西南大学线性代数作业答案

合集下载

西南大学21春[0178]《高数选讲》(上、下、线性代数)作业答案

西南大学21春[0178]《高数选讲》(上、下、线性代数)作业答案

西南大学培训与继续教育学院课程代码: 0178 学年学季:20211单项选择题1、设是的一个原函数,则 [ ]....2、设A为3阶方阵,,则. 36. 54. 6. 183、矩阵A与矩阵B相似,则下列论断错误的是 [ ]. A与B有相同的特征向量. A与B有相同的特征值. A与B有相同的特征多项式. A与B的秩相同4、已知,则[ ]....5、设积分区域D是由曲线 y=1, y=0, x=1, x=0 围成的区域,则二重积分[ ]. 1/4. 1/2. 2. 16、设二维随机变量(ξ,η)的联合密度函数和分布函数分别为,则下式不成立的是 [ ] .对任意的,有...对任意的,有7、设A、 B、 C、D表示四个事件,则表示 [ ]. A、B、C、D中有一个不发生. A、B、D都发生,而C不发生. A、B、C、D中有一个发生. A、B、C、D中至多有三个发生8、齐次线性方程组的基础解系的向量个数 [ ]. 4. 2. 5. 39、已知,则[ ]. -1. 1. 0.10、[ ].. 2. 0. 111、[ ]. A....12、微分方程的阶数 [ ]. 1. 3. 2. 013、当时,,均为无穷小量,则 [ ].是的高阶无穷小量.是的低阶无穷小量.和是等价无穷小量.和是同阶但非等价无穷小量14、若,则 [ ]. F....15、有50个产品,其中46个正品,4个次品,现从中抽取5次,每次任取1个(取后不放回)产品,则取到的5个产品都是正品的概率为[ ]. B....16、设函数,则[ ].有2个间断点.有3个间断点.有1个间断点.无间断点17、设函数在点处可导,,则[ ] . -2A. 2A. A. 018、设随机变量的密度函数则常数A= [ ]. 1/2. 1/3. 3. 119、设A、 B、 C均为n阶方阵,下列各式不成立的是A. B.C. D.....20、行列式的值为 [ ]. abcdefg. -acef. aceg. acef判断题21、积分. A.√. B.×22、函数展开的傅里叶余弦级数为. A.√. B.×23、设向量组线性无关,则向量组线性相关。

