分量成比例.反之,如果(1,2,,)i i a kb i n == ,则12k αα=,即1210k αα-=,故{}12,αα线性相关.由三个向量构成的向量组如果对应分量成比例,则显然线性相关. 但线性相关,它们的对应分量不一定成比例. 如123111,,123ααα⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦或1231121,2,3134ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦3. 判别下列向量组的线性相关性: (1)[]12,5Tα=,[]21,3Tα=-(2)[][][]1231,2,3,0,2,5,1,0,2TTTααα=-=-=- (3)[][][]1232,4,1,1,0,1,2,0,1,1,1,3,0,0,1TTTααα==-=解(1) 令1221[,]53A αα-⎡⎤==⎢⎥⎣⎦,由110A =≠,知A 是可逆矩阵,故其列向量组{}12,αα线性无关.(2)类似(1),由 1012200352--=-,得{}123,,ααα线性相关. (3) 易知向量组()()()T T T 1,0,0,1,1,0,0,1,1321===βββ线性无关,而向量组{}123,,ααα是向量组{}123,,βββ的加长向量组,故{}123,,ααα也线性无关.4. 设[][][]1231,1,1,1,2,3,1,3,TTTt ααα===, (1) 问t 为何值时, 向量组321,,ααα线性相关? (2) 问t 为何值时, 向量组321,,ααα线性无关?解 令11112313A t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,计算得5A t =- (1)当5t =时,A 是不可逆矩阵,其列向量组321,,ααα线性相关. (2)当5t ≠时,A 是可逆矩阵,其列向量组321,,ααα线性无关. 5. 证明由阶梯矩阵的非零行构成的向量组一定线性无关. 证 不妨设阶梯矩阵12340000000000T T T T U αααα⊗****⎡⎤⎡⎤⎢⎥⎢⎥⊗**⎢⎥⎢⎥==⎢⎥⎢⎥⊗*⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦其中0⊗≠. 考察下面方程组112233123000000x x x x x x ααα⊗⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥*⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++=++=*⊗⎢⎥⎢⎥⎢⎥**⊗⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥***⎣⎦⎣⎦⎣⎦显然该方程组只有零解,故{}123,,ααα线性无关.4.3 向量组的秩练习4.31. 设[][][][]T T T T12341,2,3,4,2,3,4,5,3,4,5,6,4,5,6,7====αααα求向量组1234,,,αααα的秩及其一个极大无关组, 并把其余向量用所求的极大无关组线性表示.解 1234[,,,]A =αααα12341012234501233456000045670000r --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦因此{}12,αα是{}1234,,,αααα的一个最大无关组,且2132ααα+-=,21432ααα+-=2. 设向量组2123,,2,31311a b ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦的秩为2,求,a b .解 记12342123,,2,31311a b ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦αααα,由于{}1234rank ,,,2=αααα,所以{}341,,ααα线性相关,{}342,,ααα也线性相关.由[]3411212,,2330132111002ra a a a ⎡⎤⎡⎤⎢⎥⎢⎥=−−→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦ααα 得2a =.由[]342122122,,23014113005rb b b ⎡⎤⎡⎤⎢⎥⎢⎥=−−→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦ααα 得5b =.3. 证明极大无关组的定义4.5与定义4.6的等价性.证 (定义4.5⇒定义4.6) 设121,,,r βββ+ 是V 中任意1r +个向量. 由定义4.5(2)知121,,,r βββ+ 可由12,,,r ααα 线性表示,由定理4.9,121,,,r βββ+ 线性相关,即定义4.6(2)成立.(定义4.6⇒定义4.5)设β是V 中任意一个向量. 则12,,,,r αααβ 是1r +个向量,由定义4.6(2),12,,,,r αααβ 线性相关,又12,,,r ααα 线性无关,再由唯一表示定理,β可由12,,,r ααα 线性表示,即定义4.5(2)成立.4.4 矩阵的秩练习4.41. 求下面矩阵的秩(1)1121021120331101⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦,(2)123222123333123111a a a a a a a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(其中123,,a a a 互不相等). 解 (1)由11211121021102112033002011010000r A ⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−→⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦得()3r A = (2)记123222123333123111a a a A a a a a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,由于范德蒙行列式1232221231110a a a a a a ≠,得()3r A = 2. (1)设A 是23⨯矩阵,且rank 2A =,写出A 的等价标准形; (2)设A 是32⨯矩阵,且rank 2A =,写出A 的等价标准形. 解 (1)[]20A E ≅,(2)20E A ⎡⎤≅⎢⎥⎣⎦3. 设22139528A -⎡⎤=⎢⎥-⎣⎦(1)求一个42⨯矩阵B 使得0AB =,且rank 2B =; (2)求一个42⨯矩阵C 使得AC E =,且rank 2C =. 解 (1)求解方程组0Ax =得两个线性无关的解12[1,5,8,0],[1,11,0,8]T T ββ==-令[]1211511,8008B ββ-⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦则rank 2,B AB O ==,B 即为所求.(2)解1Ax e =得一个解11[5,9,0,0]8Tβ=--,解2A x e =得一个解21[2,2,0,0]8Tβ= 令[]1252921,00800C ββ-⎡⎤⎢⎥-⎢⎥==⎢⎥⎢⎥⎣⎦则2rank 2,C AC E ==,C 即为所求.4. 设m n n m m m A B C ⨯⨯⨯=,若C 是可逆矩阵,则()()r A r B m ==.证 ()()()()m r C r A B r A m r A m===≤⇒= ()()()()m r C r AB r B m r B m ===≤⇒=5. 