西南大学《线性代数》网上作业及参考答案

西南大学《线性代数》网上作业及参考答案

===================================================================================================1:[论述题]线性代数模拟试题三参考答案:线性代数模拟试题三参考答案 1:[论述题]线性代数模拟试题四参考答案:线性代数模拟试题四参考答案 1:[论述题]线性代数模拟试题五参考答案:线性代数模拟试题五参考答案 1:[论述题]线性代数模拟试题六 一、填空题(每小题3分,共15分) 1. 行列式332313322212312111b a b a b a b a b a b a b a b a b a = ( ). 2. 设A 是4×3矩阵,R (A ) = 2,若B = ⎪⎪⎪⎭⎫ ⎝⎛300020201,则R (AB ) = ( ).3. 设矩阵A = ⎪⎪⎪⎭⎫⎝⎛54332221t ,若齐次线性方程组Ax = 0有非零解,则数t = ( ).4. 已知向量,121,3012⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k βαα与β的内积为2,则数k = ( ).5. 已知二次型232221321)2()1()1(),,(x k x k x k x x x f -+-++=正定,则数k 的取值范围为( ).二、单项选择题(每小题3分,共15分) 1. 设A 为m ×n 矩阵,B 为n ×m 矩阵,m ≠n , 则下列矩阵中为n 阶矩阵的是( ). (A) B T A T (B) A T B T (C) ABA (D) BAB2. 向量组α1,α2,…,αS (s >2)线性无关的充分必要条件是( ). (A) α1,α2,…,αS 均不为零向量(B) α1,α2,…,αS 中任意两个向量不成比例 (C) α1,α2,…,αS 中任意s -1个向量线性无关(D) α1,α2,…,αS 中任意一个向量均不能由其余s -1个向量线性表示===================================================================================================3. 设3元线性方程组Ax = b ,A 的秩为2,η1,η2,η3为方程组的解,η1 + η2 = (2,0,4)T ,η1+ η3 =(1,-2,1)T ,则对任意常数k ,方程组Ax = b 的通解为( ).(A) (1,0,2)T + k (1,-2,1)T (B) (1,-2,1)T + k (2,0,4)T (C) (2,0,4)T + k (1,-2,1)T (D) (1,0,2)T + k (1,2,3)T 4. 设3阶方阵A 的秩为2,则与A 等价的矩阵为( ).(A) ⎪⎪⎪⎭⎫ ⎝⎛000000111(B) ⎪⎪⎪⎭⎫⎝⎛000110111(C) ⎪⎪⎪⎭⎫ ⎝⎛000222111(D) ⎪⎪⎪⎭⎫ ⎝⎛3332221115. 二次型f (x 1,x 2,x 3,x 4,)=43242322212x x x x x x ++++的秩为( ).(A) 1 (B) 2 (C) 3 (D) 4三、判断题(正确的打“√”,错误的打“×”,每小题3分,共15分)1. 设A 为n 阶方阵,n ≥2,则|-5A |= -5|A |. ( )2. 设行列式D =333231232221131211a a a a a a a a a = 3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为5. ( ) 3. 设A = ⎪⎪⎭⎫⎝⎛4321, 则|A *| = -2. ( )4. 设3阶方阵A 的特征值为1,-1,2,则E - A 为可逆矩阵. ( )5. 设λ = 2是可逆矩阵A 的一个特征值,则矩阵(A 2)-1必有一个特征值等于41. ( ) 四、(10分) 已知矩阵A = ⎪⎪⎪⎭⎫⎝⎛-210011101,B =⎪⎪⎪⎭⎫⎝⎛410011103, (1) 求A 的逆矩阵A -1. (2) 解矩阵方程AX = B .===================================================================================================五、(10分)设向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=42111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=21302α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=147033α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=02114α,求向量组的秩和一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.六、(10分) 求线性方程组⎪⎩⎪⎨⎧=++=+++=+++322023143243214321x x x x x x x x x x x 的通解(要求用它的一个特解和导出组的基础解系表示)七、(15分) 用正交变换化二次型f (x 1, x 2, x 3)=2331214x x x x +-为标准形,并写出所用的正交变换.八、(10分) 设a ,b ,c 为任意实数,证明向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111a α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0112b α,⎪⎪⎪⎪⎪⎭⎫⎝⎛=0013c α,线性无关.参考答案:线性代数模拟试题六参考答案 一、填空题1. 0.2. 23.2.4.32. 5. k > 2. 二、单项选择题1(B). 2(D). 3(D). 4(B). 5(C). 三、判断题1. (⨯). 2(⨯). 3(√). 4(⨯). 5(√).===================================================================================================四、Solution (1)由于⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛-+-100210011110001101100210010011001101211r r⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛----→+-++111100122010112001111100011110001101132332111r r r r r r ⎪⎪⎪⎭⎫ ⎝⎛-----→-11110012201011200121r ,因此,有⎪⎪⎪⎭⎫ ⎝⎛-----=-1111221121A .(2) 因为B AX =,所以⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----==-3222342254100111031111221121B A X .五、Solution 因为()⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛--=+-+400027120330130101424271210311301,,,4321214321r r r r αααα⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔+--+-00001000011013011000000001101301100001100110130143324231141312r r r r r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛→+-0000100001100301131r r , 于是,421,,ααα是极大无关组且2133ααα+=.===================================================================================================六、Solution 将增广矩阵B 化为行最简形得⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛=+-322103221011111322100112311111213r r B⎪⎪⎪⎭⎫ ⎝⎛-------→⎪⎪⎪⎭⎫ ⎝⎛----→++000003221021101000003221011111123211r r r r ⎪⎪⎪⎭⎫ ⎝⎛---→-00000322102110121r , 这时,可选43,x x 为自由未知量.令0,043==x x 得特解⎪⎪⎪⎪⎪⎭⎫⎝⎛-=0032*η.分别令⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛10,0143x x 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1021,012121ξξ. 原线性方程组的通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=00321021012121k k x ,其中21,k k 为任意常数.七、Solution 所给二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛--=102000201A ,)3)(1(122110200201||λλλλλλλλλλ-+=-----=-----=-E A ,===================================================================================================所以A 的特征值为-1,0,3.当1-=λ时,齐次线性方程组=+x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1011ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛=210211p . 当0=λ时,齐次线性方程组=-x E A )0(0的基础解系为⎪⎪⎪⎭⎫⎝⎛=0102ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0102p .