证明:()()()r A B r A r B +≤+. 方法1 设12[,,,]n A ααα= ,[]12,,,n B βββ= ,(),()r A s r B t ==不妨设{}12,,,t ααα 是A 的列向量组的极大无关组,{}12,,,s βββ 是B 的列向量组的极大无关组. 显然A B +的列向量可由{}11,,,,,t s ααββ 线性表示,于是()r A B +=()A B +的列秩{}11r ,,,,,()()t s s t r A r B ααββ≤≤+=+证明:)()()(B r A r B A r +≤+ 方法2 由],[],[B A B B A c−→−+得[,][,]r A B B r A B +=,从而(用到例题的结论))()(],[],[)(B r A r B A r B B A r B A r +≤=+≤+6. 用等价标准形定理证明:rank 1m n A ⨯=的充要条件是T A αβ=其中0,0m n R R αβ≠∈≠∈.证 设rank 1A =,由等价标准形定理,存在可逆矩阵,m m n n P R Q R ⨯⨯∈∈,使得1000A P Q ⎡⎤=⎢⎥⎣⎦[]101,0,,00P Q ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦令α是P 的第一列,T β是Q 的第一行,显然0,0αβ≠≠,上式就是T A αβ=.反之,如果TA αβ=()0,0αβ≠≠,则1()()1()1r A r r A α≤≤=⇒=4.5 向量空间练习4.51. 设{}31123123123(,,)|,,,0T V x x x x x x x R x x x R ==∈++=⊂ {}32123123123(,,)|,,,1T V x x x x x x x R x x x R ==∈++=⊂证明1V 是3R 的子空间, 2V 不是3R 的子空间. 证 1V 是齐次线性方程组的解集,2V 是非齐次线性方程组的解集,同例题的证明一样.2. 设343443434,,x x x x V x x x x R R x x ⎧⎫+⎡⎤⎪⎪⎢⎥-⎪⎪⎢⎥==∈⊂⎨⎬⎢⎥⎪⎪⎢⎥⎪⎪⎣⎦⎩⎭证明V 是4R 的子空间,并求V 的维数及V 的一个基.证 把V 中向量改写为34314211111001x x x x x αα⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=+=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则12span(,)V αα=,又{}12,αα线性无关,所以{}12,αα是V 的一个基,dim 2V =.3. 设12342112,1,1,010541αααα----⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦求123span(,,)ααα两个不同的基, 并分别求α在所求的基下的坐标.解 易知{}123rank ,,2ααα=,又{}13,αα线性无关,{}23,αα线性无关,所以{}13,αα与{}23,αα都是123span(,,)ααα的基.解方程组1123x x ααα+=得120.5,1x x ==-于是α在基{}13,αα下的坐标是[]0.5,1T-.解方程组1223x x ααα+=得121,1x x ==-于是α在基{}23,αα下的坐标是[]1,1T-.4. 设121211201011,,,01310131ααββ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦证明:1212span(,)span(,)ααββ=. 证 只需证{}{}1212,,ααββ≅由[]12121011013100000000rααββ-⎡⎤⎢⎥-⎢⎥−−→⎢⎥⎢⎥⎣⎦知{}12,ββ可由{}12,αα线性表示. 由[]1212100.50.501 1.50.500000000rββαα⎡⎤⎢⎥⎢⎥−−→⎢⎥⎢⎥⎣⎦知{}12,αα可由{}12,ββ线性表示.所以{}{}1212,,ααββ≅. 5. 已知3R 的两个基为1231111,0,0111ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ 及 1231232,3,4143βββ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦求由基123,,ααα到基123,,βββ的过渡矩阵.解 由[]123123100234,,,,,010*********rαααβββ⎡⎤⎢⎥−−→-⎢⎥⎢⎥--⎣⎦得[][]123123234,,,,010101βββααα⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦由基123,,ααα到基123,,βββ的过渡矩阵为234010101P ⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦4.6 线性方程组解的结构练习4.61. 求齐次线性方程组1232340x x x x x x -+=⎧⎨-+=⎩ 两个不同的基础解系,并写出通解.解 记系数矩阵为A ,则10010111rA ⎡⎤−−→⎢⎥-⎣⎦同解方程为14234x x x x x =-⎧⎨=-⎩ 分别取3410,01x x ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦得1201,11x x -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,得基础解系为 120111,1001αα-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦分别取3411,01x x ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦得1201,10x x -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得基础解系为 120110,1101ββ-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦通解为112212,(,)x k k k k R αα=+∈或112212,(,)x k k k k R ββ=+∈2. 求一个齐次线性方程组,使它的基础解系为T T 12[0,1,2,3],[3,2,1,0]ξξ==解 设所求方程组为0=Ax ,由题设()12,0A ξξ=.记()12,B ξξ=,则0=AB 即0=T T A B ,这说明T A 的列都是方程组0=x B T 的解.解方程组0=x B T ,即2341232303230x x x x x x ++=⎧⎨++=⎩ 得基础解系为T )0,1,2,1(1-=α,T )1,0,3,2(2-=α令],[21αα=T A ,即⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=1032012121T T A αα所求方程组为0=Ax ,即⎩⎨⎧=+-=+-03202421321x x x x x x 3. 求下面非齐次方程组的一个解及对应的齐次方程组的基础解系1212341234522153223x x x x x x x x x x +=⎧⎪+++=⎨⎪+++=⎩ 解 对增广矩阵初等行变换化最简阶梯形[]1100510108211210110135322300012rA b -⎡⎤⎡⎤⎢⎥⎢⎥=−−→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦等价方程组为132348132x x x x x =--⎧⎪=+⎨⎪=⎩ 令30x =得方程组的一个解*[8,13,0,2]T η=-对应的齐次方程组的等价方程组为132340x x x x x =-⎧⎪=⎨⎪=⎩ 令31x =得基础解系[1,1,1,0]T α=-4. 设142536A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求使得方程组Ax b =有解的所有向量b . 解 向量b 是A 的列向量的线性组合,即12121425,,36b k k k k R ⎡⎤⎡⎤⎢⎥⎢⎥=+∈⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦5. 设12,,,s ηηη 是非齐次方程组b Ax =的s 个解向量,令112212,,,,s s s k k k k k k R ηηηη=+++∈证明:(1)η是非齐次方程组Ax b =的解的充要条件是121s k k k +++= ; (2)η是齐次方程组0Ax =的解的充要条件是120s k k k +++= . 证 (1) 1122s s k k k ηηη+++ 是b Ax =的解⇔ ()1122s s A k k k b ηηη+++= ⇔ ()12s k k k b b +++= (≠b 0) ⇔ 121s k k k +++=(2) 1122s s k k k ηηη+++ 是0=Ax 的解⇔ ()11220s s A k k k ηηη+++= ⇔ ()120s k k k b +++= (≠b 0) ⇔ 120s k k k +++=6. 设4rank 3m A ⨯=, 321,,ηηη是非齐次方程组b Ax =的3个解向量, 并且T T )4,3,2,1( , )5,4,3,2(321=+=ηηη求方程组b Ax =的通解.解 由3)(4=⨯m A r 知,知0=Ax 的基础解系只含一个向量,取T )6,5,4,3()(2321=+-=ηηηξ则ξ是0=Ax 的基础解系. 从而非齐次方程组b Ax =的通解为1x k ηξ=+,(k R ∈) 7. 设矩阵[]1234,,,=A αααα, 其中432,,ααα线性无关,3212ααα-=, 向量4321ααααβ+++=. 求线性方程组βx A =的通解.解 由假设易知()3r A =,从而0=Ax 的基础解系只含一个向量. 由12312342200=-⇔-++=ααααααα得[1,2,1,0]T ξ=-为0=Ax 的基础解系.由1234+++=ααααβ得[1,1,1,1]T η=为βx A =的一个解. 于是βx A =的通解是,()x k k R ηξ=+∈习题四1. 设βααα,,,,21r 都是n 维向量,β可由r ααα,,,21 线性表示,但β不能由121,,,-r ααα 线性表示,证明:r α可由121,,,,r αααβ- 线性表示.证 因为β可由r ααα,,,21 线性表示,设r r r r k k k k ααααβ++++=--112211又因为β不能由121,,,-r ααα 线性表示,所以0≠r k ,因此11111-----=r rr r r r k k k k k ααβα 即r α可由121,,,,r αααβ- 线性表示.2. 设123123111221,,1,1,,114a a a a a a a αααβββ--⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥======⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦确定常数a , 使向量组321,,ααα可由向量组321,,βββ线性表示, 但向量组321,,βββ不能由向量组321,,ααα线性表示.解 记],,[321ααα=A ,],,[321βββ=B ,由于{}123,,βββ不能由{}123,,ααα线性表示,所以3)(<A r ,从而0)2()1(2=+--=a a A得1=a 或2-=a .当1=a 时,1321βααα===,故321,,ααα可由321,,βββ线性表示,但2β不能由321,,ααα线性表示. 所以1=a 符合题意.当2-=a 时,由[]122112006033000033rBA ---⎡⎤⎢⎥−−→--⎢⎥⎢⎥-⎣⎦知{}123,,ααα不能由{}123,,βββ线性表示,与题设矛盾. 综上,1=a .3. 设121,,,-m ααα (3≥m )线性相关, m ααα,,32 线性无关, 讨论:(1)1α能否由132,,-m ααα 线性表示; (2)m α能否由121,,,-m ααα 线性表示.方法1 (1)因为m ααα,,32 线性无关,故132,,-m ααα 线性无关. 又因为121,,,-m ααα 线性相关,由唯一表示定理,1α可由132,,-m ααα 唯一表示.(2)设m α能由121,,,-m ααα 线性表示112211--+++=m m m αλαλαλα由(1),1α又能由132,,-m ααα 线性表示,故m α也能由132,,,-m ααα 线性表示,从而m ααα,,32 线性相关,这与假设矛盾. 故m α不能由121,,,-m ααα 线性表示.方法2 由假设{}121,,,1m r m ααα-<- ,{}23,,,1m r m ααα=-(1) 由{}{}231231,,,,,m m m r r ααααααα-=≤ {}131,,11m r m ααα-≤+≤-得{}{}23123,,,,,1m m r r m ααααααα==-由唯一表示定理,1α能由132,,-m ααα 唯一表示.(2)由(1),{}121,,,,1m m r m αααα-=- ,而{}121,,,1m r m ααα-<- 故{}{}121121,,,,,,,m m m r r ααααααα--≠m α不能由121,,,-m ααα 线性表示.4. 设nn RA ⨯∈, n R ∈α(0≠α), 0=αk A , 01≠-αk A , 证明向量组{}21,,,,k A A Aαααα-线性无关.证 设0112210=++++--ααααk k A k A k A k k上式两边左乘1-k A得010=-αk A k ,由于01≠-αk A,得00k =,因此011221=+++--αααk k A k A k A k上式两边左乘2-k A ,类似可推出01=k . 进而再推出210k k k -=== .5. 设nn RA ⨯∈,n R ∈321,,ααα(01≠α), 如果11αα=A , 212ααα+=A , 323ααα+=A证明321,,ααα线性无关.证 由题设23121)(,)(,0)(ααααα=-=-=-E A E A E A设0332211=++αααk k k两边左乘E A -得02312=+ααk k再左乘E A -得013=αk由01≠α得03=k ,往上逐一代入210,0k k ==. 故321,,ααα线性无关.6. 设向量组12:,,,m S ααα 线性无关, 1β能由S 线性表示, 而2β不能由S 线性表示,证明:(1)向量组122,,,,m αααβ 线性无关.(2)对R k ∈∀, 向量组1221,,,,m k αααββ+ 线性无关.证 (1)由于12,,,m ααα 线性无关,而2β不能由12,,,m ααα 线性表示,故221,,,,βαααm 线性无关. 否则,由唯一表示定理,2β能由12,,,m ααα 唯一表示,与假设矛盾.(2)由(1)122rank[,,,,]1m m αααβ=+再由1β可由12,,,m ααα 线性表示,得1221122[,,,,][,,,,]cm m k αααββαααβ+−−→从而1221rank[,,,,]m k αααββ+= 122rank[,,,,]1m m αααβ=+1221,,,,m k αααββ+ 线性无关.7. 