当3=λ时,齐次线性方程组=-x E A )3(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1013ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛-=210213p .取()⎪⎪⎪⎪⎪⎭⎫⎝⎛-==2102101021021,,321p p p P ,在正交变换Py x =下得二次型的标准型为23213y y f +-=.===================================================================================================八、Proof 因为()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=+-+-001010100001011100001011111,,341311321c b a c b a c b ar r r r ααα ⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔↔↔+-+-+-00010*********0000010001001010000100433241212324r r r r r r r cr r br r ar , 于是321,,ααα的秩为3,所以321,,ααα线性无关.1:[论述题]一、填空题(每小题3分,共15分)1. 设A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023, B =,010201⎢⎣⎡⎥⎦⎤则AB = ⎪⎪⎪⎭⎫⎝⎛. 2. 设A 为33⨯矩阵, 且方程组Ax = 0的基础解系含有两个解向量, 则R (A ) = ( ). 3. 已知A 有一个特征值-2, 则B = A 2+ 2E 必有一个特征值( ). 4. 若α=(1, -2, x )与),1,2(y =β正交, 则x y = ( ). 5. 矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-301012121所对应的二次型是( ).二、单选题(每小题3分,共15分)1. 如果方程⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则k = ( ).(A) -2 (B) -1===================================================================================================(C) 1 (D) 22. 设A 为n 阶可逆方阵,下式恒正确的是( ). (A) (2A )-1 = 2A -1 (B) (2A )T = 2A T (C) [(A -1)-1]T = [(A T )-1]T (D) [(A T )T ]-1 = [(A -1)-1]T3. 设β可由向量α1 = (1,0,0),α2 = (0,0,1)线性表示,则下列向量中β只能是( ). (A) (2,1,1) (B) (-3,0,2) (C) (1,1,0) (D) (0,-1,0)4. 向量组α1 ,α2 …,αs 的秩不为s (s 2≥)的充分必要条件是( ). (A) α1 ,α2 …,αs 全是非零向量 (B) α1 ,α2 …,αs 全是零向量(C) α1 ,α2 …,αs 中至少有一个向量可由其它向量线性表出 (D) α1 ,α2 …,αs 中至少有一个零向量 5. 与矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( ).(A) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001(B) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011(C) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001(D) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020101三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A 为三阶方阵且|A | = -2,则|3A T A | = -108. ( )2. 设A 为四阶矩阵,且|A | = 2,则|A *| = 23. ( ) 3. 设A 为m n ⨯矩阵,线性方程组Ax = 0仅有零解的充分必要条件是A 的行向量组线性无关. ( )4. 设A 与B 是两个相似的n 阶矩阵,则E B E A λλ-=-. ( )5. 设二次型,),(23222132,1x x x x x x f +-=则),(32,1x x x f 负定. ( )四、 (10分) 计算四阶行列式1002210002100021的值.===================================================================================================五、(10分) 设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-200200011, B =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤300220011,且A , B , X 满足E X B A B E =--T T 1)( . 求X , X .1-六、(10分) 求矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-311111002的特征值和特征向量.七、(15分) 用正交变换化二次型322322213214332),,(x x x x x x x x f +++=为标准型,并写出所作的变换.八、(10分) 设21,p p 是矩阵A 的不同特征值的特征向量. 证明21p p +不是A 的特征向量.参考答案: 一、填空题1.⎪⎪⎪⎭⎫ ⎝⎛241010623. 2. 1. 3. 6. 4. 0.5. 2322312121324x x x x x x x +-++. 二、单项选择题1(B). 2(B) . 3(B) . 4(C) . 5(A) . 三、判断题1.( ⨯). 2(√). 3(⨯). 4(√). (5) (⨯). 四、Solution 按第1列展开,得===================================================================================================210021002)1(2100210021)1(110022100021000211411++-⋅+-⋅= 158)1(21-=⋅-⋅+=.五、Solution 由于E X B A B E =--T T 1)(,即[]E X A B E B =--T1)(,进而()E X A B =-T ,所以()[]1T --=A B X .因为()⎪⎪⎪⎭⎫ ⎝⎛=-100020002TA B ,所以⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=-100021000211000200021X . 六、Solution 因为λλλλλλλ----=----=-3111)2(31111102||E A321)2(3111)2(3212)2(12λλλλλλλ-=--=----=+c c , 所以A 的特征值为2.对于2=λ时,齐次线性方程组=-x E A )2(0与0321=+-x x x 同解,其基础解系为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=101,01121ξξ,于是,A 的对应于2的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛10101121k k ,其中21,k k 不全为0. 七、Solution 所给二次型的矩阵⎪⎪⎪⎭⎫ ⎝⎛=320230002A .===================================================================================================因为λλλλλλλ---=---=-3223)2(32023002||E A )1)(5)(2(3121)5)(2(3525)2(121λλλλλλλλλλ---=---=----=+c c , 所以A 的特征值为1, 2, 5.当1=λ时,齐次线性方程组=-x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1101ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=212101p . 当2=λ时,齐次线性方程组=-x E A )2(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=0012ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0012p .当5=λ时,齐次线性方程组=-x E A )5(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1103ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=212103p .===================================================================================================取()⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==2102121021010,,321p p p P ,在正交变换Py x =下得二次型的标准型为23222152y y y f ++=. 八、Proof 令21,p p 是A 的对应于不同特征值21,λλ的特征向量,即111p Ap λ=,222p Ap λ=.假设21p p +是A 的对应于λ的特征向量,即)()(2121p p p p A +=+λ. 由于22112121)(p p Ap Ap p p A λλ+=+=+,所以)(212211p p p p +=+λλλ,于是=-+-2211)()(p p λλλλ0. 根据性质4,知021=-=-λλλλ,进而21λλ=,矛盾.。

西南交大线性代数习题参考答案

西南交大线性代数习题参考答案

西南交大线性代数习题参考答案第一章 行列式§1 行列式的概念1. 填空(1) 排列6427531的逆序数为 ,该排列为 排列。

(2) i = ,j = 时, 排列1274i 56j 9为偶排列。

(3) n 阶行列式由 项的代数和组成,其中每一项为行列式中位于不同行不同列的 n 个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n 元排列。

若该排列为奇排列,则该项的符号为 号;若为偶排列,该项的符号为 号。

(4) 在6阶行列式中, 含152332445166aa a a a a 的项的符号为 ,含324314516625a a a a a a的项的符号为 。

2. 用行列式的定义计算下列行列式的值(1)1122233233000a a a a a解: 该行列式的3!项展开式中,有 项不为零,它们分别为 ,所以行列式的值为 。

(2)12,121,21,11,12,100000n n n nn n n n n n n n nna a a a a a a a a a ------解:该行列式展开式中唯一不可能为0的项是 ,而它的逆序数是 ,故行列式值为 。

3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。

证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。

对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n1n ,所以1n 2n 。

4. 若一个n 阶行列式中等于0的元素个数比nn-2多,则此行列式为0,为什么?5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少?(提示:利用3题的结果)6. 利用对角线法则计算下列三阶行列式 (1)21141183---(2)222111a b c a b c§2 行列式的性质1.利用行列式的性质计算系列行列式。

(1) 2141 3121 1232 5062-(2)100 110 011 001abcd ---(3)ab ac ae bd cd de bf cf ef ---2. 证明下列恒等式 (1)()33ax byay bzaz bxxy z D ay bz az bx ax by a b yz x az bx ax by ay bz zxy+++=+++=++++(提示:将行列式按第一列分解为两个行列式之和,再利用性质证明)(2) ()()()()()()()()()()()()22222222222222221231230123123a a a a b b b b cc c cd d d d ++++++=++++++(3)1111221100001000001n n n nnn n xx x a x a x a x a a a a x a ------=++++-+(提示:从最后一列起,后列的x 倍加到前一列)3. 已知四阶行列式D 的第三行元素分别为:1,0,2,4-;第四行元素的对应的余子式依次是2,10,a ,4,求a 的值。