设12,,,,m αααβ nR ∈(0β≠)且0(1,2,,)T i i m βα== , 证明: (1) β不能由12,,,m ααα 线性表示;(2) 如果12,,,m ααα 线性无关, 则12,,,,m αααβ 也线性无关. 证 (1) 反证. 设β可由12,,,m ααα 线性表示1122m m k k k βααα=+++两边左乘Tβ得0Tββ=,这与0β≠矛盾.(2) 反证. 如果12,,,,m αααβ 线性相关,则由唯一表示定理,β由12,,,m ααα 唯一表示. 与(1)矛盾.8. 已知321,,ααα线性无关, 试问常数k m ,满足什么条件时, 向量组{}213213,,k m αααααα---线性无关?方法1设0)()()(313232121=-+-+-ααααααx m x k x整理得0)()()(332221113=-+-+-αααx m x x k x x x由于321,,ααα线性无关,故上式又等价于⎪⎩⎪⎨⎧=-=-=+-000322131x m x x kx x x ⇔ 12310110001x k x m x -⎡⎤⎡⎤⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦312312,,αααααα---m k 线性无关的充要条件是上面方程组只有零解. 即1011010101kmk mk m --=-≠⇔≠- 方法2 记313232121,,ααβααβααβ-=-=-=m k . 写成矩阵形式[][]123123101,,,,1001k m βββααα-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦由例4.14,321,,βββ线性无关⇔101rank 10301k m -⎡⎤⎢⎥-=⎢⎥⎢⎥-⎣⎦⇔1≠mk9. 已知向量组m ααα,,,21 (2≥m )线性无关. 设111322211,,,,ααβααβααβααβ+=+=+=+=--m m m m m试讨论向量组m βββ,,,21 的线性相关性.证 把题设写成矩阵形式[][]1212,,,,,,m m C βββααα=其中100111011011m m⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦C 经计算12,1(1)0,m m C m +⎧=+-=⎨⎩若为奇数若为偶数同上一题完全类似,有两种方法. 结论是m βββ,,,21 线性无关⇔0C ≠⇔m 为奇数时 m βββ,,,21 线性相关⇔0C =⇔m 为偶数时10. 设,m n n p A B ⨯⨯是满足AB O =的两个非零矩阵,证明A 的列向量组线性相关, 且B 的行向量组线性相关.方法1 B 的列向量都是方程组0=Ax 的解,又B 为非零矩阵,说明0=Ax 存在非零解,所以n A r <)(,从而A 的列向量组线性相关.考虑0=TT A B ,又知TB 的列向量组即B 的行向量组线性相关.方法2 由例题,()()r A r B n +≤又()0,()0r A r B >>,所以(),()r A n r B n <<,于是A 的列向量组线性相关,且B 的行向量组线性相关.11. 证明:rank rank rank ⎡⎤=+⎢⎥⎣⎦A O AB O B .方法1 把,A B 用初等行变换化为阶梯矩阵,设12,00r rU U A B ⎡⎤⎡⎤−−→−−→⎢⎥⎢⎥⎣⎦⎣⎦其中12,U U 的行向量都是非零行向量. 则1122000000000000r r U U U U ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥−−→−−→⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦A O OB 显然上式右边也是阶梯形矩阵,从而1122rank rank rank rank U U U U ⎡⎤⎡⎤==+=+⎢⎥⎢⎥⎣⎦⎣⎦O A O A B O O B 的行数的行数方法2 设12rank ,rank r r ==A B ,A 有子式10r A ≠,B 有子式20r B ≠,因此⎡⎤⎢⎥⎣⎦A O OB 有子式1122000r r r r A A B B =≠,从而12rank r r ⎡⎤≥+⎢⎥⎣⎦A O O B又12rank rank rank r r ⎡⎤⎡⎤⎡⎤≤+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A O A O OB O B 所以12rank rank rank r r ⎡⎤=+=+⎢⎥⎣⎦A O AB O B12. 设*A 是n 阶方阵A 的伴随矩阵()2≥n , 证明:,()()1,()10,()1n r A nr A r A n r A n *=⎧⎪==-⎨⎪<-⎩证 当n A r =)(时,0≠A ,由行列式的展开定理:E A A A =*,立即知A *是可逆矩阵,即()r A n *=.当1)(-<n A r 时,A 的所有1-n 阶子式都等于零,这时*A 是零矩阵,故0)(=*A r . 当1)(-=n A r 时,0=A ,由行列式的展开定理0==*E A A A由例题n A r A r ≤+*)()(()1r A *⇒≤再由1)(-=n A r 知A 有一个1-n 阶子式不等于零,故*A 至少有一个元素不为零,因此()0r A *>. 综上,1)(=*A r .13.设rank m n A m ⨯=, 证明存在矩阵m n B ⨯, 使m m n n m E B A =⨯⨯.方法1 由题设m A r n m =⨯)(和例题,对任意的mb R ∈,线性方程组Ax b =都有解. 特别地取b 为标准单位向量12,,,m m e e e R ∈ ,方程组m n i A x e ⨯=(1,2,,)i m =的解记为12,,,n m b b b R ∈ ,令()12,,,n m m B b b b ⨯=则m m n n m E B A =⨯⨯易知()n m r B m ⨯=证法 2 由题设m A r n m =⨯)((此时m n ≤),故只用列变换就可将A 化为标准形,即存在可矩阵n Q 使得()m AQ E O =把Q 分块,()1n mQ B Q ⨯=,则m m n n m E B A =⨯⨯易知()n m r B m ⨯=14. 证明Sylvester 不等式:r()r()r()m n n p n ⨯⨯+-≤A B A B方法1 设r AB r t B r s A r p n n m ===⨯⨯)(,)(,)(由等价标准形定理知有可逆矩阵Q P ,使⎥⎦⎤⎢⎣⎡=000sEPAQ 因此11120()()000sB E s B s PAB PAQ Q B B n s n s -⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦1()()()r AB r PAB r B ==112()()B t r B r Q B r B -⎡⎤===⎢⎥⎣⎦122()()()()()r B r B r AB r B r n s ≤+=+≤+-移项得r n t s ≤-+,即r()r()r()n +-≤A B AB15. 设rank m n n ⨯=P ,证明rank()rank =PA A . 证法1 记C PA =,则()()()r C r PA r A =≤再由习题13,存在矩阵M 使得MP E =. 在C PA =两边左乘M 得MC A =从而()()()r A r MC r C =≤综上,()()()r C r PA r A ==.证法2 设A 是m n ⨯阶矩阵,()r m =P ,由Sylvester 不等式()()()r A r P r A m =+-≤()()r PA r A ≤从而r()r()=PA A16. 