西南大学网络教育线性代数作业

西南大学网络教育线性代数作业

1、矩阵的伴随矩阵是()....2、矩阵A适合条件[ ]时,它的秩为r.. A中任何r+1列线性相关;. A中任何r列线性相关;. A中有r列线性无关;. A中线性无关的列向量最多有r个.3、若齐次线性方程组有非零解,则必须满足[ ] . k=4. k=-1.k≠-1且k≠4. k=-1或k=44、下列n(n>2)阶行列式的值必为零的是[ ].行列式主对角线上的元素全为零.该行列式为三角行列式.行列式中零元素的个数多于n个.行列式中非零元素的个数少于n个5、下列各矩阵中,初等矩阵是[ ]。

....6、n阶矩阵A与对角矩阵相似的充分必要条件是[ ]。

. A有n个特征值. A有n个线性无关的特征向量. A的行列式不等于零. A的特征多项式没有重根7、A,B是n阶矩阵,则的充分必要条件是[ ] . AB=BA. A=0. B=0. A=B8、设n元齐次线性方程组Ax=0,若R(A)=r<n,则基础解系[ ]。

.惟一存在.共有n-r个.含有n-r个向量.含有无穷多个向量9、设A,B均为n阶可逆矩阵,则[ ]。

. A+B可逆. kA可逆(k为常数). AB可逆. (AB)-1=A-1B-110、行列式D=0的必要条件是[ ]。

. D中有两行(列)元素对应成比例. D中至少有一行各元素可用行列式的性质化为0. D中存在一行元素全为0. D中任意一行各元素可用行列式的性质化为0.11、的充分必要条件是()....12、A与B是两个相似的n阶矩阵,则().存在非奇异矩阵P,使..存在对角矩阵D,使A与B都相似于D.13、一个n维向量组(s>1)线性相关的充要条件是().含有零向量;.有一个向量是其余向量的线性组合;.有两个向量的对应分量成比例;.每一个向量是其余向量的线性组合.14、设A ,B均为n阶可逆矩阵,则(). A+B可逆. kA可逆(k为常数). AB可逆.15、两个n阶初等矩阵的乘积为().初等矩阵.单位矩阵.不可逆矩阵.可逆矩阵16、若A=,B=,其中是的代数余子式,则()。

线性代数 课后作业及参考答案

线性代数 课后作业及参考答案

《线性代数》作业及参考答案一.单项选择题1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λs βs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同15.设有矩阵Am×n,Bm×s,Cs×m,则下列运算有意义的是()。

西南大学[0044]线性代数大作业答案春季

西南大学[0044]线性代数大作业答案春季

0044 20201单项选择题1、....2、矩阵A与B相似,则下列说法不正确的是().style="text-indent:32px">A与B有相同的特征值... A = B..R(A) = R(B)3、....4、....5、....6、.必有r个列向量线性无关.任意r个列向量都构成最大线性无关组.任何一个列向量都可以由其它r个列向量线性表出.任意r个列向量线性无关7、.0.1..0或1..8、.2.4..19、. C. 必有一列向量可有其余列向量线性表示.必有两列元素对应成比例.任一列向量是其余列向量的线性组合.必有一列元素全为010、. D. A有n个互异特征值.A是实对称阵.A有n个线性无关的特征向量.A的特征向量两两正交判断题11、. A.√. B.×12、. A.√. B.×13、. A.√. B.×14、. A.√. B.×15、. A.√. B.×16、. A.√. B.×17、. A.√. B.×18、. A.√. B.×19、. A.√. B.×20、设A、B为两个不可逆的同阶方阵,则|A|=|B| (). A.√. B.×21、转置运算不改变方阵的行列式、秩和特征值. ( ) . A.√. B.×22、. A.√. B.×23、. A.√. B.×24、. A.√. B.×主观题25、参考答案:26、参考答案:27、设三阶方阵A的三个特征值为1,2,3,则|A + E| = ( ).参考答案:2428、参考答案:29、参考答案:30、参考答案:31、参考答案:k>132、参考答案:333、参考答案:34、参考答案:35、参考答案:36、参考答案:237、参考答案:38、设线性方程组A x =0,A是4×5阶矩阵,如果R(A)=3,则其解空间的维数为( ).参考答案:239、参考答案:40、参考答案:41、参考答案:42、参考答案:43、参考答案:44、参考答案:45、参考答案:46、参考答案:47、参考答案:48、2.参考答案:49、参考答案:50、参考答案:51、参考答案:52、1.参考答案:53、参考答案:54、参考答案:55、参考答案:56、参考答案:57、参考答案:58、参考答案:59、参考答案:60、参考答案:。

西南大学[0343]《线性代数》大作业答案

西南大学[0343]《线性代数》大作业答案

3.
A 中有 r 列线性无关;
4.
A 中线性无关的列向量最多有 r 个.
3、若齐次线性方程组
有非零解,则必须满足[ ]
1.
k=4
2.
k=-1
3.
k≠-1 且 k≠4
4.
k=-1 或 k=4
4、下列各矩阵中,初等矩阵是[ ]。
1.
2.
3.
4.
5、n 阶矩阵 A 与对角矩阵相似的充分必要条件是[ ]。
___ ___
40、行列式 参考答案:
-11
中元素-2 的代数余子式是_____
41、行列式 参考答案:
8
元素 x 的代数余子式是 .
42、行列式
=

参考答案:
0
43、 参考答案:

是 3 维向量组,则
线性 关。
44、矩阵 参考答案:
的伴随矩阵是

45、行列式 参考答案: 0
,则 =
46、设 A,B,C 均为 n 阶矩阵,若由
1.
A.√
2.
B.×
24、A是n阶正交矩阵,则
.
1.
A.√
2.
B.×
25、若 A,B 均为 n 阶可逆矩阵,则 AB 可逆。
1.
A.√
2.
B.×
主观题
26、设向量组
线性无关,则向量组
线性__________关。
参考答案: 无
27、已知 4 阶行列式中第 3 列元素依次为-1,2,0,1,它们的余子式依次分别为 5,3,-7,4,则 D=________ 参考答案:
1.
A.√
2.
B.×
20、齐次线性方程组有非零解的充要条件是其系数行列式等于零.。 ( )

西南大学网络与继续教育学院秋季线性代数考试答案

西南大学网络与继续教育学院秋季线性代数考试答案
x 2 x 3 1 x1 x 3 1 有无穷多解? 并求出其结构解. 2.当 a,b 为何值时,方程组 x 2 2 x 3 x ( a 2) x b 3 2 3 1Biblioteka 由此 B 的行最简形式矩阵为
令 X1 = 0, 的特解:
- 14λ + 40 = (λ -4) (λ -10)= 0 = 4 时,齐次线性方程组(A-4E)χ = ,k1 ≠ 0;
χ χ χ χ
=
的基础解系为
,于是对应
于λ = 4 的特征向量为 k1 当λ
= 10 时,齐次线性方程组(A-10E)χ = ,k2 ≠ 0;
=
的基础解系为

于是对应于λ = 4 的特征向量为 k2
二、大作业要求:
西南大学网络与继续教育学院课程考试试题卷
类别:网教 专业:计算机科学与技术 20XX 年 12 月 A卷 满分:100 分
大作业共需要完成三道题: 第 1-2 题选作一题,满分 30 分; 第 3-4 题选作一题,满分 30 分; 第 5 题必作,满分 40 分。
课程名称【编号】 :线性代数【0044】 大作业
由于
=8 ≠ 0 ,
所以 k1 = k2 = k3= 0, 因此向量组 β1,β2,β3 线性无关
3 -1 3. 已知 A = ,求其特征值与特征向量. 7 11
*
=
对应的齐次线性方程组的基础解系为ξ
=
, 所以原线性方程组的结构解为:
X=k
2 2 2 4.用正交变换化二次型 f (x1, x2, x3)= 2x1 3x2 3x3 2x2 x3 为标准型,并给出所用的正交变换.
一、 大作业题目:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西南大学线性代数作业答案第一次行列式部分的填空题1.在5阶行列式ija 中,项a 13a 24a 32a 45a 51前的符号应取 + 号。

2.排列45312的逆序数为 5 。

3.行列式25112214---x 中元素x 的代数余子式是8 .4.行列式102325403--中元素-2的代数余子式是—11 。

5.行列式25112214--x 中,x 的代数余子式是 —5 。

6.计算00000d c ba = 0行列式部分计算题 1.计算三阶行列式381141102--- 解:原式=2×(—4)×3+0×(—1)×(—1)+1×1×8—1×(—1)×(—4)—0×1×3—2×(—1)×8=—42.决定i 和j ,使排列1 2 3 4 i 6 j 9 7 为奇排列. 解:i =8,j =5。