设n 阶矩阵A 满足2A A =,证明()()r A r A E n +-= 证 由()-=A E A O 和例题r()r()n +-≤A E A又[]()r()r ()r r()n ==+-≤+-E A E A A E A综上r()r()n +-=A E A .17. 证明满秩分解定理: 设rank m n A r ⨯=, 则A 有如下分解:m r r n A H L ⨯⨯=其中rank rank H L r ==.方法1 由等价标准形定理,存在可逆矩阵m P 和n Q 使得[]1111000rr r r n m rEE A P Q P E O Q O ----⨯⨯⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦令[]11,r rE H P L E O Q O --⎡⎤==⎢⎥⎣⎦则n r r m L H A ⨯⨯=,且显然有r L r H r ==)()(.方法2 不妨设A 的列向量组的极大无关组为12,,,r ααα ,并记矩阵[]12,,,m r r H ααα⨯=则A 的所有列向量都可由12,,,r ααα 线性表示,即存在矩阵r n L ⨯使得n r r m L H A ⨯⨯=又()()()()m r r n m r r r A r H L r H r r H r ⨯⨯⨯==≤≤⇒=同理()r L r =.18. 证明:r()r()r()r()ABC AB BC B ≥+-. 证 设rank()n k B r ⨯=,B 的满秩分解为B MN =由Sylvester 不等式rank()rank[()()]rank()rank()r ABC AM NC AM NC =≥+- rank()rank()r rank()rank()rank()AMN MNC AB BC B ≥+-=+-19. 设12,V V 都是nR 的子空间, 令{}12121122|,V V V V ααααα+==+∈∈, {}1212|V V V V ααα=∈∈ 且证明12V V +与12V V 都是nR 的子空间. 举例说明{}1212|V V V V ααα=∈∈ 或不是nR 的子空间.证 易(略)20. 证明基的扩张定理定理4.14:设1,,m αα 是nR 的一个线性无关组, m n <, 则存在n m -个向量1,,m n a α+ , 使得11,,,,,m m n αααα+ 成为n R 的一个基.证 由于m n <,故12,,,m ααα 不是nR 的基,从而至少有一个向量1m +α不能由12,,,m ααα 线性表示. 则121,,,,m m +αααα 必线性无关(否则,由唯一表示定理得出矛盾).如果1m n +=,则证毕. 否则,如果1m n +<,同上知,存在向量2m +α使得1212,,,,,m m m ++ααααα 线性无关. 依此类推,得证. 21. 若矩阵()ij n n A a ⨯=满足1(1,2,,)nii ij j j ia a i n =≠>=∑则称A 是严格对角占优矩阵. 证明严格对角占优矩阵必是可逆矩阵.证 反证. 假设A 是不可逆矩阵, 则0Ax =有非零解, 记一个非零解为12(,,,)T n x x x x = . 再记1max 0k i i nx x ≤≤=>考察0Ax =的第k 个方程11220k k kn n a x a x a x +++=即1nkk k kj j j j ka x a x =≠=-∑两边取绝对值111nnnk kk kj j kkjkk kj j j j j kj kj kx a a x x aa a ===≠≠≠≤≤⇒≤∑∑∑这与假设矛盾. 因此A 是可逆矩阵. 22. 证明方程组TTA Ax A b =一定有解.证 只需证方程组系数矩阵的秩与增广矩阵的秩相等. 由例题()T T T T Tr()r()r ,r (,)r()r()⎡⎤=≤=≤=⎣⎦A A A A A A b A A b A A故()T T T r()r ,=A A A A A b从而方程组b A Ax A T T =一定有解.23. 设=Ax 0与=Bx 0都是n 元的齐次方程组, 证明下面三个命题等价: (1)=Ax 0与=Bx 0同解; (2)rank rank rank ⎡⎤==⎢⎥⎣⎦A AB B ; (3)A 的行向量组与B 的行向量组等价. 证 记(I )=Ax 0,(II )=Bx 0,(III )=⎧⎨=⎩Ax Bx 0(1)⇒(2) 由于(I )的解都是(II )的解,所以(I )的解也都是(III )的解. 又显然(III )的解都是(I )的解. 因此,(I )与(III )同解. 同样的道理,(II )与(III )也是同解的. 因此它们基础解系所含向量个数相等,即()()r r r n n n ⎛⎫-=-=- ⎪⎝⎭A AB B于是()()r r r ⎛⎫== ⎪⎝⎭A AB B(2)⇒(3) 命题(2)等价于()()()T T T T r r r ,==A B A B由定理4.3,TA 的列向组与TB 的列向量组等价. 即A 的行向量组与B 的行向量组等价.(3)⇒(1) 这是显然.24.设B A ,均是n 阶的方阵,证明)()(B r AB r =的充要条件是方程组0)(=x AB 与方程组0=Bx 同解.证 (⇒)显然0=Bx 的解必是0)(=x AB 的解. 又)()(B r AB r =,0=Bx 的基础解系也是0)(=x AB 的基础解系. 所以,方程组0)(=x AB 与方程组0=Bx 同解.(⇐)易25. 若n 阶矩阵[]121,,,,n n A αααα-= 的前1n -个列向量线性相关,后1n -个列向量线性无关,12n βααα=+++ ,证明:(1)方程组Ax β=必有无穷多解;(2)若T 12(,,,)n k k k 是Ax β=的任一解,则1n k =. 证 (1)由12n βααα=+++ , 知(1,1,,1)T x = 是Ax β=的一个解. 又()1r A n =-,故Ax β=有无穷多解.(2)121,,,n ααα- 线性相关,存在不全为零的数121,,,n l l l - 使1122110n n l l l ααα--++=说明()121,,,,0Tn l l l - 是0Ax =基础解系. Ax β=的通解为()()121(1,1,,1),,,,0,,,1T TT n k l l l -+=⨯⨯26. 设线性方程组(I)⎪⎩⎪⎨⎧=+++=+++m n mn m m n n bx a x a x a b x a x a x a 221111212111 (II)⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++100221122*********m m m nm n n m m y b y b y b y a y a y a y a y a y a证明:方程组(I )有解⇔方程组(II )无解.证 记方程组(I )为=Ax b ,则方程组(II )可写成T T 1⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭A y b 0易知TTT r r()1r()11⎛⎫=+=+ ⎪⎝⎭A A A b0 这样(II)无解⇔TT T TT T r r 1r()1r 11⎛⎫⎛⎫⎛⎫=+⇔+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A A A A b b b 0 ()T T r()r r()r ⎛⎫⇔=⇔=⇔ ⎪⎝⎭A A A A b b (I )有解27. 设线性方程组(I) ⎪⎩⎪⎨⎧=+++=+++m n mn m m n n bx a x a x a b x a x a x a 221111212111(II) ⎪⎩⎪⎨⎧=+++=+++022111221111m nm n n m m y a y a y a y a y a y a(III) 02211=+++m m y b y b y b证明:方程组(I )有解⇔方程组(II )的解都是方程组(III )的解.证 记n m ij a A ⨯=)(,T n x x x x ),,,(21 =,T m y y y y ),,,(21 =,T m b b b b ),,,(21 =则三个方程可写为(I) b Ax =,(II) 0=y A T ,(III) 0=y b T因此(I)有解⇔],[)(b A r A r =⇔⎥⎦⎤⎢⎣⎡=T T Tb A r A r )((由例5.2)⇔(II )的解都是(III )的解28. 设齐次方程组123423412422000x x x x x cx cx x cx x +++=⎧⎪++=⎨⎪++=⎩ 解空间的维数是2, 求其一个基础解系.解 由dim N()r()n =-A A 知,系数矩阵的秩r()422=-=A .221212101222010110100(1)(1)r c c A c c cc c c c --⎛⎫⎛⎫⎪ ⎪=−−→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭由r()2=A ,得1c =. 原方程组的等价方程组为13234x x x x x =⎧⎨=--⎩ 取3410,01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 得一个基础解系为T T 12(1,1,1,0),(0,1,0,1)=-=-αα29. 设四元齐次线性方程组(I) ⎩⎨⎧=-=+004221x x x x还知道另一齐次线性方程组(II)的通解为T T k k )1,2,2,1()0,1,1,0(21-+求方程组(I )与(II )的公共解.解法1 将方程组(II)的通解T T k k x )1,2,2,1()0,1,1,0(21-+=212122(,2,2,)T k k k k k k =-++代入组方程组(I)得到关于21,k k 的线性方程组2121212220020k k k k k k k k -++=⎧⇔+=⎨+-=⎩ 令k k =2,则k k -=1,故方程组(I)与方程组(II)的公共解为T T T k k k x )1,1,1,1()1,2,2,1()0,1,1,0(21-=-+=(R k ∈)解法2 易求方程组(I)的基础解系为T )0,1,0,0(1=α,T )1,0,1,1(2-=α其通解为3142x k k αα=+令两个方程组的通解相等T T k k x )1,2,2,1()0,1,1,0(21-+=T k )0,1,0,0(3=T k )1,0,1,1(4-+得关于4321,,,k k k k 的方程组⎪⎪⎩⎪⎪⎨⎧=-=-+=-+=+-0020********2142k k k k k k k k k k 解之得k k k k k k k k ===-=4321,,,因此两个方程组公共解为T T T k k k x )1,1,1,1()1,2,2,1()0,1,1,0(-=-+-=30. 设n n ij a A ⨯=)(, 0≠A , 证明:n r <时, 齐次方程组⎪⎩⎪⎨⎧=+++=+++0022111212111n rn r r n n x a x a x a x a x a x a 的一个基础解系为T jn j j j A A A ),,,(21 =ξ,(n r j ,,1 +=) 其中jk A 为A 的),(k j 元的代数余子式(n k j ,,2,1, =).证 由行列式展开定理02211=+++jn in j i j i A a A a A a (n r j r i ,,1;,,1 +==)所以j ξ(n r j ,,1 +=)是齐次方程组的解(共r n -个).由0≠A ⇒齐次方程组系数矩阵的秩为r ,所以齐次方程组基础解系所含向量个数为r n -. 再由0≠A n A r =⇒)(*⇒*A 的r n -个行向量的转置n r ξξ,,1 +线性无关.综上可知,n r ξξ,,1 +是齐次方程组的一个基础解系.31. 设rank m n A r ⨯=, *η是非齐次方程组b Ax =的一个特解, 12,,,n r ξξξ- 是其对应的齐次方程组0=Ax 的一个基础解系. 证明{}****12,,,,n r ηηαηαηα-+++是Ax b =解集V 的一个极大无关组, 从而rank 1V n r =-+.证 记{}****12,,,,n r T ηηαηαηα-=+++显然T 中的向量都是b Ax =的解,即T V ⊂.下面证明T 线性无关. 设0)()()(12211=++++++++---ηξηξηξηr n r n r n k k k k把上式整理为0)(1212211=+++++++++----ηξξξr n r n r n r n k k k k k k k上式两边左乘A 得0)(121=+++++--b k k k k r n r n由0≠b 得0121=+++++--r n r n k k k k往上代入得02211=+++--r n r n k k k ξξξ由r n -ξξξ,,,21 线性无关性得021====-r n k k k再往上代入又得01=+-r n k . 这说明T 是线性无关的向量组.下面再证明V 中的任一向量都可由T 线性表示. 由于V 中的任一向量都可写为r n r n k k k x --++++=ξξξη 2211即)()()()1(221121r n r n r n k k k k k k x ---+++++++----=ξηξηξηη这说明V 中的任一向量都可由T 线性表示. 综上,向量组T 是Ax b =解集V 的一个极大无关组,rank r()1S n =-+A .32. 已知T T T 111121,2221222,212,2(,,),(,,,),,(,,,)n n n n n n n b b b b b b b b b ===βββ是方程组1111221,222112222,221122,2200 0n n n nn n n n n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的基础解系. 证明T T T 111121,2221222,212,2(,,),(,,,),,(,,,)n n n n n n n a a a a a a a a a ===ααα是方程组1111221,222112222,221122,22000n n n nn n n n n b x b x b x b x b x b x b x b x b x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的基础解系.证 记矩阵T 1T 2T n ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ααA α ,T 1T 2T n ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ββB β则方程组(I )和(II )可分别写为(I )=Ax 0 和 (II )=Bx 0(2n∈x R )因为12,,,n βββ 是方程组=Ax 0的基础解系,所以r ()2n n n =-=A ,从而12,,,n ααα 线性无关. 而且,12,,,n βββ 线性无关,r()n =B . 因此,方程组=Bx 0的基础解系所含解向量的个数为2r()n n -=B .由假设()T T 12,,,n =⇒=⇒=A βββO AB O BA O()T 12,,,n ⇒=⇒=BA O B αααO知12,,,n ααα 是方程组=Bx 0的n 个线性无关的解. 因此,12,,,n ααα 就是方程组=Bx 0的一个基础解系.。