3.(7分)已知0010413≠x x x,求x 的值.解:原式=3x 2—x 2—4x=2 x 2—4x=2x(x —2)=0 解得:x 1=0;x 2=2所以 x={x │x ≠0;x ≠2 x ∈R } 4.(8分)齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000z y x z y x z y x λλ 有非零解,求λ。

解:()211110100011111111-=--==λλλλλD由D=0 得 λ=15.用克莱姆法则求下列方程组:⎪⎩⎪⎨⎧=+-=++=++10329253142z y x z y x z y x 解:因为331132104217117021042191170189042135113215421231312≠-=⨯-⨯=-------=-------=)(r r r r r r D 所以方程组有唯一解,再计算:811110212942311-=-=D1081103229543112-==D1351013291531213=-=D因此,根据克拉默法则,方程组的唯一解是:x=27,y=36,z=—45第二次线性方程组部分填空题1.设齐次线性方程组A x =0的系数阵A 的秩为r ,当r= n 时,则A x =0 只有零解;当A x =0有无穷多解时,其基础解系含有解向量的个数为 n-r .2.设η1,η2为方程组A x =b 的两个解,则 η1-η2或η2-η1 是其导出方程组的解。

3.设α0是线性方程组A x =b 的一个固定解,设z 是导出方程组的某个解,则线性方程组A x =b 的任意一个解β可表示为β= α0+z.4.若n 元线性方程组A x =b 有解,R (A )=r ,则当 [r =n 时,有惟一解;当 ,r <n 时,有无穷多解。

5.A 是m ×n 矩阵,齐次线性方程组A x =0有非零解的充要条件是 R (A )<n .6.n 元齐次线性方程组Ax=0仅有零解的充分必要条件是 |A|不等于0 。

7 线性方程组Ax =b 有解的充要条件是r (Ab )=r (A ) 。

8.设1u 是线性方程组A x =b 的一个特解,r n v v v -,,,21Λ是其导出组的基础解系,则线性方程组A x =b 的全部解可以表示为u =r n r n v c v c v c u --++++Λ221111.求线性方程组⎪⎩⎪⎨⎧-=++-=+-+-=+-22334731243214321421x x x x x x x x x x x 的通解.答案:通解为:x=k 1),(001010110121212R k k k ∈⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡2.求齐次线性方程组⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x 的一个基础解系. 答案:基础解系为v 1=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-1001,00122v3.求非齐次线性方程组的通解⎪⎩⎪⎨⎧=+++=-++=+-+322212432143214321x x x x x x x x x x x x 答案:同解方程组为⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=-=+121023123434241x x x x x x ,通解为)(21330101R k k x ∈⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 4 求方程组的通解⎪⎩⎪⎨⎧-=+-+=-+-=--+2534432312432143214321x x x x x x x x x x x x 答案:化为同解方程组⎪⎩⎪⎨⎧-=--=+-757975767171432431x x x x x x通解为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=00757610797101757121k k x 5.已知线性方程组1324321=+++x x x x4324321-=-++x x x x 4234321-=---x x x x 6324321-=--+x x x x(1)求增广矩阵(Ab )的秩r (Ab )与系数矩阵A 的秩r (A ); (2)判断线性方程组解的情况,若有解,则求解。

答案:(1)r (Ab )=r (A )=4 (2)有唯一解。

x1=-1;x2=-1;x3=0;x4=1第三次向量的线性关系填空题1.向量α=(1,3,5,7),β=(a,b,5,7),若α=β,则a= 1 ,b= 3 .2.已知向量1α=(1,2,3),2α=(3,2,1),则31α+22α= (9,10,11) ,1α-2α= (-2,0,2) .3.设向量组321,,ααα线性无关,则向量组1α,1α+2α,1α+2α+3α线性 无关 .4.设向量321,,a a a 线性无关,则3212,,a a a 线性 无关 。

5.设向量321,,a a a 线性无关,则向量0,,,321a a a 线性 相关 . 6. 4321,,,αααα 是3维向量组,则4321,,,αααα线性 相 关. 7.零向量是线性 相关 的,非零向量α是线性 无关 的.线性关系部分证明题1 证明:如果向量组γβα,,线性无关,则向量组αγγββα+++,,亦线性无关.证明:设有一组数321,,k k k ,使0)()()(321=+++++αγγββαk k k 成立,整理得0)()()(322131=+++++γβαk k k k k k 由于γβα,,线性无关,所以⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k 因为其系数行列式02110011101≠=,所以方程组只有零解,即0321===k k k .向量组αγγββα+++,,线性无关得证. 2.设向量β可由向量α1,α2,…,αr 线性表示,但不能由α1,α2,…,αr-1线性表示,问向量组α1,α2,…,αr-1,αr 与向量组α1,α2,…,αr-1,β是否等价?为什么?答案:等价。