线性代数习题册(第四章 向量组的线性相关性参考答案)

线性代数习题册(第四章 向量组的线性相关性参考答案)

r4 − r2

0
5
2
0 0 2

0
0
2
8
6

r2

r3Leabharlann 0506 6
2
2

1 2 r2

0 0
0 0
1 0
2
4

3 1
0
0

1

0 →

0 0
6 1 0 0
0 0 1 0
3 2 5 3 0
4 4 5 1 0

注:整体无关,部分无关。
14. 设三阶行列式=D = aij 0 ,则( A ). ( A) D 中至少有一个行向量是其余行向量的线性组合;
(B) D 中每一个行向量都是其余行向量的线性组合;
(C ) D 中至少有两个行向量线性相关;
(D) D 中每一个行向量都线性相关.
分析:行列式为零,所以构成行列式的矩阵的行向量组一定线性相关,故至少有一个行向 量可以由其他行向量线表示,从而知(A)是正确的。
β=3 α3 + α4 的秩为( C ).
( A) 1
(B) 2
(C ) 3
(D) 4
1 0 0
分析:
(
β1
,
β
2
,
β
3
)
=
(α1

2
,
α
3
,
α
4
)

1 0
1 1
0

1


0 0 1

1 0 0 1 0 0

R ( β1 ,

线性代数 第四章 二次型

线性代数  第四章 二次型
1 , x2 ,..., xn 到 y1 , y2 ,..., yn 的线性替换. 线性替换. 线性替换(4.3) (4.3)可以用矩阵形式表示 线性替换(4.3)可以用矩阵形式表示 x1 c11 c12 ... c1n y1 x =Cy x 称为线性替换(4.3)的矩阵 线性替换(4.3) 2 = c21 c22 ... c2n y2 C称为线性替换(4.3)的矩阵
∴ B = C T AC
在上式中,矩阵B仍为对称矩阵, 是以B为矩阵的二次型, 在上式中,矩阵B仍为对称矩阵,Y是以B为矩阵的二次型, 两个二次型的秩相等。 之间的关系是什么呢? 两个二次型的秩相等。A和B之间的关系是什么呢?
定义4.3 A,B是两个 阶矩阵, 如果存在n 是两个n 定义4.3 设A,B是两个n 阶矩阵, 如果存在n 阶 可逆矩阵C, 成立,则称矩阵A 合同, 可逆矩阵C,使得 CTAC=B 成立,则称矩阵A与B合同, 矩阵 记为 A — B 经过非退化线性替换, 定理 经过非退化线性替换, 原二次型的矩阵与新二次型 矩阵合同。 的矩阵合同。 合同, A与B合同,记为A — B
yr +1 M yn y1 y2 M yr
d1 y1 d 2 y2 M d = ( y1 , y2 ,..., yr ,... yn ) r yr 0 M 0
只含平方项, 只含平方项,不含交叉项 每一对角矩阵对应一个标准形. 每一对角矩阵对应一个标准形. 每一个标准形对应的矩阵是对角矩阵
2 x c c ... c y =b11 y1 +2b12 y1 y2+ 2b13 y1 y3+ ... +2b1n y1 yn 2n 2 2 2 = 21 22 + b22 y2 + 2b23 y2 y3 + ... + 2b2 n y2 yn M M M M M 2 + b33 y3 + ... + 2b3 n y3 yn c c ... c y nn n + ............. xn n1 n2 T 2 则B = C AC x =Cy + bnn yn [ f ( x ) = x T Ax = (Cy )TA (Cy ) =y T C T AC] y = yT B y 证:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 向量组的线性相关性(二)
1. 判断下列向量集合在向量加法和数乘运算下是否为向量空间,若是向量空
间,试求其维数,并给出一个基.
1) }0,0,,,,),,,,({322154321543211=+=+∈==x x x x x x x x x x x x x x V ,且R α
2) }1,,,),,,({2121212=-∈==x x x x x x x x V n n ,且R α
3) },,){3213322113R ∈++==k k k k k k V αααα,其中)0,1,1(1=α,)1,0,1(2=α,
)1,1,2(3=α
2. 已知三维向量空间3R 的一组基)0,1,1(1-=α,)1,0,1(2=α,)1,1,1(3-=α.试用
施密特正交化方法由321,,ααα构造3R 的一组标准正交基.
3. 已知4维向量空间4R 的两个基
(I) ⎪⎪⎩⎪⎪⎨⎧====)
0,0,1,2()0,0,2,3()3,2,0,0()4,3,0,0(4321αααα, (II)
⎪⎪⎩⎪⎪⎨
⎧====)
0,1,2,1()2,1,1,2()2,2,1,0()
1,0,1,2(432
1ββββ 1) 求由基(I)到基(II)的过渡矩阵; 2) 求)4,3,2,1(=α在基(I)下的坐标;
3) 判断是否存在在两组基下坐标相同的非零向量.
4. 已知向量空间3R 的两个基为(I)321,,ααα和(II) 321,,βββ.设3R ∈α在基(I)
与基(II)下的坐标分别为()T
321,,x x x =x ,()T
321,,y y y =y ,且满足
3211x x x y ++=,212x x y +=,13x y =.
1) 求由基(I)变为基(II)的过渡矩阵; 2) 求31ββα+=在基(I)下的坐标.
5. 设三维向量空间3R 的两个基(I)321,,ααα和(II) 321,,βββ满足
3211332βββα++=,321222βββα++=,321335βββα++= 1) 求由基(I)到基(II)的过渡矩阵;
2) 若向量α在基(II)下的坐标为()T
1,1,1,求α在基(I)下的坐标.
6. 求下列齐次线性方程组的一个基础解系和通解(用向量形式表示).
1) ⎪⎩⎪
⎨⎧=++-=+-+=-+-0
830320
5432
143214321x x x x x x x x x x x x
2) ⎪⎪⎩⎪⎪⎨⎧=+-+-=-+-=+-+-=+++-032205520141183202235432154315
432154321x x x x x x x x x x x x x x x x x x x
3) ⎪⎪⎩⎪⎪⎨⎧=-+=++=-+=++0
8408730230523213213
21321x x x x x x x x x x x x
7. 设*η是非齐次线性方程组b Ax =的一个解向量,r ξξξ,,,21 是相应齐次线性
方程组0=Ax 的r 个线性无关的解向量.证明:r ξξξη,,,,21* 线性无关.
8. 设r n -ηηη,,,10 是非齐次线性方程组b Ax =的1+-r n 个线性无关的解向量,
其中A 是秩为r 的n m ⨯矩阵.证明:01ηη-, ,
02ηη-,0ηη--r n 是相应的齐次线性方程组0=Ax 的一个基础解系.
9. 设三元非齐次线性方程组的系数矩阵的秩为2,它的三个解向量321,,ηηη满足
⎪⎪⎪⎭⎫ ⎝⎛-=+603221ηη,⎪⎪⎪


⎝⎛-=+241232ηη
求该方程组的通解.
10. 设⎪⎪⎪

⎫ ⎝⎛=633422211A ,求一秩为2的方阵B ,使得O AB =.
11. 已知4阶方阵()4321,,,αααα=A ,4321,,,αααα均为4维列向量,其中4
32,,ααα线性无关,3212ααα-=.如果4321ααααβ+++=,求线性方程组β=Ax 的通解.
12. 是非题.
1) 与向量)1,1,0(不平行的所有三维向量的集合为3R 的一个子空间. ( ) 2) 相容非齐次线性方程组的解向量集合构成向量空间. ( ) 3) 若齐次线性方程组0=Ax 只有零解,则矩阵A 的列向量组线性无
关. ( ) 4) 已知A 是秩为r 的n m ⨯矩阵,则齐次线性方程组0=Ax 的任意s 个解向
量,只要r n s ->就线性相关. ( )
13. 选择、填空题.
1) 设T 1)0,1,2,1(-=α,T 2)2,0,1,1(=α,T 3),1,1,2(a =α.若由321,,ααα生成的
向量空间的维数是2,则=a .
2) 设n 阶方阵A 的各行元素之和均为零,且A 的秩为1-n ,则齐次线性方
程组0=Ax 的通解为 .
3) 设321,,ααα是3维向量空间3R 的一组基,则由基3312211,,ααα到基
21αα+,32αα+,13αα+的过渡矩阵为
(a)⎪⎪⎪⎭⎫ ⎝⎛330022101; (b)⎪
⎪⎪
⎭⎫
⎝⎛301320021; (c)⎪
⎪⎪⎭⎫ ⎝⎛---614
12
161
4
12
16141
21; (d)⎪⎪⎪⎭
⎫ ⎝⎛---616
16
14141
4
12
12
12
1 4) 已知3维列向量321,,βββ线性相关,21,ββ线性无关,矩阵()321,,βββ=B
3阶方阵O A ≠满足O AB =,则方程组0=Ax 的通解为 . 5) 已知向量组321,,ααα线性无关,而211ααβ+=,312ααβ-=,323ααβ+=
32142αααβ++=.若向量空间()4321,,,ββββL V =,则V 的维数 =V dim .
6) 设向量空间},,,,),,,({V 21312121x x x x x x x x x x x n n n +==∈==,且R α,
则V 的维数=dimV .。

相关文档
最新文档