因为β可由α1,α2,…,αr 线性表示,所以有λ1,λ2,…,λr ,使β=λ1α1+λ2α2+…+λr αr ,λr ≠0 ①又α1=α1,…,αr-1=αr-1,故向量组α1,α2,…,αr-1,β可由向量α1,α2,…,αr 线性表示。

由式①有,1112211βλαλλαλλαλλαrr r r r r r +----=--Λ 即α1,α2,…,αr 也可由向量组α1,α2,…,αr-1,β线性表示,故两向量组等价。

3.设α1,α2是某个齐次线性方程组的基础解系,问α1+α2,2α1-α2是否也可构成该方程组的基础解系?答案:α1+α2,2α1-α2显然是方程组的解。

所以以下只证α1+α2,2α1-α2线性无关。

设有一组数λ1,λ2,使得λ1(α1+α2,)+λ2(2α1-α2)=0,即 (λ1+2λ2)α1+(λ1-λ2)α2=0, 因α1,α2线性无关,故⎩⎨⎧=-=+.0,022121λλλλ 而,031121≠-=-所以λ1=λ2=0,则α1+α2,2α1-α2线性无关,仍是基础解系。

4.已知)2,5,3(),0,2,2(),1,0,1(321-=-=-=ααα,判定此向量组是线性相关还是线性无关。

答案:线性相关。

5.设1σ=(1,1,2)T ,2σ=(1,2,3)T ,3σ=(1,3,t )T请问当t 为何值时,1σ,2σ,3σ线性相关?并将3σ用1σ,2σ线性表示.答案:当t =4时,1σ,2σ,3σ线性相关。

3σ=-1σ+22σ..6 , 设s ααα,,,21Λ线性无关,而βααα,,,,21s Λ线性相关,则β能由s ααα,,,21Λ线性表示,且表示法惟一。

答案:因βααα,,,,21s Λ线性相关,故有k k k k s ,,,,21Λ不全为零,使2211ααk k +.0=++βαk k s s Λ要证β可由s ααα,,,21Λ线性表示,只要证明0≠k ,假设k =0,则s k k k ,,,21Λ不全为零,且有2211ααk k +.0=+s s k αΛ故s ααα,,,21Λ线性相关,矛盾,所以0≠k 。

设有个表示式s s αλαλαλβΛ++=2211s s αμαμαμβΛ++=2211两式相减得0)()()(222111=-++-+-s s s αμλαμλαμλΛ因s ααα,,,21Λ线性无关,所以0=-i i μλ,即).,2,1(s i ii Λ==μλ所以表示法惟一。

第四次特征值部分选择题1. A是n阶正交矩阵,则[A ] (A)1±=A (B)EAA=*(C)AAT=(D)AA=-12. A 与B 是两个相似的n 阶矩阵,则[ A ] (A) 存在非奇异矩阵P,使BAP P =-1(B) |A|≠|B|(C) 存在对角矩阵D,使A 与B 都相似于D (D)B I A I -=-λλ3 下列结论中,错误的有( B)(A) 若向量α与β正交,则对任意实数a,b, αa 与βb 也正交(B) 若向量β与向量21,αα都正交,则β与21,αα的任一线性组合也正交(C) 若向量α与β正交,则α与β中至少有一个是零向量(D) 若向量α与任意同维向量正交,则 α是零向量4 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110101011A ,则A 的特征值为[ C ](A) 1,0,1 (B) 1,1,2 (C) -1,1,2(D) -1,1,15 n 阶矩阵A 与对角矩阵相似的充分必要条件是[B](A) A 有n 个特征值(B) A 有n 个线性无关的特征向量(C) A 的行列式不等于零(D) A 的特征多项式没有重根《线性代数》1.下列n 阶(n>2)行列式的值必为0的有:B:行列式非零元素的个数小于n 个。

相关文档
最新文档